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Abstract—Poisson point processes (PPP’s) are very useful
theoretical models for diverse applications. One of those is multi-
target tracking of an unknown number of targets, leading to
the intensity filter (iFilter) as a generalization of the probability
hypothesis density (PHD) filter. This article develops a sequential
Monte Carlo (SMC) implementation of the iFilter. In theory it
was shown that the iFilter can estimate a clutter model from the
measurements and thus does not need it as a-priori knowledge,
like the PHD filter does. Our studies show that this property holds
not only in simulations but also in real world applications. In
addition it can be shown, that the performance of the PHD filter
decreases substantially if the a-priori knowledge of the clutter
intensity is chosen incorrectly.
Keywords: Intensity Filter, Sequential Monte Carlo, Multi-
target tracking, PHD Filter, Poisson point processes
(PPP’s)

I. INTRODUCTION

Multi-target tracking is a common problem with many
applications. In most of these the expected target number
is not known a-priori, so that it has to be estimated from
the measured data. In general multi-target tracking involves
the joint estimation from a sequence of observations in the
presence of detection uncertainty, association uncertainty and
clutter [1]. Classical approaches like the Joint Probabilistic
Data Association filter (JPDAF) [2] and multi hypothesis
tracking (MHT) [3] need in general the knowledge of the
expected target number. In recent time the intensity filter
(iFilter) [4], [5] has been presented as a generalization of the
probability density hypothesis (PHD) filter [6]. Both filters
use multi-target and multi-measurement states along with the
estimation of the number of target. While the PHD filter was
originally derived using finite set statistics the iFilter was
derived through Poisson point processes (PPP’s). Furthermore
it was shown, that the PHD filter is a special case of the iFilter
[7]. From an engineering field of view the main difference
between both is the clutter model, which has to be known
for the PHD filter a-priori and is estimated by the iFilter. For
the PHD filter many implementations, either using sequential
Monte Carlo methods [8]–[10] or closed form solutions [11],
have been presented, an implementation and analysis of the
iFilter was till now not published.

The main contribution of this work is the first presentation
of an implementation scheme for the iFilter using a sequential
Monte Carlo method, also called particle filtering. Secondly,

a performance analysis of this new filter is illustrated on
simulated and real data. To obtain an objective judgement the
PHD filter is also used for the same scenarios. This article is
structured as follows: Firstly, some basic theory about PPP’s
is described to make the article self-contained. Secondly, the
iFilter and its SMC implementation is derived. Followed by
numerical studies on simulated and real data for linear and not
linear scenarios. We close with a discussion about the results.
In the appendix the relationship between the iFilter and the
PHD filter is presented.

II. POISSON POINT PROCESSES (PPP’S)
This section gives a short introduction to basics of PPP’s,

which are used in the following. For further background see
[7]. Every PPP defined on a general set S is parametrized by a
non-negative function g, called the intensity, with

∫
S g(s)ds <

∞. In multi-target tracking applications g is not constant, so
that the PPP is called non-homogenous. One realization of
the PPP with intensity g(s) comprises the number and the
locations of points in S. A two step sampling procedure reveals
the basic structure. First, the number, n ≥ 0 , of points is
determined by sampling the discrete Poisson variable with
probability mass function given by

Pr[n] = exp
(
−
∫
S
g(s)ds

) (∫
S g(s)ds

)n
n!

, n = 0, 1, 2, ...

(1)
Take into account that

E[n] =
∫
S
g(s)ds. (2)

The n points in S are obtained as independent and identically
distributed (i.i.d.) samples of the pdf given by g(s)/

∫
S g(s)ds.

The event space of a PPP is defined as

E(S) := {(0)} ∪ {(n, {x1, ...,xn}) : xi ∈ S, i = 1, ..., n}∞n=1.
(3)

Two PPP’s on S with intensities g and h are linearly su-
perposed if independent realizations of each are combined
into one event. If (n, {x1, ...,xn}) and (m, {y1, ...,ym})
are two such realizations, the combined event is (n +
m, {x1, ...,xn,y1, ...,ym}). This event is probabilistically
equivalent to a realization of a PPP whose intensity is g+ h .
Linearly superposing PPP’s yields another PPP whose inten-
sity is the sum of the intensities of the superposed PPP’s.



A. PPP’s for multi-target tracking

In multi-target tracking applications two sequences of PPP’s
are usually used: one which corresponds to the multi-target
state X0,X1, ...,Xk and one that corresponds to measure-
ments Z1,Z2, ...,Zk. Both are bound to discrete time steps
t0, t1, ..., tk, with tj−1 < tj for j = 1, ...k. Measurements
are assumed to be only available for time steps j > 0.
An important but subtle point is hidden in this language.
The multi-target process is not assumed to be a PPP, but
it is approximated at every time step by a PPP. These PPP
approximations are the Xk. Similarly, measurements sets are
not assumed to be PPP’s, but under the approximate PPP target
models, the measurements are realizations of PPPs. These are
the Zk. The multi-target state space is an augmented space
S+ = S ∪ Sφ, where Sφ is a ”clutter-target” space and the
target state space S ⊆ Rnx , with nx ≥ 1 the dimension of the
individual target state, is bounded. The augmented state space
enables estimates of both target birth and measurement clutter.
The measurement sequence is defined on the measurement
space Z ⊂ Rnz , with nz ≥ 1 the dimension of the individual
measurement.

III. THE SMC-IFILTER

The iFilter can be summarized in six steps, which will be
presented in the following using a sequential Monte Carlo
representation. Here the particle set represents the target
intensity of the PPP, which corresponds to the multi-target state
Xk. Analog to the PHD-filter the integral over this intensity
(or sum, if using particles) is the estimated number of targets
and is not necessary equal to one. Given from the previous
time step we have the particle set:

{(xi, wi)}Nk
i=1, (4)

with xi ∈ Rnx and wi the corresponding weight. Nk denotes
the number of particles estimated at time step tk−1. This set
represents the target intensity. In addition we have the intensity
of the clutter space φ denoted by fk−1|k−1(φ). In practical
implementations this intensity can be represented by a single
number, called the number of φ hypotheses. In order to model
the filter fully the following probabilities have to be defined:

ψk(x | φ) transition probability for new targets (5)
ψk(x | y) target transition probability (6)
ψk(φ | φ) probability for no target presence (7)
ψk(φ | x) transition probability for target death (8)
pk(z | x) measurement likelihood (9)
pk(z | φ) probability for measurement from clutter

(10)

pDk (x) detection probability for x (11)

pDk (φ) detection probability for φ (12)

with x,y ∈ S. At time tk we get measurements

z1:m = {z1, ..., zm}, (13)

with zj ∈ Rnz and j = 1, ..,m. The time step t0 contains
no measurements, so it is reserved for initialization. It may
happen that the measurement set is empty for a given time
step, in that case the update steps can be omitted. The
implementation using a particle representation is summarized
as follows:

A. Predict target intensity

The resampled particle set gained from the previous step
is denoted by {xi, wi}Nk

i=1, where Nk was estimated in time
step tk−1, c.f. III-F. This particles represent the intensity over
S. Another interpretation is, that every particle represents
a possible target state in S, so that the prediction of the
whole set can be modeled by applying a transition model
to every particle and adding some noise to it. The weights
are unchanged. In practical implementations this has the same
effect as predicting the intensity distribution over S with a
closed formula.

The iFilter models the birth process by itself, so that the
particle number has to be increased in order to represent newly
born targets correctly.

Nk,new = Nk · ψk(x | φ) · fk−1|k−1(φ) (14)

denotes the additional number of particles. Newly created
particles are sampled uniformly over S with weights

wi =
ψk(x | φ) · fk−1|k−1(φ)

Nk +Nk,new
, i = 1, ..., Nk,new (15)

This sampling is an approximation of the transition model
ψk(x | φ), which has proven very stable in experiments.
We define {x̃i, wi}

Nk+Nk,new

i=1 as the predicted particle set
containing the newly created and shifted particles.

B. Predict hypothesis intensity

In order to predict the number of φ hypotheses, compute
the number of persistently absent and newly absent targets

b̂k(φ) = ψk(φ | φ) · fk−1|k−1(φ) (16)

d̂k(φ) =
Nk+Nk,new∑

i=1

ψk(φ | x̃i) · wi (17)

The predicted number is then:

fk|k−1(φ) = b̂k(φ) + d̂k(φ) (18)

C. Predict measurement intensity

For all measurements zj , with j = 1, ...,m compute the
partition functions evaluated at zj for the state space and φ:

νk(zj) =
Nk+Nk,new∑

i=1

pk(zj | x̃i)pDk (x̃i)wi (19)

λ̃k(zj) = pk(zj | φ)pDk (φ)fk|k−1(φ). (20)

The sum of both is the measurement intensity for zj

λk|k−1(zj) = λ̃k(zj) + νk(zj) (21)



D. Update target intensity

Given m new measurements the update of the state intensity
is realized through a correction of the individual particle
weights. For every particle (xi, wi), with i = 1, .., Nk +
Nk,new set:

ŵi =

(1− pDk (x̃i)) +
m∑
j=1

pk(zj | x̃i)pDk (x̃i)
λk|k−1(zj)

 · wi (22)

E. Update hypothesis intensity

Since we use the augmented space S+ we have to adjust
also the number of φ hypotheses:

fk|k(φ) =

(1− pDk (φ)) +
m∑
j=1

pk(zj | φ)pDk (φ)
λk|k−1(zj)

 ·fk|k−1(φ)

(23)

F. Resampling

The number of particles in the state space may and should
vary over time in order to represent the current situation better,
e.g. more targets need more particles, so that the particle
approximation accuracy is still sufficient. To estimate the
correct number of particles resampled for the next time step
compute first the number of targets

ηk =
Nk+Nk,new∑

i=1

wi. (24)

Then compute the following probability:

pS =
ηk

ηk + fk|k(φ)
. (25)

The number of resampled particles Nk+1 is then the expec-
tation of a binomial distribution with the probability pS and
runs equal to Nk +Nk,new, i.e.

Nk+1 = (Nk +Nk,new) · pS . (26)

The estimation of Nk+1 in every time step prevails the particle
number from growing against infinity. Given Nk+1 a standard
resampling technique for particle filtering can be used, e.g. the
following:

Initialize the cumulative probability with c1 = 0 and set

ci = ci−1 +
ŵi
ηk
, for i = 2, ..., Nk +Nk,new. (27)

Draw a uniformly distributed starting point a1 from the
interval [0, N−1

k+1].
For j = 1, ..., Nk+1,

aj = a1 +N−1
k+1 · (j − 1) (28)

while aj > ci,

i = i+ 1.
end while. (29)

xj = x̃i (30)

wj = N−1
k+1 (31)

Rescale the weights by ηk to get a new particle set
{xj , ηk/Nk+1}Nk+1

j=1 .

After every time step k we generate a particle cloud, which
represents the PPP over S. To estimate the correct object states
from this cloud we have to perform a clustering. The iFilter
filter estimates the number of objects for every time step, so
it is possible to use a clustering technique, which requires the
number of clusters, e.g. k-means clustering [12]. However the
estimated object number has a high variance. This behavior
was already shown for the PHD filter [13]. Since the iFilter
is a generalization it still suffers from this problem. To deal
with it, we use in our experiments the adaptive resonance
theory (ART) clustering [14], which estimates the number of
clusters automatically, with a distance parameter as predefined
user input. ART is used to estimate the target count and the
individual target states from the particle cloud. In fact we only
use a subset

S ⊂ {xj , wj}Nk+1
j=1 , (32)

with
(xj , wj) ∈ S if wj ≥ τ. (33)

IV. NUMERICAL STUDIES

In order to analyze the performance of the iFilter we test
it against its specialization the PHD filter using the OSPA-
metric [15]. Some words on the strong relationship between
both filters can be found in the appendix. In all experiments
we use a sequential Monte Carlo version of both filters. A
general description of the SMC-PHD implementation can be
found in [10]. The implementation used here was published
in [16]. We used the PHD as it was described in those papers
for a matched clutter rate. In the following we present results
from simulated and real world scenarios.

A. Simulated data

In this subsection we present tracking results for both filters
based on the OSPA-metric. First, we demonstrate results using
a linear scenario with two crossing inertial moved objects. We
used for all experiments in this paper a PHD filter which is
adopted to a low clutter scenario. Then we have used both
filters to track the objects in a low, middle and high clutter
scenario, c.f Figure 1. The number of clutter measurements
was estimated following a poisson distribution with mean
value A · ρA

p(nc) =
1
nc!

(A · ρA)nc ∗ exp(−A · ρA), (34)

with A denoting the volume of a observed area and ρA
a parameter describing the clutter rate. For the low clutter
scenario we used ρA = 4 · 10−6, ρA = 9 · 10−6 for middle
and ρA = 9 · 10−5 for high cutter rates. nc many clutter
measurements are generated by a i.i.d. process.

Since the PHD filter and iFilter are close related the tracking
results should be nearly the same if the clutter model is
chosen correctly for the PHD filter. The whole scenario has
a length of 100 time steps. The PHD filter here was realized



Figure 1. Linear scenario used for performance evaluation. Two targets
move inertially from left to right (green lines). The blue circles denote all
measurements for 100 time steps, including clutter.

with 5000 particles and its clutter rate was matched to a low
clutter scenario. The iFilter started with 5000 and reached
a mean particle number of about 6500. Figure 2 shows the
OSPA values for 500 Monte Carlo runs with a low clutter
model. Although, the results of the PHD filter are good for
this scenario, the iFilter reaches better values. The estimated
clutter model of the iFilter handles the data better than the a
priori clutter model for the PHD filter, although we matched
the a priori clutter model of the PHD filter to this scenario.
The modeling of the clutter process is hard work and it can
be observed that slight errors can reduce the performance. In
practice the perfect modeling of a clutter rate is not possible,
so that the automatic estimation of the clutter rate is desirable.
In addition, it is obvious that the PHD filter converges faster in
the beginning. Keeping in mind that iFilter has to estimate the
clutter and birth process before it can produce reliable results,
this behavior is explainable and can be seen as ”normal”.

For the following experiments with middle and high clutter
rates we did not change the parameters of both filters, e.g. the
clutter model for the PHD filter is still matched the low clutter
scenario. With this experiments we want to investigate how
strong the impact of a varying clutter model is for both filters
if the user defined parameters are to adapted to the scenario.
Figures 3 and 4 show that the PHD filter generates now
worse results, but also the iFilter cannot keep its performance
compared to the low clutter scenario. Therefore, it seems
reasonable to conclude that the remaining free parameters of
the iFilter have also a influence on the correctness of the clutter
rate estimation. Even though the results of the iFilter are worse
here, they are in the same range as the PHD filter was in the
low clutter scenario.

In the next step we tested both filters on a non-linear

Figure 2. OSPA-metric for 500 Monte Carlo runs on a linear scenario with
low clutter rates.

Figure 3. OSPA-metric for 500 Monte Carlo runs on a linear scenario with
middle clutter rates.

scenario, c.f Figure 5. Here we use bearing measurements
(azimuth and elevation) to estimate position and velocity
of multiple targets. The measurement likelihood is defined

Figure 4. OSPA-metric for 500 Monte Carlo runs on a linear scenario with
high clutter rates.



Figure 5. Non linear scenario used in our simulations and real world
experiments. A possible observer path is illustrated by the red ellipse, whereby
the blue dots represent the discrete measurement points. The yellow crosses
are objects of interest in this scene, which should be localized and tracked
from the algorithm by bearing data. The latter is represented by green rays
which point in the direction resulting from processing the sensor output.

through:

p(z|x) =
1

2π|Σ| 12
exp

(
−1

2
(z− f(x))TΣ−1(z− f(x))

)
,

(35)
with Σ the covariance matrix of the measurement noise and

f(x) =

 arctan
(

x(1)−xobs(1)
x(2)−xobs(2)

)
π
2 + arctan

(
x(3)−xobs(3)√

(x(1)−xobs(1))2+(x(2)−xobs(2))2

) .

(36)
An observer performs an half circle flight over a region of
interest. For discrete time steps we gain bearing measurements
from three targets and additionally some clutter measurements.
Details on this scenario can be found in [16]. The covariance
matrix Σ was chosen according to sensor models for small
antenna arrays, i.e. high angular error. Again, we performed a
Monte Carlo simulation with 500 runs, c.f. Figure 6. It can be
easily seen that again the iFilter produces lower OSPA values
compared to the PHD filter.

Figure 6. OSPA-metric for 500 Monte Carlo runs on a non-linear scenario.

Figure 7. Typical input images produced by our camera system. Top row:
scaled image used for processing. Bottom row: cut in original size on a car
and two airplanes.

B. Real data

In this subsection we present localization and tracking
results achieved with real data. As sensor platform we used an
unmanned aerial system (UAS). The UAS was equipped with
a Global Positioning System (GPS) and an Inertial Navigation
System (INS), so that at every time step the position and
attitude information of the observer is available. The UAS
was flying at a height of about 1000 meters above ground
level. As measurement we used here again bearings (azimuth
and elevation), like in the simulated non-linear scenario. As
sensors for bearing measurements we used:

1) Antenna Array
A three-element antenna array was mounted beneath a
UAS. This small array is able to detect and compute
bearing data for satellite telephone uplink communica-
tion. In order to obtain data from the received signal
we used the strategy proposed in [19]. The challenge
for a filter lies in a non-gaussian error distribution
and additional grating lobe effects, which leads to high
errors in the estimated bearings. The errors here have
a systematic and statistical component. In the filter we
only modeled the systematic errors.

2) Optical System
In addition to the antenna array we used a fixed down-
looking high resolution camera system. The field of
view was 114 degree horizontal and 88 vertical. To
detect possible object we use the technique presented
in [17]. This detection procedure uses shape and color
information to find objects in color images. For the
experiments presented here we limited ourselves to
airplanes on the ground and cars (c.f. Figure 7). Once a



object has been detected bearing data can be computed
using the position and attitude information of the UAS.
The necessary formulas can be found in [18].

The results for the optical and antenna system can be
seen in Figures 9 and 8, respectively. As it can be easily
seen the performance for the optical sensor is much better in
comparison to the antenna system. This relies on the fact, that
the bearing errors of the antenna system are very high and have
additionally a strong systematic component. Nevertheless, for
both sensor types the iFilter produces very good results and
estimates the number of targets correctly for all time steps.
In addition we can observe an increase of the localization
confidence given more measurements. These results state that
the performance we achieved with simulated data (c.f. Figure
6) also holds for real data. In [16] comparable results with a
PHD filter for this data was shown.

V. CONCLUSIONS

This paper presents the first sequential Monte Carlo imple-
mentation of the iFilter. In addition an analysis on simulated
and real data of this new filter is presented in comparison
to the well-known PHD filter. In simulations, the general
behavior of the iFilter was investigated. It was demonstrated
in linear and non-linear scenarios that iFilter has in general
a better performance than the PHD filter, especially if the
clutter model for the PHD filter is not known perfectly. Even in
situations, where the clutter model of the PHD was matched
to the clutter rates in the scenario, the iFilter outperformed
the PHD. The implementation and usage of the PHD filter
was done according to the references in literature, which are
published up to now. The only drawback of the iFilter is its
slight slower convergence in comparison to the PHD filter.
The good performance of the iFilter was also confirmed in a
demanding estimation problem for real bearing data with high
systematic and statistical errors.

In future work we want to investigate the performance of the
iFilter in scenarios with multiple heterogeneous measurement
sources in comparison to other established filter frameworks.
The development of an cardinalized iFilter is desirable, since
the high variance of the estimated target number from the PHD
filter can be also observed for the iFilter.
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APPENDIX

Relationship to the PHD filter

The proposed derivation of the iFilter is very general and
specializations for different applications and use cases are pos-
sible. The most known is the PHD filter, which was originally
derived using the random finite set theory. Nevertheless, it can
also be derived using PPPs, analog to the iFilter. Details on
this topic can be found in [7].

The main differences are reducible to the augmented state
space S+. While the iFilter uses S+ = S ∪ Sφ, the PHD
filter only uses S. The basis for the on-line estimation of the
intensities of the target birth and measurement clutter PPPs is
the state φ. If, however, the birth and clutter rates are known
a priori then the state φ can be omitted, giving the PHD filter.
This requires some care. In order to discard targets, so that
the target count does not balloon out of control, the PHD
filter uses a death probability before predicting the multi-target
intensity fk|k(x). The iFilter models this through ψk(φ | x),
because transition into φ is death. A given a priori clutter rate
can replace λ̃k(zj) in (21). An a priori birth model has to be
considered in step 1 of the algorithm, see [10], [16] for details
on this step of the PHD filter.



Figure 8. Particle set evolution for a antenna array system at different time steps. The blue x’s represent the observer position at a bearing measurement. The
corresponding bearings are represented by black rays. The individual particles are illustrated as red circles, whereby the estimated localizations are displayed
as black diamonds and the ground truth is represented by green crosses. The leftmost object is moving to the left (dark green cross) and the three others are
stationary targets. For a better perspicuity this Figure only shows the top view of the 3D scenario.



Figure 9. Particle set evolution for a optical system at different time steps. The blue x’s represent the observer position at a bearing measurement. The
corresponding bearings are represented by blue rays. The individual particles are illustrated as red circles, whereby the estimated localizations are displayed
as black diamonds and the ground truth is represented by green crosses. The leftmost object is moving to the left (dark green cross) and the three others are
stationary targets. For a better perspicuity this Figure only shows the top view of the 3D scenario.


