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Abstract: Several reports have linked food poisoning with the consumption of raw
vegetables and fruits contaminated by Salmonella. Most studies suggested an extra-
cellular lifestyle of Salmonella on plants. However, more recent studies show that
Salmonella are also able to colonize the intracellular compartment of various plant
tissues causing chlorosis and eventually death of infected organs. The aim of this
work is to present a probabilistic classification algorithm for disease symptoms on
Arabidopsis thaliana plant in order to improve the current biological research. The
algorithm itself uses images of Arabidopsis thaliana leaves as input and consists of
two steps. The first step is the detection of pixels belonging to a leaf. This is done
with a globally optimal color segmentation method. The second step is realized with
a probabilistic framework to classify each pixel. Finally a morbidity rate is computed
based on the classification result.

1 Introduction

In recent time, several reports have linked food poisoning to the consumption of Salmo-
nella-contaminated raw vegetables and fruits. Most studies suggested an extracellular
lifestyle of Salmonella on plants. However, recent results have shown that Salmonella
bacteria are also able to colonize the intracellular compartment of various plant tissues,
causing chlorosis and eventually death of infected organs [SCCH08]. Moreover, simi-
lar to other plant pathogens this bacterium triggers complex host defense responses in
Arabidopsis thaliana. Among other reactions to pathogenic bacteria, plants induce also
so-called hypersensitive response (HR). Core of this reaction is the programmed cell death
(PCD). PCD is a very tightly controlled process, in which infected areas or organs are
sacrificed in order to stop the invaders. On leaves, PCD can be easily visualized since
it causes yellowing of plant tissues. This process depends on numerous factors and can



Figure 1: Input images for the proposed classification algorithm. Left image: healthy plant. Right
image: sick plant

be prevented by successful pathogens. To investigate how Arabidopsis thaliana defends
itself and how bacteria interfere with plant immunity, we want to analyze the impact of
different bacterial mutants on plant tissues. To solve this task, plants are infected with
Salmonella and images of infected leaves are taken at different time points after infection.
Typical input images can be seen in Figure 1. The task here is to establish an objective
measurement for the disease rate in these leafs. This is done in two steps. First, for each
pixel in an image the decision has to be drawn if it belongs to the leaf or not. This is
done using a convex energy functional whose minimum is the desired segmentation. This
topic is presented in the second section. Second, each pixel belonging to a leaf has to be
assigned to a class (healthy vs. sick). This classification procedure is described in Section
3.

The workflow of the proposed algorithm is visualized in Figure 2.

Figure 2: Workflow: First the input image is segmented into foreground (black) and background
(white). Then for each foreground pixel a classification is performed. Unhealthy classified pixels
are marked cyan.



2 Color Segmentation

The problem of extracting relevant objects from images can be seen as the segmentation of
an image into two regions, foreground and background. All pixels labeled as foreground
count as part of an object and are interesting candidates for further analysis. Image seg-
mentation is a common task in computer vision, and many solutions have been proposed
for this problem. Currently, the best solutions are provided by variational approaches.
Three main classes of variational approaches exist for image segmentation, the first one
being level sets [OS88, CV01]. The main advantage is that the energy functional being
minimized is formulated continuously, so there is no need for discretization. On the other
hand, the local optimization of the energy functional does not necessarily lead to a glob-
ally optimal solution. The second class are graph cuts [GPS89, BVZ01] with two main
advantages: the computation time is generally very short and the solution is approximately
globally optimal. The main disadvantage of this approach is the discrete formulation on a
graph, leading to discretization errors. A combination of the benefits of those two methods
constitutes the third class: total variation (TV) minimization. Chan et al. [CEN04] pro-
posed this method for image segmentation of intensity-based images using a transformed
Mumford-Shah model. Additionally in [SHRW09] and [UPCB08], it was shown how this
approach can be extended to color images. In this paper, we will rely on [SHRW09] but
use a different color space for segmentation.

2.1 TV-Segmentation

The segmentation of an image I : Ω → [0, 1]3 ⊂ R3 with Ω ⊆ R2 can be seen as separa-
tion of the image plane Ω into disjoint regions Ω1,Ω2, ...,Ωn, with Ω = Ω1∪, ...,∪Ωn∪Γ,
where Γ denotes the contour of the segmentation. In the case discussed here, there will be
only two regions Ωobj and Ωbgd, so we are looking for a binary image u : Ω→ {0, 1}.
In [SHRW09] the authors present a convex energy functional based on total variation.
In their work they use the HSV color space. In order to be independent of illumination
changes this color space is the correct choice. However, since the definition of the hue
channel is done in polar coordinates, euclidean distances are not applicable on every chan-
nel identically, which is preferable. To obtain an independency of illumination changes
and the ability to use the euclidean distance we will use the I1I2I3 color space, proposed
by Hafner [Haf99]. The transformation of a RGB pixel value to an I1I2I3 pixel value can
be denoted with:
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The first channel contains the illumination information. The second and third channel
contain the color information. With this linear transform, we can derive a convex energy



functional for color image segmentation in the proposed color space:

E(u,µobj,µbgd) =
∫
Ω

(
f(I123(x),µobj)− f(I123(x),µbgd)

)
u(x)dx + λ

∫
Ω

|∇u(x)|dx,

(2)
with

f(I123(x),µ) = w1([I123(x)]I1−µI1)2 +w2([I123(x)]I2−µI2)2 +w3([I123(x)]I3−µI3)2

(3)
denoting a weighted squared sum of the individual channels. For the results presented in
this paper we use wI1 = 0.1 and wI2 = wI3 = 0.45. As additional input we use mean
values for the foreground µobj and background µbgd and a smoothing parameter λ ∈ R.

Theorem 2.1. The proposed energy functional (2) is convex.

The proof for this theorem is given in Appendix A. Using the Euler-Lagrange equation
and a local optimization scheme (e.g successive over-relaxation) we can find the global
minimum of (2), which is the desired segmentation. The Euler-Lagrange equation of (2)
is

∂E

∂u
= −f(I123(x),µobj) + f(I123(x),µbgd)− λdiv

(
∇u
|∇u|

)
(4)

3 Probabilistic Classification

The next step in the proposed algorithm is a classification of all pixels that were labeled
as part of a leaf by the procedure from the previous section. Each classification algorithm
has an offline and online phase. In the offline phase the classification model is learned.
The actual classification is then performed in the online phase, where the measurements
are checked against the learned model [Bis07].

3.1 Model Learning

In order to learn a non-over fitted model, we take several images from healthy leafs. Then,
we perform a segmentation and save all leaf pixel values (several millions). To be inde-
pendent from illumination changes we only use the second and third channel of the I1I2I3
color space, leading to two dimensional data points. We cluster the data points into M
clusters (e.g. M = 3) using the k-means algorithm. Finally, for each cluster we compute
its mean value µi and covariance matrix Σi, with i = 1, ...,M . By using this multimodal
color distribution we can provide a probabilistic modelM for a healthy leaf. Since this
step is quite time consuming, this type of model learning can be done offline before the
actual classification task.



3.2 Model Checking

Given a probabilistic modelM representing a healthy plant we can now efficiently check
for each labeled pixel x if it belongs to this model. For this purpose we compute the
following likelihood for every labeled pixel.

p(x|M) = max
i=1,...,M

exp
(
−0.5 · ([I123(x)]I2,I3 − µi)

T Σ−1
i ([I123(x)]I2,I3 − µi)

)
(5)

Herein, [I123(x)]I2,I3 ∈ R2 denotes a vector which consists of the I2 and I3 channel
information. Given a labeled pixel x, we test the following condition:

1.0− p(x|M) ≥ τ. (6)

If (6) is true, x is classified as unhealthy, otherwise as healthy. A typical value for τ is
99.995%.

4 Results

In this section, we present some experimental results achieved with the proposed algo-
rithm. In Figure 3, one can see a screenshot of the graphical user interface (GUI) developed
for this task. The big benefit of this GUI is its simplicity and clarity. Users without knowl-
edge about the underlaying algorithms can use them efficiently to classify. Additionally,
one can see some classification and segmentation results for a given input image. Some
further results are displayed in Figure 4. As it can be easily recognized, the automatic
classification results match the visual perception of a human observer. These examples
make clear that the proposed algorithm shows reliable results. Unfortunately, we did not
have a ground truth for this data to intensively analyze the algorithm, but we can say with
fair certainty that this work is a good basis for further development.

5 Conclusion

In this work, we present a probabilistic algorithm for classification of disease symptoms in
Arabidopsis thaliana, caused by Salmonella. First, a detection of leafs in the input image
is performed. This is achieved by a globally optimal color segmentation strategy based
on total variation. Second, all leaf pixels are classified using a learned multimodal color
distribution model and a likelihood function. In practical experiments, we could show
a good performance. The presented algorithm can simplify the quantitative evaluation
of plant defense reaction to bacterial infection, because he provides an objective rate of
disease symptoms.



Figure 3: Screenshot of the algorithm GUI. In the center the marked pixels are displayed. On the
right the input image and the segmentation result can be seen. On the left and at the bottom control
parameters can be set.

A Proof of Theorem 2.1

Proof. For the sake of conciseness, we define

D := f(I123(x),µobj)− f(I123(x),µbgd). (7)

To show that (2) is convex with respect to u we have to demonstrate that

∀u1, u2 : E((1− ν)u1 + νu2) ≤ (1− ν)E(u1) + νE(u2) (8)

holds for all ν ∈ (0, 1). Now we can write:

E((1− ν)u1 + νu2) =
∫
Ω

D((1− ν)u1 + νu2)dx + λ

∫
Ω

|∇((1− ν)u1 + νu2)|dx

(9)

=
∫
Ω

(1− ν)Du1 + νDu2 dx + λ

∫
Ω

|(1− ν)∇u1 + ν∇u2|dx

(10)

≤ (1− ν)
∫
Ω

Du1 dx + ν

∫
Ω

Du2 dx

+ λ(1− ν)
∫
Ω

|∇u1|dx + λν

∫
Ω

|∇u2|dx (11)

= (1− ν)E(u1) + νE(u2) (12)



Figure 4: Classification results of the proposed algorithm. Left images: input; middle images:
segmentation result; right images: classification visualization, with cyan marking.
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