
Chapter 3
A Sequential Monte Carlo Method for
Multi-target Tracking with the Intensity Filter

Marek Schikora, Wolfgang Koch, Roy Streit, and Daniel Cremers

Abstract. Multi-target tracking is a common problem with many applications. In
most of these the expected number of targets is not known a priori, so that it has
to be estimated from the measured data. Poisson point processes (PPPs) are a very
useful theoretical model for diverse applications. One of those is multi-target track-
ing of an unknown number of targets, leading to the intensity filter (iFilter) and
the probability hypothesis density (PHD) filter. This chapter presents a sequential
Monte Carlo (SMC) implementation of the iFilter. In theory it was shown that the
iFilter can estimate a clutter model from the measurements and thus does not need it
as a priori knowledge, like the PHD filter does. Our studies show that this property
holds not only in simulations but also in real world applications. In addition it can be
shown that the performance of the PHD filter decreases substantially if the a priori
knowledge of the clutter intensity is chosen incorrectly.

3.1 Introduction

This chapter presents a novel sequential Monte Carlo approach for multi-target
tracking, called the intensity filter. In general, multi-target tracking involves the joint
estimation of states and number of targets from a sequence of observations in the
presence of detection uncertainty, association uncertainty and clutter [2]. Classical
approaches such as the Joint Probabilistic Data Association filter (JPDAF) [9] and
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multi hypothesis tracking (MHT) [16] need in general the knowledge of the ex-
pected number of targets. Recently, the intensity filter (iFilter) [31, 28, 29] has been
presented, which is similar to the well-known probability density hypothesis (PHD)
filter [12]. Both filters give estimates to multi-target and multi-measurement states
along with the number of targets. While the PHD filter was originally derived using
finite set statistics, the iFilter was derived through Poisson point processes (PPPs).
Furthermore it was shown that the PHD filter is a special case of the iFilter [29].
From an engineering point of view the main difference between the PHD and iFil-
ter is the clutter rate model, which has to be known for the PHD filter a priori
and is estimated by the iFilter. Many implementations of the PHD filter have been
proposed either using sequential Monte Carlo methods [27, 37, 32], or with Gaus-
sian mixtures [33]. An implementation and analysis of the iFilter was published
in [24].

The main contribution of [24] is the first presentation of an implementation
scheme for the iFilter using a sequential Monte Carlo method, also called particle
filtering. The authors present a performance analysis of this new filter on simulated
and real data. To obtain an objective judgement the PHD filter was also used for
the same scenarios. This chapter however intends to improve the implementation
proposed in [24] by adding a measurement steered birth model and a novel state
extraction schema without the need of clustering techniques. This improvement is
mainly based on the ideas presented by Ristic et al. [18]. The state extraction schema
especially is well designed for scenarios with a high probability of detection. In this
paper we will limit ourself to such experiments.

Moreover, we analyze the iFilter in demanding situations with various clutter
rates and show the correct behavior of it. One example is the case, where no clutter
measurements are present. The iFilter models its birth model through a clutter space
Sφ , which is mainly responsible for the clutter rate estimation and will be explained
in this chapter. If there is no clutter, the expected number of elements in this space
will tend to zero and so one might think that target birth is no longer possible.
However, this guess is not correct. In various experiments we show that the filter
increases the intensity on Sφ , when a new target appears, and then can model target
birth correctly, even in the case of no clutter measurements.

The remaining part of this book chapter is organized in the following way: Sec-
tion 3.2 contains an introduction to Poisson Point Processes with a strong focus
on multi-target tracking. The following Section 3.3 describes the intensity filter
and how it can be implemented by a sequential Monte Carlo method. An inten-
sive study of performance for simulated data is given in Section 3.4. In addition
this section provides a comparison to the PHD filter and reveals the connection be-
tween both filters. Section 3.5 illustrates two applications in which the iFilter is
used for the purpose of multi-target tracking. The first application is tracking of
multiple objects with bearings as measurements, often called bearings-only track-
ing (BOT). The second presents a combination of high-accuracy optical flow and
multi-target tracking algorithms for video tracking. Conclusions are drawn in the
final Section 3.6.
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3.2 Poisson Point Processes (PPPs)

This section gives a short introduction to basics of Poisson Point Processes (PPPs),
which are used in the following. See [29] for further background. They are named
after Siméon Denis Poisson (1781-1840).

Definition 1. (Poisson distribution) A random variable x : Ω → N0 is said to be
Pois(λ ) distributed , with λ > 0, if

p(x = n) = exp(−λ )
λ n

n!
, (3.1)

for all n ∈ N0. p(x = n) denotes the probability for n occurrences of x.

Every PPP is defined on a general set S . In most of our applications this space
will be considered as Euclidean, S ⊆ R

d , with d ≥ 1 denoting the dimension, e.g.
d = 2 for targets located in the (x,y)-plane. Other more complicated spaces are also
possible. Realizations of PPPs on R ⊂ S consist of n > 0 points x1,x2, ...,xn ∈ R.
We denote a realization as ordered pair

ξ = (n,{x1,x2, ...,xn}). (3.2)

If n is equal to zero we set ξ = (0, /0), with /0 the empty set. Through this notation
we emphasize that the ordering of x1,x2, ...,xn is irrelevant, but not that the points
are necessarily distinct.

Definition 2. (Event Space) The event space of a PPP is defined as

E (S ) := {(0, /0)}∪{(n,{x1, ...,xn}) : xi ∈ S , i = 1, ...,n}∞
n=1. (3.3)

Definition 3. (Intensity) Every PPP is parameterized by only one function
g : S →R,s �→ g(s), s∈S , called the intensity. We call g(s) the intensity at point s.
For all s∈S , if g(s) = c,c≥ 0, where c is constant, the PPP is called homogeneous;
otherwise it is non-homogeneous.

It is assumed that
0 ≤

∫

R

g(s)ds < ∞ (3.4)

holds for all bounded subsets R of S , R ⊂ S . One realization of the PPP with
intensity g(s) comprises the number and the locations of points in R.

3.2.1 PPP Sampling Procedure

A two step sampling procedure reveals the basic structure. Firstly, the number, n≥ 0,
of points is determined by sampling the discrete Poisson variable with probability
mass function given by
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Pr[n] = exp

⎛
⎝−

∫

R

g(s)ds

⎞
⎠

(∫
R

g(s)ds

)n

n!
,n = 0,1,2, ... (3.5)

It follows from (3.5) that

E[n] =
∫

R

g(s)ds. (3.6)

Secondly, the n points in R are obtained as independent and identically dis-
tributed (i.i.d.) samples of the PDF (probability density function) given by g(s)/∫
R g(s)ds.

Two PPPs on S with intensities g and h are linearly superposed, if indepen-
dent realizations of each are combined into one event. If ξ1 = (n,{x1, ...,xn})
and ξ2 = (m,{y1, ...,ym}) are two such realizations, the combined event is ξ3 =
(n+m,{x1, ...,xn,y1, ...,ym}). This event is probabilistically equivalent to a realiza-
tion of a PPP whose intensity is g+ h . In words, superposition of linearly indepen-
dent PPPs yields another PPP whose intensity is the sum of the intensities of the
superposed PPPs.

3.2.2 PPPs for Multi-target Tracking

In multi-target tracking applications two sequences of PPPs are usually used: one
which corresponds to the multi-target state X0,X1, ...,Xk and one that corresponds
to measurements Z1,Z2, ...,Zk. Both are bound to discrete time steps t0, t1, ..., tk,
with t j−1 < t j for j = 1, ...k. Measurements are assumed to be only available for
time steps j > 0. An important but subtle point is hidden in this language. The
multi-target process is not assumed to be a PPP, but it is approximated at every time
step by a PPP. These PPP approximations are the Xk. Similarly, measurement sets
are not assumed to be PPPs. However, under the approximate PPP target models,
the measurements are realizations of PPPs. These are the Zk.

We define now S ⊆ R
nx , with nx ≥ 1, an nx dimensional bounded single target

state space. The multi-target state space is then an augmented space S + =S ∪Sφ ,
where Sφ represents space of the “target absent” hypothesis φ . S + is a discrete-
continuous space. The main concepts of PPPs can be adapted to this space , but some
modifications are needed. Here, g(s) is a intensity defined for all s ∈ S +. Integrals
of g(s) over bounded subsets R of S + must be finite, giving a discrete–continuous
integral:

0 ≤
∫

R+

g(s)ds

≡ g(φ)+
∫

R

g(x)dx < ∞, (3.7)
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with R+ ⊂ S +, R ⊂ S , φ ∈ Sφ and g(φ) being a dimensionless intensity on
Sφ . The number of copies of φ , or “clutter targets”, in a realization is Poisson dis-
tributed with mean g(φ). In other words, g(φ) is the expected number of targets in
φ . The augmented state space enables estimates of both target birth and measure-
ment clutter. The integral

∫
R g(x)dx is the expected number of targets in S . The

measurement sequence is defined on the measurement space Z ⊂ R
nz , with nz ≥ 1

being the dimension of the individual measurement.
Further discussion of PPPs defined on discrete-continuous and other spaces is

given in the book by Streit [29, Section 2.12.].

3.3 The Intensity Filter

3.3.1 General Overview

The iFilter operates on the augmented space S +. In the same way as a standard
single target filter consists of two main steps (Prediction and Update) also the iFilter
predicts the intensity over S + and then updates this intensity every time when new
measurements arrive. Hidden here lies the main difference between a single target
filter (e.g. a Kalman filter) and the iFilter. While a Bayesian filter can predict and
update the posterior PDF, the iFilter only predicts and updates a first moment of
this PDF. This first moment is called the intensity or probability hypothesis density
(PHD). The only way to handle the posterior PDF in a multi-target case statistically
correct would be by applying the multi-target Bayes filter, which is in practice not
feasible.

In the following sections of this chapter an index a|b in the intensity function
fa|b(.) denotes that the intensity was updated in time step ta with all the measure-
ments up to time step tb.

The intensity of the PPP Xk is fk|k(s),s ∈ S +. We split the intensity fk|k(s) over
S + into two intensities fk|k(x) and fk|k(φ). In general we can write

fk|k(s) =

{
fk|k(x), s = x ∈ S

fk|k(φ), s = φ ∈ Sφ
(3.8)

with fk|k(x) being the intensity over S and fk|k(φ) the intensity for Sφ .
In order to describe the iFilter the following probabilities and PDFs have to be

defined:

ψk(x | φ) transition probability for new targets (3.9)

ψk(x | y) target transition probability (3.10)

ψk(φ | φ) transition probability in Sφ (3.11)

ψk(φ | x) transition probability for target death (3.12)

pk(z | x) measurement likelihood (3.13)

pk(z | φ) likelihood for measurement fromφ (3.14)
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pD
k (x) detection probability for x (3.15)

pD
k (φ) detection probability for φ (3.16)

with x,y∈S and z ∈Z . Let us assume that we have the intensities fk−1|k−1(x) and
fk−1|k−1(φ), from the previous time step tk−1. Similarly to most stochastic filtering
techniques, the iFilter admits the Markovian assumption that the current state is only
dependent of the last state.

In every time step tk the likelihood (3.13) is set, according to:

pk(z | φ) =
( fk−1|k−1(φ))mk

mk!
e(− fk−1|k−1(φ)), (3.17)

with mk the number of measurements in time step tk.
In the prediction phase of the algorithm we have to predict the intensity on S +,

denoted by fk|k−1(s),s ∈ S +, as a convolution:

fk|k−1(s) =
∫

S +

ψk(s|y) fk−1|k−1(y)dy. (3.18)

Using the definition (3.7) of a discrete–continuous integral gives the predicted in-
tensity in the form

fk|k−1(x) = ψk(x | φ) fk−1|k−1(φ)+
∫

S

ψk(x | y) fk−1|k−1(y)dy (3.19)

and

fk|k−1(φ) = ψk(φ | φ) fk−1|k−1(φ)+
∫

S

ψk(φ | y) fk−1|k−1(y)dy, (3.20)

for all x ∈ S and φ ∈ Sφ , respectively. At time tk we receive mk measurements

ZZZk = {z1, ...,zmk}, (3.21)

with z j ∈ R
nz and j = 1, ..,mk. The time step t0 contains no measurements, so it

is reserved for initialization. It may happen that the measurement set is empty for
a given time step, in that case the update steps should be omitted. If ZZZk is not the
empty set, then the next step is to predict the measurement intensities. We do so by
evaluating

λk|k−1(z j) =

∫

S +

pk(z j|s)pD
k (s) fk|k−1(s)ds

= pk(z j|φ)pD
k (φ) fk|k−1(φ)+

∫

S

pk(z j|x)pD
k (x) fk|k−1(x)dx (3.22)
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for every measurement z j. The term λk|k−1(z j) can also be called in the language of
thermodynamics as a partition function evaluated at z j for the space S + [4].

Both intensities can be now updated at the time step tk, giving:

fk|k(x) = (1− pD
k (x)) fk|k−1(x)+

[
mk

∑
j=1

pk(z j|x)pD
k (x)

λk|k−1(z j)

]
fk|k−1(x) (3.23)

and

fk|k(φ) = (1− pD
k (φ)) fk|k−1(φ)+

[
mk

∑
j=1

pk(z j|φ)pD
k (φ)

λk|k−1(z j)

]
fk|k−1(φ). (3.24)

Keep in mind these intensities are not the posterior PDF of pk(X|ZZZk) but only a first
moment of the posterior point process, i.e., in general:

∫

S

fk|k(x)dx �= 1. (3.25)

In fact, it can be shown (cf. (3.6)) that the above integral is the expected number of
targets for tk, denoted by:

ηk =
∫

S

fk|k(x)dx (3.26)

The main drawback of the above filter equations is that in general the involved
integrals cannot be solved analytically. Therefore an appropriate numerical solution
is needed. In the following we show a sequential Monte Carlo (SMC) version of
the iFilter in which the intensity fk|k(x) will be approximated by particles (delta
peaks) drawn from this intensity. Actually the particles approximate the involved
integrals and the intensities. Another name for this kind of technique is particle
based filtering [17].

3.3.2 The SMC-iFilter

The works of Vo et al. [32] and Ristic et al. [18] give efficient sequential Monte
Carlo methods for the PHD filter. We present here a sequential Monte Carlo method
for the iFilter. The following implementation is an improved version of our pre-
viously published work [24]. The main improvements are a measurement steered
particle placement for target birth, and target state and covariance matrix estimation
without the need of clustering.

The improved SMC-iFilter can be summarized in eight steps, which will be pre-
sented in the following. Here the particle set represents the target intensity of the
PPP, which corresponds to the multi-target state Xk. By analogy to the PHD-filter,
the integral over this intensity (or sum, if using particles) is the estimated expected
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number of targets and it is not necessary equal to one. Given from the previous time
step we have the particle set:

{(xi,wi)}Nk
i=1, (3.27)

with xi ∈R
nx , wi the corresponding weight and Nk denoting the number of particles,

estimated at time step tk−1. This set represents the target intensity. In addition we
have the intensity of the space Sφ denoted by fk−1|k−1(φ), c.f. (3.8). For the sake of
simplicity, we will assume in the following uniformly distributed clutter. With this
assumption the intensity fk−1|k−1(φ) can be represented by a single number, called
the number of φ hypotheses.

To initialize the particle cloud at time step t0, N0 ∈ N
+ particles are distributed

uniformly across the state space S , e.g. N0 = 1000. The weights are set to wi =
1/N0. f0|0(φ) is set to a initial number, e.g. 2.

The implementation details using a particle representation are presented in the
following. Steps 1 and 2 correspond to the prediction phase,steps 3-7 to the correc-
tion phase and step 8 to the resampling phase of a sequential Monte Carlo algorithm.
A brief summary can be found in Algorithm 3.1.

1. Predict target intensity
The resampled particle set gained from the previous step is denoted by {xi,wi}Nk

i=1,
where Nk was estimated in time step tk−1, c.f. Step 8. These particles represent the
intensity over S . Another interpretation is that every particle represents a possi-
ble target state (called microstates in the language of thermodynamics) in S , so
that the prediction of the whole set can be modeled by applying the Markovian
transition model ψk to every particle. The weights are unchanged. In practical
implementations this has the same effect as predicting the intensity distribution
over S with a closed formula.

Assuming a constant velocity model in two dimensions the prediction of the
persistent particles can be modeled by:

x̃i =

⎛
⎜⎜⎝

1 0 Δt 0
0 1 0 Δt

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠xi +ννν , (3.28)

with Δt = tk−tk−1 and ννν ∼N (000,ΣΣΣ) a realization of a normal distributed random
vector. The iFilter models the birth process by itself, so that the particle number
has to be increased in order to represent newly born targets correctly. Then

Nk,new =

⌈
Nk

ηk−1
· (1−ψk(φ | φ)) · fk−1|k−1(φ)

⌉
(3.29)

denotes the additional number of particles. The term ηk−1 denotes the estimated
expected number of targets from the previous time step tk−1, c.f. Step 8. The
most general sampling for new born particles can be realized through a uniform
sampling procedure in S . The new born particles must cover the whole state
space. In order to avoid a high number of additional particles in scenarios with



3 A SMC Method for Multi-target Tracking with the iFilter 63

Algorithm 3.1. The SMC-iFilter

In: {(xi,wi)}Nk
i=1, fk−1|k−1(φ),ZZZk,ZZZk−1

Out: {(xi,wi)}Nk+1
i=1 , fk|k(φ),{ŷ j, P̂ j}

1. Predict target intensity

• For i = 1, ...,Nk apply (3.28) to get x̃i.

• Sample Nk,new (3.29) many new particles; measurement steered according to ZZZk−1
and (3.30)

• Weights for new particles are wi (3.31)

2. Predict φ intensity

• fk|k−1(φ) = b̂k(φ)+ d̂k(φ) (3.34)

3. Predict measurement intensity

• λk|k−1(z j) = λ̃k(z j)+νk(z j) (3.37)

4. Compute target states

• Compute the set J (3.40)
• For all j ∈ J :

ŷ j =
1

Wj
∑Nk

i=1 w j,ix̃i (3.41)

5. Compute covariance matrices

• For all j ∈ J :
P j =

1
Wj

∑Nk
i=1 w j,i(x̃i − ŷ j)(x̃i − ŷ j)

T (3.42).

6. Update target intensity

• For every particle (x̃i,wi), with i = 1, ..,Nk +Nk,new set the new weight according to
(3.43).

7. Update φ intensity

• Set fk|k(φ) according to (3.44).

8. Resample

• Compute Nk+1 =
(
Nk +Nk,new

) · pS (3.47).

• Use some standard resampling strategy to get {(xi,wi)}Nk+1
i=1

a high probability of detection, the authors in [18] proposed to sample new born
particles according to the measurements from the previous time step ZZZk−1. Let
mk−1 denote the number of measurements in time step tk−1, then for each of these
we sample

N j
k,new = Nk,new/mk−1�, j = 1, ...,mk−1 (3.30)
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many particles x̃i drawn from a distribution proportional to the distribution
pk(zk−1

j |x) centered around an old measurement zk−1
j . The operator .� rounds

to the next bigger integer.
The weights of the new born particles are set to

wi =
ψk(xi | φ) · fk−1|k−1(φ)

Nk,new
, i = 1, ...,Nk,new. (3.31)

This sampling is an approximation of the transition model ψk(x | φ), which has

proven very stable in experiments. We define {x̃i,wi}Nk+Nk,new
i=1 as the predicted

particle set containing the newly created and the shifted particles.

2. Predict hypothesis intensity
In order to predict the number of φ hypotheses, compute the predicted number
of persistently absent b̃k and newly absent targets d̃k as

b̃k(φ) = ψk(φ | φ) · fk−1|k−1(φ), (3.32)

d̃k(φ) =
Nk

∑
i=1

ψk(φ | x̃i) ·wi. (3.33)

The predicted number is then:

fk|k−1(φ) = b̃k(φ)+ d̃k(φ). (3.34)

3. Predict measurement intensity
For all new measurements z j, with j = 1, ...,mk compute, according to (3.22), the
partition functions evaluated at z j for the state space and φ :

νk(z j) =

Nk+Nk,new

∑
i=1

pk(z j | x̃i)pD
k (x̃i)wi (3.35)

λ̃k(z j) = pk(z j | φ)pD
k (φ) fk|k−1(φ). (3.36)

The sum of both is the predicted measurement intensity for z j

λk|k−1(z j) = λ̃k(z j)+νk(z j) (3.37)

4. Estimate target states
To avoid a clustering step the methodology presented in [18] is used and adopted
to the iFilter. First, compute the following weights for all new measurements
z j, j = 1, ...,mk and all persistent particles, i.e. not the new born, xi, i = 1, ...,Nk.
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wj,i =
pk(z j|x̃i)pD

k (x̃i)

λk|k−1(z j)
·wi (3.38)

Then compute the following sum

Wj =
Nk

∑
i=1

wj,i, (3.39)

which can be seen as a probability of existence for target j, similarly to the multi-
target multi-Bernoulli filter. For further analysis only those j are considered for
which Wj is above a specified threshold τ , i.e.

J = { j|Wj > τ, j = 1, ...,mk} (3.40)

For all j ∈ J the estimated states are then:

ŷ j =
1

Wj

Nk

∑
i=1

wj,ix̃i. (3.41)

In Equation (3.41) we added, in contrast to [18], the normalization term 1
Wj

to
receive more accurate state estimates when Wj is not practically one. Note that
only targets that have been detected at time step tk can be reported as present. This
follows the lack of “memory” of a PHD filter. The iFilter still suffers from this
effect. The full characteristics are discussed in [8]. In experiments τ is usually
set as τ = 0.75.

5. Estimate covariance matrices
For each estimated state ŷ j compute its covariance matrix:

P j =
1

Wj

Nk

∑
i=1

wj,i(x̃i − ŷ j)(x̃i − ŷ j)
T . (3.42)

In Equation (3.42) we added, in contrast to [18], the normalization term 1
Wj

to
receive more accurate covariance matrix estimates when Wj is not practically
one. The matrix P j is not an error covariance matrix in the sense of single target
Bayes filtering, but it characterizes the particle distribution of state ŷ j.

6. Update target intensity
Given mk new measurements the update of the state intensity is realized through
a correction of the individual particle weights. For every particle (xi,wi), with
i = 1, ..,Nk +Nk,new set:

ŵi =

[
(1− pD

k (x̃i))+
mk

∑
j=1

pk(z j | x̃i)pD
k (x̃i)

λk|k−1(z j)

]
·wi (3.43)
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7. Update hypothesis intensity
Adjust also the number of φ hypotheses:

fk|k(φ) =

[
(1− pD

k (φ))+
mk

∑
j=1

pk(z j | φ)pD
k (φ)

λk|k−1(z j)

]
· fk|k−1(φ) (3.44)

8. Resampling
The number of particles in the state space may and should vary over time in order
to represent the current situation better, e.g. more targets need more particles, so
that the particle approximation accuracy is still sufficient. To estimate the correct
number of particles resampled for the next time step compute first the estimated
expected number of targets

ηk =

Nk+Nk,new

∑
i=1

ŵi. (3.45)

Then compute the following probability:

pS =
ηk

ηk + fk|k(φ)
. (3.46)

The number of resampled particles Nk+1 is then the expectation of a binomial
distribution with the probability pS and samples equal to Nk +Nk,new, i.e.

Nk+1 =
(
Nk +Nk,new

) · pS. (3.47)

The estimation of Nk+1 at every time step prevails the particle number from grow-
ing against infinity. Given Nk+1 any standard resampling technique for particle
filtering can be used, e.g. the following:
Initialize the cumulative probability with c1 = 0 and set

ci = ci−1 +
ŵi

ηk
, for i = 2, ...,Nk +Nk,new. (3.48)

Draw a uniformly distributed starting point a1 from the interval [0,N−1
k+1].

For j = 1, ...,Nk+1,

a j = a1 +N−1
k+1 · ( j− 1) (3.49)

while a j > ci,

i = i+ 1.

end while. (3.50)

x j = x̃i (3.51)

wj = N−1
k+1 (3.52)

Rescale the weights by ηk to get a new particle set
{

x j,ηk/Nk+1
}Nk+1

j=1 .
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Remark 1. In practical implementations, we found it useful to limit the number
of particles to a maximum number in the prediction step. In addition we use a
minimum number of particles per target in the resampling step, to ensure a good
approximation.

Remark 2. After every time step tk we generate a particle cloud, which represents
the PPP over S . The estimation of target states can also be done by applying a
clustering method. To make this section self-contained we briefly present the main
idea of how to use a clustering technique. The iFilter filter estimates the number
of objects for every time step, so it is possible to use a clustering technique, which
requires the number of clusters, e.g. k-means clustering [10]. However, the estimated
object number has a high variance. This behavior was already shown for the PHD
filter [13]. The iFilter still suffers from this problem. To deal with it, one can use
the adaptive resonance theory (ART) clustering [5], which estimates the number of
clusters automatically, with a distance parameter as predefined user input. ART can
be used to estimate the target count and the individual target states from the particle
cloud. In fact, best results are achieved if one only uses a subset

S ⊂ {
x j,wj

}Nk+1
j=1 , (3.53)

with
(x j,wj) ∈ S if wj ≥ τ. (3.54)

In general we recommend the usage of the proposed state estimation scheme (steps
4 and 5) and not a clustering approach.

In situations with a low probability of detection (e.g. pD
k (x) = 0.3 or lower) the

hybrid intensity and likelihood ratio (iLRT) filter [30] is better suited.

3.3.3 Relationship to the PHD Filter

The proposed derivation of the iFilter is very general and specializations for differ-
ent applications are possible. The most known is the PHD filter, which was origi-
nally derived using the random finite set theory. Nevertheless, it can also be derived
using PPPs, analog to the iFilter. Details on this topic can be found in [28] and [29].

The main differences are reducible to the augmented state space S +. While the
iFilter uses S + = S ∪Sφ , the PHD filter only uses S . The basis for the on-line
estimation of the intensities of the target birth and measurement clutter PPPs is the
state φ . If, however, the birth and clutter rates are known a priori then the state φ
can be omitted, giving the PHD filter. This requires some care. In order to discard
targets, so that the target count does not balloon out of control, the PHD filter uses
a death probability before predicting the multi-target intensity fk|k(x). The iFilter
models this through ψk(φ | x), because transition of a target into φ can be seen as
target “death”. A given a priori clutter rate can replace λ̃k(z j) in (3.22). An a priori
birth model has to be considered in step 1 of the algorithm, see [32, 21] for details
on this step of the PHD filter.
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3.4 Numerical Studies

In order to analyze the performance of the iFilter we test it against its specialization
the PHD filter using the OSPA-metric [26]. Some words on the strong relationship
between both filters can be found in 3.3.3. In all experiments we use a sequential
Monte Carlo implementation of both filters. A general description of the SMC-PHD
implementation can be found in [32]. The implementation used here was published
in [21]. To have a fair comparison we modified the implementation by the ideas
presented in [18]. This method works well when the probability of detection pD

k (x)
is high, as in the examples and applications presented in this paper. We used the
PHD as it was described in those papers for a matched clutter rate. In the following
we present results from simulated scenarios.

3.4.1 Scenario - 1

First, we analyze the behavior of the iFilter in a demanding linear scenario. Herein
six inertial moved targets are placed in an area A = [−500,500]× [−500,500].
The unit is assumed to be meters. The state space is S ⊂ R

4, where the first
two components correspond to the x and y coordinates and the third and fourth
their velocities. The measurement space consists of x and y measurements, so
Z ⊂ R

2. New measurements occur for the sake of simplicity every second. The
measurement noise is white gaussian noise with a standard deviation σx = σy = 15.
The probability of detection is set equal for all states to pD

k (x) = 0.95, x ∈ S .
Target placement and direction of movement is visualized in Figure 3.1. Tar-
gets 1 - 3 are present for all time steps. Target 4 is presented between time
step 15 and 90. Target 5 and 6 are present between time step 30 and 75. The
whole scenario has a length of 100 time steps (seconds). The transition probabil-
ities were set to ψk(x | φ) = 0.2, ψk(φ | φ) = 0.01 and ψk(φ | x) = 0.1 and the
probabilities of detection were set to pD

k (x) = 0.95 and pD
k (φ) = 0.3. The num-

ber of targets in the following experiments are the result of (3.45). The num-
ber of states is the number of states, which were extracted in Step 4 of the
SMC-iFilter algorithm. Both numbers are average results after 500 Monte Carlo
trials.

In a first experiment the iFilter is tested in a case where no clutter measurements
are present. The iFilter models its birth process through the state φ , so if no clutter
measurements are present fk|k(φ) should tend to be zero. The question that then
arises is: Will the iFilter be able to deal with this and produce a reliable birth model?
We run 500 Monte Carlo simulations on the above scenario. As a modification we
set pD

k (φ) = 0 for this experiment. Figure 3.2 demonstrates that the iFilter is capable
to produce a good target birth model if no clutter is present. In time step 15 a new
target appears, because of this fk|k(φ) reaches a value above one in this time step
(this is denoted as ‘no. Phi” in Figure 3.2). From this increase the filter can model a
new target state in the next time step. Similar behavior can be observed in time step
30, where two new targets appear. fk|k(φ) reaches a value of above two and from
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Fig. 3.1. Linear scenario used for performance evaluation. Six targets move inertially. The
individual starting points of each target correspond to the denoted target number. Targets 1 -
3 are present for all time steps. Target 4 is presented between time step 15 and 90. Target 5
and 6 are present between time step 30 and 75.

this it can produce new target states. Even when the targets disappear the correct
number targets is estimated.

In the second experiment, we will investigate how a estimated clutter rate can
improve the results from a multi-target tracker in comparison to results gained from
a multi-target tracker that needs a priori knowledge about the clutter rate. The later
will be an SMC implementation of the PHD filter. In its standard formulation, the
PHD needs exact knowledge about the underlying mean clutter rate for a given sce-
nario. However, the clutter rate is hard to know in advance for a given real scenario
and sensor setup. In total we perform three experiments with low, middle and high
clutter rates. For each we evaluate the mean results after 500 Monte Carlo trials on
the linear scenario, see Figure 3.1. The number of clutter measurements is estimated
following a Poisson distribution with the mean value |A| ·ρA:

p(nc) =
1

nc!
(A ·ρA)

nc exp(−|A| ·ρA), (3.55)

with |A| denoting the volume of a observed area and ρA a parameter describing the
clutter rate. For the low clutter scenario we used ρA = 4 · 10−6, ρA = 9 · 10−6 for
middle and ρA = 9 ·10−5 for high clutter rates. Clutter measurements are generated
by a i.i.d. process. We will match the PHD filter to a middle clutter rate to see its
behavior in situations with less clutter on the one hand and more clutter on the other
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hand. In addition we will use the iFilter, which does not need any prior knowledge
about the clutter rate.

Figure 3.4 displays the mean OSPA values for both filters after 500 Monte Carlo
trials on a middle clutter rate. It can be observed that the achieved results are similar
through the whole scenario. This is an obvious result, since the PHD is matched to
the used middle clutter rate and the iFilter successfully learned the clutter rate. More
important is the fact that the iFilter, although it has a more complicated estimation
problem to solve (additional estimation of the clutter rate), reaches the same results
as the PHD filter, which has the advantage of exact a priori knowledge. A close look
on Figure 3.3 reveals another interesting effect of the PHD filter. The estimated ex-
pected number of targets (which is the integral of the intensity over the state space) is
biased in comparison to the ground truth. The number of state estimates, which was
produced by the strategy proposed in [18] (c.f. step 4 of the iFilter algorithm), im-
proves the result of the PHD filter. Therefore we can claim that if not using this state
estimation strategy the iFilter will outperform the PHD filter even in a case where it
knows the exact clutter rate. Proofs for this statement were presented in [24].

This misbehavior of the PHD arises from the fact that it assumes a mean clut-
ter rate for all time steps. Let us assume that we have as mean value one clutter
measurement per scan. If we use now a realization of a Poisson distribution with
this mean value, the probability to get zero clutter measurement or more than one
clutter measurement is exactly 1− e−1 = 0.63, and so these events can occur fre-
quently leading to the errors in the PHD. The iFilter on the other hand estimates the
clutter rate for every time step individually and is, because of this, robust against
a changing number of clutter measurements. This can be seen in Figure 3.3, where
the number of targets and the number of states are very close to the true value for

Fig. 3.2. Mean estimated target and state number after 500 Monte Carlo trials on the linear
scenario.
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Fig. 3.3. Mean estimated target and state number after 500 Monte Carlo trials on the linear
scenario with middle clutter.

Fig. 3.4. Mean OSPA values over time after 500 Monte Carlo trials on the linear scenario
with middle clutter.
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all time steps. Further we can read from this figure that the mean number of clutter
measurements for 500 Monte Carlo trials was estimated as 3.3 (‘no. Phi” in Figure
3.3), which corresponds to the ground truth. Again we can observe that the intensity
fk|k(φ) increases, when new targets appear. So even in a clutter scenario the birth
model of the iFilter works well.

Fig. 3.5. Mean estimated target and state number after 500 Monte Carlo trials on the linear
scenario with low clutter.

In the following we changed the clutter parameter of this scenario to a low value.
Results obtain for both filters are illustrated in figures 3.5 and 3.6. The first thing
to notice is the underestimation of the correct number of states for the PHD. This
effect can be mainly observed in those time steps, where only few targets are present.
Here the PHD filter matches the more measurements to clutter then the truth is. In
the moment, where more targets appear, the effect is reduced but still visible. The
impact can be seen in the mean OSPA values, c.f. Figure 3.6. The iFilter adapts very
reliably to the changed clutter rate and gives better results.

The final experiment will use a high clutter rate. Again the PHD filter is matched
to a middle clutter rate and the iFilter has no information about the clutter scenario.
The corresponding results are depicted in the figures 3.7 and 3.8. Especially the
PHD filter overestimates the number of targets and thus its OSPA values are higher
than the corresponding values of the iFilter. Also worth mentioning is that estimated
number of targets of the iFilter is slightly biased in comparison to the ground truth.
But the estimated number of states keeps close to the true values. The PHD on the
other hand has a strongly biased estimated number of targets.
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Fig. 3.6. Mean OSPA values over time after 500 Monte Carlo trials on the linear scenario
with low clutter.

Fig. 3.7. Mean estimated target and state number after 500 Monte Carlo trials on the linear
scenario with high clutter.
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Fig. 3.8. Mean OSPA values over time after 500 Monte Carlo trials on the linear scenario
with high clutter.

In general we can say that for both filters the used state estimation improves
the results and makes both filters more robust against clutter. The iFilter how-
ever performs better, even in cases where the PHD filter is matched to the actual
clutter rate.

Another interesting comparison can be seen in Figure 3.9. Here the number of
particle used to achieve the above results is presented. The PHD filter has a constant
particle number which stays the same for all time steps. The iFilter adjusts the num-
ber according to the actual number of targets. One can easily see how the number
adjusts, when new targets appear or disappear from the scene. The lower number
of particle of the iFilter leads to a lower computation time. A run time comparison
can seen in Table 3.1. The presented processing times where achieved on a Intel
Core2Duo 2.53GHz processor with 4GB of RAM.

Table 3.1. Mean runtimes for processing one time step. Values computed over 500 Monte
Carlo trials and for all time steps of the linear scenario with a middle clutter rate.

processing time (msec) speedup
SMC-PHD filter 12.645 1.0
SMC-iFilter 7.46467 1.7
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Fig. 3.9. Mean number of particles used over time after 500 Monte Carlo trials on the linear
scenario with high clutter. New targets appear in time steps 15 and 30 and disappear in time
step 75 and 90.

3.4.2 Scenario - 2

In the following both filters are tested on a non-linear scenario, c.f. Figure 3.10.
Here we use bearing measurements (azimuth and elevation) to estimate position
and velocity of multiple targets. The measurement likelihood is defined through:

p(z|x) = 1

2π |ΣΣΣ | 1
2

exp

(
−1

2
(z− h(x))T ΣΣΣ−1(z− h(x))

)
, (3.56)

with ΣΣΣ the covariance matrix of the measurement noise and

h(x) =

⎛
⎜⎝

arctan
(

x(1)−xobs(1)
x(2)−xobs(2)

)

π
2 + arctan

(
x(3)−xobs(3)√

(x(1)−xobs(1))2+(x(2)−xobs(2))2

)
⎞
⎟⎠ . (3.57)

An observer performs a half circle flight over a region of interest. For discrete time
steps we obtain bearing measurements from three targets and additionally some
clutter measurements. Details on this scenario can be found in [21]. The covariance
matrix Σ was chosen according to sensor models for small antenna arrays, i.e. high
angular error. The transition probabilities where set to ψk(x | φ) = 0.2, ψk(φ | φ) =
0.01 and ψk(φ | x) = 0.1 and the probabilities of detection where set to pD

k (x) = 0.95
and pD

k (φ) = 0.3 . Again, we performed a Monte Carlo simulation with 500 trials,
c.f. Figure 3.11. It can be easily seen that also in the nonlinear scenario the iFilter
produces lower OSPA values compared to the PHD filter.
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Fig. 3.10. Non linear scenario used in our simulations and real world experiments. A possi-
ble observer path is illustrated by the dotted curve, whereby the dots represent the discrete
measurement positions. The crosses are objects of interest in this scene, which should be
localized and tracked from the algorithm by bearing data. The latter is represented by rays
which point in the directions resulting from processing the sensor output.

Fig. 3.11. OSPA-metric for 500 Monte Carlo runs on a non-linear scenario.

3.5 Applications

In this section, we present two example application for the usage of the iFilter for
multi-target tracking. The first one is bearings-only tracking, where the states of in-
dividual targets have to be estimated from azimuth and elevation measurements. In
practice, this problem involves highly non-linear measurement equations and high
sensor errors with geometry depended bias. The second application is tracking in
video sequences with a broad space of following application, e.g. security, surveil-
lance and behavior analysis. Here we combine the methodology of the iFilter with a
high-accuracy optical flow algorithm. In addition, we show how target labeling can
be introduced to the iFilter.
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Fig. 3.12. Typical input images produced by our camera system. Top row: scaled image used
for processing. Bottom row: cut in original size on a car and two airplanes.

3.5.1 Bearings-Only Tracking

In this subsection we present localization and tracking results achieved with real
data. As sensor platform we used an unmanned aerial system (UAS). The UAS
was equipped with a Global Positioning System (GPS) and an Inertial Navigation
System (INS), so that at every time step the position and attitude information of the
observer is available. The UAS was flying at a height of about 1000 meters above
ground level. As measurement we used here again bearings (azimuth and elevation),
like in the simulated non-linear scenario. As sensors for bearing measurements we
used:

1. Antenna Array
A three-element antenna array was mounted beneath a UAS. This small array is
able to detect and compute bearing data for satellite telephone uplink communi-
cation. In order to obtain data from the received signal we used the strategy pro-
posed in [25]. The challenge for a filter lies in a non-Gaussian error distribution
and additional grating lobe effects, which leads to high errors in the estimated
bearings. The errors here have a systematic and statistical component. In the fil-
ter, we only modeled the statistical errors.
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2. Optical System
In addition to the antenna array we used a fixed down-looking high resolution
camera system. The field of view was 114 degree horizontal and 88 vertical.
To detect possible object we use the technique presented in [19]. This detection
procedure uses shape and color information to find objects in color images. For
the experiments presented here we limited ourselves to cars and airplanes (c.f.
Figure 3.12). Once an object has been detected bearing data can be computed
using the position and attitude information of the UAS. The necessary formulas
can be found in [22].

Fig. 3.13. Particle set evolution for an antenna array system at different time steps. The
x’s represent the observer position where bearing measurement were produced. The corre-
sponding bearings are represented by rays. The individual particles are illustrated as circles,
whereby the estimated localizations are displayed as diamonds and the ground truth is repre-
sented by crosses. The leftmost object is moving to the left and the three others are stationary
targets. For a better perspective this Figure only shows the top view of the 3D scenario.

The transition probabilities of the iFilter were set to ψk(x | φ) = 0.2, ψk(φ | φ) =
0.01 and ψk(φ | x) = 0.1 and the probabilities of detection were set to pD

k (x) = 0.95
and pD

k (φ) = 0.3.
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Fig. 3.14. Particle set evolution for an optical system at different time steps. The x’s repre-
sent the observer position where bearing measurement were produced. The corresponding
bearings are represented by rays. The individual particles are illustrated as circles, whereby
the estimated localizations are displayed as diamonds and the ground truth is represented by
crosses. The leftmost object is moving to the left and the three others are stationary targets.
For a better perspective this Figure only shows the top view of the 3D scenario.

The results for the optical and antenna system are visualized in Figures 3.14 and
3.13, respectively. As it can be easily seen the performance for the optical sensor
is much better in comparison to the antenna system. This relies on the fact that the
bearing errors of the antenna system are very high and have additionally a strong
systematic component. Nevertheless, for both sensor types the iFilter produces good
results and estimates the expected number of targets correctly for all time steps.
In addition we can observe an increase of the localization confidence given more
measurements. These results state that the performance we achieved with simulated
data (c.f. Figure 3.11) also holds for real data. In [21] comparable results with a
PHD filter for this data was shown.
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Fig. 3.15. Tracking an unknown number of people using high-accuracy optical flow. Tracking
results as blue circles and person ID in yellow.

3.5.2 Video Tracking

Multi-object tracking using a monocular system is a challenging but very important
problem in many computer vision applications. The aim is to estimate the number
and the state information of every object for each time step in an image sequence.
The problem becomes challenging when the number of objects is unknown and vari-
able. Here we will use the proposed SMC-iFilter to estimate the number of targets
and their states.

Algorithms based on the Joint Probabilistic Data Association filter (JPDAF) [3]
tend to merge tracking results produced by closely spaced objects. This drawback
cannot be observed when using an iFilter.

In [34, 11] the authors use a PHD filter for multi object tracking, with the draw-
back that only position information, gained from a detector, is used, so that the filter
must estimate the velocity indirectly, which reduces the robustness of the filter. In
this work we extend the classical iFilter to deal with image data and velocity in-
formation gained from optical flow. For every object tracking task some kind of
measurement is needed. Using optical flow we directly obtain velocity measure-
ments for every pixel. Unfortunately, this does not provide any information about
the positions of objects in the scene. Fortunately, there has been a rapid progress in
the field of object detection strategies [6, 20]. Since not all of these strategies are
able to run in real-time we will present a fast strategy for moving object detection
based on real-time optical flow. The main idea of our tracking algorithm is to run an
object detector and additionally compute the optical flow information. This gives us
two kinds of measurements, which can be used for a stable and robust multi-object
tracking, sample results can be seen in Figure 3.15. Parts of this work have been
previously published [23].
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Optical Flow

The estimation of the optical flow between two images is a well-studied problem in
low-level vision. A diverse range of optical flow estimation techniques have been
developed and we refer to the survey [35] for a detailed review. Taking into account
the so-called Middlebury dataset [1] the discontinuity-preserving variational models
based on Total Variation (TV) regularization and L1 data terms are among the most
accurate flow estimation techniques. Because of this fact, we will use in this context
the estimation technique proposed by Werlberger et. al. [36]. To make this chapter
self-contained we briefly reflect their work.

For two input images I0, I1 : Ω ⊂R
2 → [0,1] the optical flow model can be stated

as

min
u

⎧⎨
⎩
∫

Ω

2

∑
d=1

|∇ud|+λ |ρ(u(x))|dx

⎫⎬
⎭ , (3.58)

with u(x)= (u1(x),u2(x))T , ud : Ω →R, the free parameter λ to balance the relative
weight of data and regularization term and ρ(u(x)) = u(x)T ∇I1(x)+ I1(x)− I0(x)
the optical flow constrained equation. To improve the results and the accuracy the
authors extend this approach using anisotropic Huber regularization. To still be able
to perform a minimization a Legendre-Fenchel (LF) dual transform is needed. The
final energy functional is then

min
u,v

sup
|pd |≤1

=

⎧⎨
⎩
∫

Ω

2

∑
d=1

[(
D

1
2 ∇ud

)
pd − ε

|pd |2
2

+
1

2Θ
(ud − vd)

2
]
+λ |ρ(v(x))|dx

⎫⎬
⎭ .

(3.59)
This approach has several benefits: firstly, the energy functional is convex, which
leads to globally optimal solutions, and, secondly, the minimization can be sched-
uled in parallel leading to a real-time computation. use the results without massive
time drawbacks. Using this approach we can compute for every pixel x ∈ Ω and
each time step k the velocity uk(x) = (u1,u2)

T of this pixel.

Moving Object Detector

In this subsection we present a fast object detector, which is designed to detect
moving objects. Given the flow field uk at a given time step k, we can compute the
probability, individually for every pixel that it belongs to a moving object:

pm(x) = 1.0− exp

(
−1

2
(‖u((x))‖2 − μ)2

σ2

)
. (3.60)

Here μ and σ correspond to a normal distribution indicating that a pixel does not
move. Using a stationary camera μ would be zero. Using a flying platform with
downward-looking camera μ would correspond to the actual velocity of the plat-
form. A typical value for σ in our experiments is 0.5. Given this probability image
pm : Ω → [0,1] we can compute the center of gravity for every region with a high
probability of movement. Examples of this detector can be seen in Figure 3.16.
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frame: 41 61 86

Fig. 3.16. Moving object detection for different frames in the image sequence. Top row:
smoothed probability image for pixel movement; bottom row: position measurement dis-
played as black and white circles.

Muti-target Tracking and Labeling

We implemented the iFilter according to Section 3.3.2. In the following the state of
an individual object will be represented by xk ∈ R

4, with two random entries for
the position and two random entries for the velocities. Each measurement zk ∈ R

4

is represented analogous. The measurement and state unit is pixel. For the sake of
simplicity we assume that the object motion model of each target is linear with a
constant velocity. Since we use a high-accuracy optical flow with a high frame rate
(e.g. 30 frames per second) we do not need a more complicated motion model in
our experiments. With this the object state prediction can be written as:

xk =

(
I2 ΔT I2

02 I2

)
xk−1 + sk, (3.61)

with sk a zero mean Gaussian white process noise, ΔT the time difference between
step k and k− 1. I2 denotes the identity matrix for two dimensions and 02 a 2x2
matrix with zeros. The likelihood function is given by:

p(z|x) = exp

(
−1

2
(z− x)T ΣΣΣ(z− x)

)
, (3.62)

with ΣΣΣ the covariance matrix of the measurement noise.
At every time step k we have {xi

k,w
i
k}Nk

i=1 as a particle-based approximation of
the intensity over S +. The prediction, update and resampling for every time step
and new measurements is done following the work in [24], see Section 3.3.2.

To establish an individual object trajectory we have to label each object correctly.
We use two kinds of information: object state and the color distribution of the object.
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For both information, we will use a likelihood-type function measuring the confi-
dence that two objects from consecutive time steps k − 1 and k are identical. The
values of these likelihoods will be in the range of 0 (not identical) and 1 (identical).
Let us assume that m is an object from the time step k−1 and n is a object from the
time step k: then we can predict the object state of m using (3.61), so that we get m̃.
The distance is defined as d(m̃,n) = ‖xm̃ −xn‖2, with xm̃ and xn the state vectors of
the objects m̃ and n. The likelihood function is then

Lstate(m,n) = exp

(
− (d(m̃,n))2

2σ2
d

)
, (3.63)

with σd the standard deviation of the distance information.
The likelihood function for the color measurement is based on the idea of sim-

ilarity measures on color histograms, which has the benefit to be robust against
non-rigidity, rotation and partial occlusions [14]. Suppose that the distribution is
discretized into η bins. The color histogram p(x) = {p(x(c))}c=1,...,η at position x
is calculated as

p(x(c)) = f ∑
x j∈N (x)

g

(‖x− x j‖
α

)
δ (h(x j)− c). (3.64)

In (3.64) f is a normalization factor, α is the scaling factor, N (x) denotes the
neighborhood of pixel x, δ is the Kronecker delta function and g(.) is a weighting
function given by

g(r) =

{
1− r2, r < 1

0, otherwise
. (3.65)

h(x) is a function, which assigns the color at location x to the corresponding bin. To
measure the similarity between two color distributions, which are denoted by p(x)=
{p(x(c))}c=1,...,η and q(x) = {q(x(c))}c=1,...,η , we use the Bhattacharyya coefficient.

Let pm̃ and qn be the color distribution of the objects m̃ and n, then the likelihood
is:

Lcolor(m,n) =
η

∑
c=1

√
p(c)m̃ q(c)n . (3.66)

The likelihood that the objects m and n are identical, is a weighted sum over both
likelihoods

L(m,n) = wpLstate(m,n)+wcLcolor(m,n). (3.67)

Using this measurement (3.67) we can compute the similarity between every object
from the time step k− 1 and every object from the time step k. If the measurement
exceeds a threshold value, then the objects are labeled as identical. If a new object
does not match any other object from the previous time step, then a new object is
added to the database. Objects that are not supported by new measurements over the
time are deleted from the database, assuming that the object has left the scene.
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Results

In this section, we present experimental results of our tracking algorithm. The tran-
sition probabilities of the iFilter where set to ψk(x | φ) = 0.2, ψk(φ | φ) = 0.01 and
ψk(φ | x) = 0.1 and the probabilities of detection where set to pD

k (x) = 0.95 and
pD

k (φ) = 0.3. The image sequence used in Figure 3.17 was published in [7]. The top
row of it shows the position measurement. In frame 61 the motion field of two per-
sons merges (c.f. Figure 3.16), so that the detector measures only one moving object
for a couple of frames. Because of the proposed labeling and the iFilter, we are able
to track and label both persons correctly when the motion fields splits again. This
can be seen in the bottom row. The center of the blue circle corresponds to the po-
sition information gained though the state estimation step. The radius of this circle
is fixed and only used for presentation. The yellow number is the ID of a person. In
frame 86, the ID of person 2 is still displayed to indicate the last known position of
this person. For this scene, we had a hand-labeled ground truth. The mean position
error between the proposed algorithm and the ground through lies by 2.68 pixel with
a standard deviation of 1.5 pixel.

frame: 41 61 86

Fig. 3.17. Tracking result. Top row: position measurement displayed as black and white cirles
in the image sequence. Bottom row: Position estimation of every object plotted as blue circle
with fixed radius and ID-number of every object in yellow.

Tracking and labeling results for a different scene can be seen in Figure 3.15.
The image sequence used here was published in [15]. The challenge in this scene
lies in the high false alarm rate of about 5-10%, which comes from additional noise
produced through snowfall. Nevertheless, the proposed strategy could track and la-
bel all persons in this scene correctly. We computed the achieved runtime as frame
rate means from the individual runtimes for each frame in the scenes from the Fig-
ures 3.17 and 3.15: 500 particles 61.74fps, 1000 particles 54.43fps and 1500 parti-
cles 31.85fps. The results were computed on an Intel Q8220 Qaud Core CPU with
4GB RAM using a single core implementation.
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3.6 Conclusions

This chapter presented an elementary introduction to PPPs. Their application for the
multi-target tracking problem with an unknown number of targets was illustrated,
which lead to the iFilter. For this concept, an improved sequential Monte Carlo
implementation was derived. To verify the theory and analyze the filter behavior,
various numerical studies were performed. It was demonstrated in linear and non-
linear scenarios that iFilter has in general a better performance than the PHD filter,
especially, if the clutter model for the PHD filter is not known perfectly. Even in
situations where the clutter model of the PHD was matched to the clutter rates in
the scenario, the iFilter outperformed the PHD. The implementation and usage of
the PHD filter was done according to the references in the literature, which are
published up to now. The only drawback of the iFilter is its slight slower initial
convergence in comparison to the PHD filter.

In addition two applications were presented. They demonstrate the good perfor-
mance of the iFilter in real world problems. The first presented the usability of the
iFilter in a demanding estimation problem for real bearings-only data with high sys-
tematic and statistical errors. The second showed that the filter can be well used in
time critical estimation problems like multi-target tracking in video sequence with
a high frame rate.
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