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Abstract

Many algorithms for the computation of correspon-
dences between deformable shapes rely on some vari-
ant of nearest neighbor matching in a descriptor
space. Such are, for example, various point-wise
correspondence recovery algorithms used as a post-
processing stage in the functional correspondence
framework. In this paper, we show that such fre-
quently used techniques in practice suffer from lack
of accuracy and result in poor surjectivity. We pro-
pose an alternative recovery technique guaranteeing a
bijective correspondence and producing significantly
higher accuracy. We derive the proposed method
from a statistical framework of Bayesian inference
and demonstrate its performance on several challeng-
ing deformable 3D shape matching.

1 Introduction

In geometry processing, computer graphics, and vi-
sion, estimating correspondence between 3D shapes
affected by different transformations is one of the fun-
damental problems with a wide spectrum of appli-
cations ranging from texture mapping to animation
[17]. These problems are becoming increasingly im-
portant due to the emergence of affordable 3D sens-
ing technology. Of particular interest is the setting in
which the objects are allowed to deform non-rigidly.

1.1 Related works

A traditional approach to correspondence problems
is finding a point-wise matching between (a subset
of) the points on two or more shapes. Minimum-
distortion methods establish the matching by mini-
mizing some structure distortion, which can include
similarity of local features [30, 11, 6, 44], geodesic
[27, 10, 12] or diffusion distances [14], or a combina-
tion thereof [40]. Windheuser et al. [43] used the
thin shell elastic energy of triangles, while Zeng et
al. [45] used higher-order structures. Typically, the
computational complexity of such methods is high,
and there have been several attempts to alleviate
the computational complexity using hierarchical [36]
or subsampling [39] methods. Several approaches
formulate the correspondence problem as quadratic
assignment and employ different relaxations thereof
[41, 23, 33, 2, 12, 18]. Algorithms in this category typ-
ically produce guaranteed bijective correspondences
between a sparse set of points, or a dense correspon-
dence suffering from poor surjectivity.

Embedding methods try to exploit some assump-
tion on the correspondence (e.g. approximate isome-
try) in order to parametrize the correspondence prob-
lem with a few degrees of freedom. Elad and Kim-
mel [16] used multi-dimensional scaling to embed the
geodesic metric of the matched shapes into a low-
dimensional Euclidean space, where alignment of the
resulting “canonical forms” is then performed by sim-
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Figure 1: Qualitative comparison of methods for pointwise correspondence recovery from a functional map.
Current methods such as Nearest Neighbors (NN) and coherent point drift (CPD) suffer from bad accuracy
and lack of surjectivity. Applying the proposed Bayesian estimation to either of them gives a guaranteed
bijective matching with high accuracy. Left: We visualize the accuracy of the methods by transferring texture
from the source shape X to the target shape Y. Neither Nearest Neighbors nor CPD produce bijective
mappings. The lack of surjectivity is visualized by assigning a fixed color (green) to y /∈ im(X ). Right: The
geodesic error (distance between groundtruth and recovered match, relative to the shape diameter) induced
by the matching is visualized on the target shape Y.

ple rigid matching (ICP) [13, 8]. The works of [25, 37]
used the eigenfunctions of the Laplace-Beltrami oper-
ator as embedding coordinates and performed match-
ing in the eigenspace. Lipman et al. [24, 19, 20]
used conformal embeddings into disks and spheres to
parametrize correspondences between homeomorphic
surfaces as Möbius transformations. By using locally
injective flattenings, [4] achieve guaranteed bijective
matching. However, the majority of the matching
procedures performed in the embedding space often
produces noisy correspondences at fine scales, and
suffers from poor surjectivity.

As opposed to point-wise correspondence methods,
soft correspondence approaches assign a point on one
shape to more than one point on the other. Several
methods formulated soft correspondence as a mass-
transportation problem [26, 38]. Ovsjanikov et al.
[29] introduced the functional correspondence frame-
work, modeling the correspondence as a linear opera-
tor between spaces of functions on two shapes, which
has an efficient representation in the Laplacian eigen-
bases. This approach was extended in several follow-
up works [31, 22, 1] . A point-wise map is typically
recovered from a low-rank approximation of the func-
tional correspondence by a matching procedure in the

representation basis, which also suffers from poor sur-
jectivity.

1.2 Main contributions

As the main contribution of this paper we see the
formulation of the intrinsic map denoising problem:
Given a set of point-wise correspondences between
two shapes coming from any correspondence algo-
rithm (for example, using one of the recovery algo-
rithms outlined in Section 2), we consider them as a
noisy realization of a latent bijective correspondence.
We estimate this bijection using an intrinsic equiv-
alent of the standard minimum mean squared error
(MMSE) or minimum mean absolute error (MMAE)
Bayesian estimators. To the best of our knowledge,
despite their simplicity, these tools have not been pre-
viously used for deformable shape analysis.

We show that the considered family of Bayesian es-
timators leads to a linear assignment problem (LAP)
guaranteeing bijective correspondence between the
shapes. Despite the common wisdom, we demon-
strate that the problem is efficiently solvable for rel-
atively densely sampled shapes by means of the well-
established auction algorithm [7] and a simple multi-
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scale approach.
Finally, we present a significant amount of empir-

ical evidence that the proposed denoising procedure
consistently improves the quality of the input corre-
spondence coming from different algorithms.

2 Pointwise map recovery

We start by briefly overviewing several recent tech-
niques used for the computation of pointwise cor-
respondences between non-rigid shapes. We focus
on approaches relying on the functional map formal-
ism merely because these techniques produce state-
of-the-art results, emphasizing that the proposed al-
gorithm can accept any point-wise correspondence as
the input.

We model shapes as connected two-dimensional
Riemannian manifolds X (possibly with boundary)
endowed with the standard measure da induced by
the volume form. Shape X is equipped with the
symmetric Laplace-Beltrami operator ∆X , general-
izing the notion of Laplacian to manifolds. The
manifold Laplacian yields an eigen-decomposition
∆Xφi = λiφi for i ≥ 1, with eigenvalues 0 = λ1 <
λ2 ≤ . . . and eigenfunctions {φi}i≥1 forming an or-
thonormal basis of L2(X ). Due to the latter property,
any function f ∈ L2(X ) can be represented via the
(manifold) Fourier series expansion

f(x) =
∑
i≥1

〈f, φi〉Xφi(x) , (1)

where we use the standard manifold inner product
〈f, g〉X =

∫
X fgda.

Consider two manifolds X and Y, and let π : X →
Y be a bijective mapping between them. In [29] it
was proposed to consider an operator T : L2(X ) →
L2(Y), mapping functions on X to functions on Y
via the composition T (f) = f ◦ π−1. This sim-
ple change in paradigm remarkably allows to identify
maps between manifolds as linear operators (named
functional maps) between Hilbert spaces. Because T
is a linear operator, it admits a matrix representa-
tion with respect to a choice of bases {φi}i≥1 and
{ψi}i≥1 on L2(X ) and L2(Y), respectively. Assum-
ing the bases to be orthogonal, the matrix CCC with

the elements (CCC)ij = 〈T (φi), ψj〉Y provides a repre-
sentation of T . In particular, by choosing the delta
functions supported on the shape vertices as basis
functions, one obtains a permutation ΠΠΠ as a matrix
representation for the functional map.

A more compact way to represent T in matrix form
is obtained by taking the Laplacian eigenfunctions
{φi}i≥1, {ψi}i≥1 of the respective manifolds as the
choice for a basis. In case π is a (near) isometry, the
equality ψi = ±φi ◦ π−1 holds (approximately) for
all i ≥ 1, leading to the matrix representation CCC be-
ing diagonally dominant, i.e., (CCC)ij = 〈T (φi), ψj〉Y ≈
±δij .

With this choice, Ovsjanikov et al. [29] proposed
to truncate the matrix CCC after the first k × k coeffi-
cients as a low-pass approximation of the functional
map (typical values for k are in the range 20− 300).
This is especially convenient for correspondence prob-
lems, where one is required to solve for k2. At the
same time, in analogy to classical Fourier analysis,
the truncation has a blurring effect on the correspon-
dence. As a result, recovering the original bijection π
from the spectral coefficients CCC leads to a non-trivial
inverse problem.

Assume shapes X and Y have n points each, and
let the matrices ΦΦΦ,ΨΨΨ ∈ Rn×k contain the first k � n
eigenvectors of the respective Laplacians. For the
sake of simplicity we assume ΦΦΦ and ΨΨΨ to be area-
weighted, allowing us to consider the standard dot
product in all equations. The expression for CCC ∈
Rk×k can now be compactly written as

CCC = ΨΨΨTΠΠΠΦΦΦ . (2)

Note that the matrix CCC is now a rank-k approxima-
tion of T . The pointwise map recovery problem [32],
which is highly underdetermined, consists in finding
a n× n permutation ΠΠΠ satisfying (2). The following
techniques have been proposed for this purpose.

Linear assignment problem (LAP). If we as-
sume k = n, the terms on either side of (2) have the
same rank and the relation can be straightforwardly
inverted to yield ΠΠΠ = ΨΨΨCCCΦΦΦT. Since in the truncated
setting we have k � n, the best possible solution in
the `2 sense can be obtained by looking for a permu-
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tation ΠΠΠ minimizing −〈ΠΠΠ,ΨΨΨCCCΦΦΦT〉F . This leads to
the equivalent linear assignment problem:

min
ΠΠΠ∈{0,1}n×n

‖CCCΦΦΦT −ΨΨΨTΠΠΠ‖2F (3)

s.t. ΠΠΠT111 = 111 , ΠΠΠ111 = 111 . (4)

The equality between the two expressions comes from
the observation that ‖CCCΦΦΦT −ΨΨΨTΠΠΠ‖2F = ‖CCCΦΦΦT‖2F +
‖ΨΨΨT‖2F − 2〈ΨΨΨCCCΦΦΦT,ΠΠΠ〉 for permutation matrices ΠΠΠ.
Minimizing with respect to ΠΠΠ, and recalling that
ΨΨΨTΨΨΨ = III, yields the equivalence.

The problem above admits an intuitive interpreta-
tion. Denoting by eeei the indicator vector having the
value 1 in the ith position and 0 otherwise, we see
that each column of ΦΦΦT contains the spectral coef-
ficients ΦΦΦTeeei of delta functions δxi : X → {0, 1} for
xi ∈ X and i = 1, . . . , n. Hence, the image via T of
all indicator functions on X is given by the columns
of CCCΦΦΦT. Problem (3) seeks for a permutation ΠΠΠ min-
imizing the distance between columns of CCCΦΦΦT and
columns of ΨΨΨTΠΠΠ in a `2 sense.

Nearest neighbors. In [29] the authors proposed
to recover a pointwise correspondence between X and
Y by solving the nearest-neighbor problem

min
PPP∈{0,1}n×n

‖CCCΦΦΦT −ΨΨΨTPPP‖2F (5)

s.t. PPPT111 = 111 . (6)

This can be seen as a simplified version of the LAP
where the bi-stochasticity constraints (4) are relaxed,
including all (binary) column-stochastic matrices PPP
in the feasible set. A global solution to (5) can be
obtained in an efficient manner by solving for each
column of PPP separately: It is sufficient to seek for the
nearest column of CCCΦΦΦT with respect to each column
of ΨΨΨT.

An immediate consequence of this separable ap-
proach is that its minimizers are not guaranteed to
be bijections. A balanced version of (5), obtained
by exchanging the roles of CCCΦΦΦT and ΨΨΨT in an alter-
nating fashion was proposed in [32], with moderate
increase in accuracy.

Iterative closest point (ICP). In [29] it was ad-
ditionally proposed to solve for the (not necessarily
bijective) PPP according to the nearest-neighbor ap-
proach (5), followed by a refinement of CCC via the
orthogonal Procrustes problem:

min
CCC∈Rk×k

‖CCCΦΦΦT −ΨΨΨTPPP‖2F (7)

s.t. CCCTCCC = III . (8)

The PPP - andCCC- steps are alternated until convergence.
In analogy to classical Iterative Closest Point (ICP)
refinement [13, 8] operating in R3, this can be seen
as a rigid alignment between point sets (columns of)
ΦΦΦT and ΨΨΨTPPP in Rk.

Coherent point drift (CPD). The orthogonal
refinement of (5), (7) assumes the underlying map
to be area-preserving [29], and is therefore bound to
fail in case the two shapes are non-isometric. Rodolà
et al. [32] proposed to consider the non-rigid coun-
terpart, for a given CCC:

min
PPP∈[0,1]n×n

DKL(CCCΦΦΦT,ΨΨΨTPPP ) + λ‖ΩΩΩ(CCCΦΦΦT −ΨΨΨTPPP )‖2

(9)

s.t. PPPT111 = 111 , (10)

where DKL denotes the Kullback-Leibler divergence
between probability distributions, ΩΩΩ is a low-pass op-
erator promoting smooth velocity vectors, and λ > 0
controls the regularity of the assignment. Problem
(9) can be seen as a Tikhonov regularization of the
displacement field relating the two sets of spectral co-
efficients, with a measure of proximity given by the
KL divergence between the two. The problem is then
solved via expectation-maximization by the coherent
point drift algorithm [28].

3 Bayesian map estimation

We describe a Bayesian formulation of bijective map
estimation that views the given correspondence as a
realization of a random process adding noise to a la-
tent ideal correspondence. We denote by π : X →
Y the latent bijective correspondence between the
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π0(x1)

π0(x2)

x1

x̂
x2

dX (x̂, x1)

Figure 2: Conceptual illustration of the proposed
Bayesian estimator. For a fixed point y, a Gaussian
probability measure on Y is pulled back to a measure
on X by the given correspondence π0. The estimate
x̂ of the latent preimage π−1(y) of y is computed by
minimizing the expectation of dpX (x̂, ·) with respect
to that measure.

shapes. Let X denote a random point on X drawn
from a uniform distribution, in the sense that for ev-
ery measurable set A ⊂ X , P(X ∈ A) ∝ area(A).
Given X = x, we denote by the conditional random
variable Y |X = x a point on Y with a Gaussian dis-
tribution with some variance σ2 centered at π(x) that
accounts for the uncertainty in the map. The Gaus-
sian distribution is interpreted in the sense that for
every measurable set B ⊂ Y,

P(Y ∈ B|X = x) ∝
∫
B

exp

(
−
d2
Y(y, π(x))

2σ2

)
da(y).

Using Bayes’ theorem, we can express the proba-
bility density of the conditional random variable X|Y
as

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
∝ fY |X(y|x)

∝ exp

(
−
d2
Y(y, π(x))

2σ2

)
.

Given some (possibly noisy and not necessarily bi-
jective) correspondence π0 : X → Y, we consider
y = π0(x) as a realization of Y |X = x for every
x ∈ X . Our goal is to estimate the bijection π or its
inverse π−1 from these data.

Let us fix some y ∈ Y. A Bayesian estimator of x =
π−1(y) given the observations π0 can be expressed as

x̂(y) = arg min
x̂

EX|Y=y d
p
X (X, x̂)

= arg min
x̂

∫
X
dpX (x, x̂) exp

(
−
d2
Y(y, π0(x))

2σ2

)
da(x).

In the Euclidean case, the above Bayesian estima-
tor coincides with the minimum mean absolute error
(MMAE) for p = 1 and the minimum mean squared
error (MMSE) for p = 2; in both cases, it has a closed-
form solution as the geometric median and the cen-
troid, respectively. The more general case discussed
here can be thought of as the intrinsic counterpart of
the median and the centroid.

We estimate the whole inverse map π−1 by mini-
mizing

π̂−1 = arg min
π̂−1

∫
X×Y

dpX (x, π̂−1(y))e−
d2Y (y,π0(x))

2σ2 da(x)da(y).

(11)
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over all bijections π̂−1 : Y → X . Note that due to
the additional constraint that π̂−1 has to be a bijec-
tion, the estimation cannot be done for each point
y independently. We also observe that iterating the
process several times consistently improves the esti-
mated map accuracy.

Finally, we note that when π is area-preserving or,
more generally, scales the metric uniformly, the esti-
mator (11) can be equivalently rewritten in terms of
π as

π̂ = arg min
π̂:X→Y

∫
X×X

dpX (x, ξ)e−
d2Y (π̂(ξ),π0(x))

2σ2 da(x)da(ξ).(12)

It is worthwhile mentioning that while being natu-
ral, the assumption of uniform prior distribution of
X on X (embodied in the use of the standard area
measure in the above integral) can be replaced by
other measures emphasizing regions where errors are
less tolerable. Also, non-Gaussian noise models may
be more suitable for data coming from a specific cor-
respondence algorithm. We defer these interesting
questions to future study.

Discretization. We consider the discretization of
(12). We assume the shape X to be discretized at n
points with the corresponding discrete area elements
ai and pairwise geodesic distance matrix DDDX . Simi-
larly, the shape Y is discretized as the same number
of points, and its pairwise distance matrix is denoted
by DDDY .

The bijective correspondence is represented by the
n× n permutation matrix Π̂ΠΠ sought by minimizing

Π̂ΠΠ = arg min
ΠΠΠ

tr(ΠΠΠTPPPΓΓΓ), (13)

where PPP is an n× n matrix with the elements

(PPP)ij = exp

(
−

(DDDY)2
π0(i),j

2σ2

)
,

and ΓΓΓ is an n × n matrix with (ΓΓΓ)ij = (DDDX )pijaiaj .
Note that (13) is a linear assignment problem (LAP).
For directly solving the LAP with the specific struc-
ture of the score matrix given by PPPΓΓΓ, we found the
auction algorithm [7] to perform the best in prac-
tice. Its average runtime complexity is O(n2 log n),

with O(n2) storage complexity if a full score matrix
is used. On regular hardware, this translates to sev-
eral seconds for n ∼ 2.5×103, which quickly grows to
20 seconds for n = 4× 103 and almost 10 minutes for
n = 12×103, taking tens of gigabytes of memory. We
therefore conclude that directly solving the full LAP
is practical for n . 104, and in the following section
propose a multi-scale scheme that can scale to much
larger numbers of points.

Another computational bottleneck stems from the
computation of pairwise geodesic distances. For ex-
ample, using fast marching [21] the computation re-
quires O(n2 log n) computations and O(n2) storage.
While the computations can be thoroughly paral-
lelized and executed on a GPU, reducing the com-
plexity by orders of magnitude [42], the storage of a
full distance matrix is still prohibitive for n & 104.
However, since geodesic distance maps are almost ev-
erywhere smooth with constant gradient, their ap-
proximation in a truncated harmonic basic is optimal
in the `2 sense [3]. Instead of storing an n × n ma-
trix DDDX , we store the k×n representation coefficient
matrix

AAAX = ΦΦΦTDDDX ,

where ΦΦΦ contains the first k � n eigenfunctions of the
Laplace-Beltrami operator on X . In order to ”decom-
press” the i-th row of DDDX used in the computation
of the LAP score, the corresponding column of AAAX is
multiplied from the left by Φ̃ΦΦ.

It is also worthwhile mentioning that while the
geodesic metric is a natural candidate to compute
intrinsic distances on a manifold, the proposed esti-
mator can work with other choices. For example, dif-
fusion distances [14] or other approximations of the
geodesic distances [15] are likely to work equally well
while being better amenable both for faster compu-
tation and more compact storage.

Multiscale solution. In order to reduce the com-
putation and storage complexity associated with the
direct solution of the LAP for large values of n, we
adopt a multi-scale strategy. Both shapes are dis-
cretized in a hierarchical fashion using farthest point
sampling, while the distances and the harmonics are
calculated at the finest scale and sub-sampled.
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First, a full LAP (13) is solved at a coarse scale.
The produced correspondence is interpolated to the
next scale and is used as the input correspondence π0

to the LAP. While numerous interpolation techniques
exist, we found that simple nearest neighbour inter-
polation produces satisfactory results. At the finer
scale, the space of possible bijections π̂(i) is restricted
to the points falling into a fixed radius r around each
π0(i) (note that r has to be larger than the coarse
sampling radius). This is equivalent to assigning infi-
nite score to the prohibited permutations. For a suf-
ficiently small r, this strategy results in sparse score
matrices, with density significantly lower than 1%.

4 Experiments

We start by evaluating the influence of the parame-
ters p ∈ {1, 2} and σ on the quality of the Bayesian
estimator (11). We initialize with noisy correspon-
dences coming from a nearest neighbour (5) result
and evaluate on two datasets with different global
scales, see Figure 3. The optimal choice of σ2

amounts to approximately 6% of the target shapes
area for both choices of p but the quality is shown to
be stable in a vicinity.

We test our method recover bijections from on two
types of initialization, namely functional maps of low
rank and sparse correspondences.

We conduct quantitative experiments on the
FAUST dataset [9] (7K vertices) and on downsampled
versions of the SCAPE [5] and KIDS [35] datasets
(1K vertices). As quantitative quality criteria we
evaluate the geodesic errors, the run times and the
lack of surjectivity of the different methods. We
further show that our approach can directly tackle
shapes having more then 10K vertices.

4.1 Recovery from a functional map

In this set of experiments the low rank approximation
is given in terms of a functional map of different ranks
in the harmonic basis. Comparisons are done against
nearest neighbors (NN) (5), bijective NN (3), ICP (7)
and CPD (9).
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Figure 3: Dependency on parameters: We evaluate
the influence of the parameters p and σ on the quality
of the denoised matching. We initialize with a noisy
matching coming from a nearest neighbor search in
descriptor space. The evaluation is done on two
datasets with different global scales, namely KIDS
and SCAPE.

Approximation of the groundtruth. Here we
construct the low rank functional map using the
known groundtruth correspondences between the
shapes. This is supposed to be the ideal input for all
the competing methods. As the input to our method
we use the matchings found by nearest neighbors and
its bijective version. We show quantitative compar-
isons on 71 pairs from the SCAPE dataset (near iso-
metric, 1K vertices) and 100 pairs from the FAUST
dataset (including inter-class pairs, 7K vertices). In
Figures 4 and 5 we compare the accuracy, in Figure 6
the lack of surjectivity is analyzed. We only show the
performance of a single application of the Bayesian
estimator yet adumbrate experiments with multiple
iterations in the following sections. Even after one
iteration, our method outperforms the state of the
art method (9) as well in accuracy as in run time
(Table 1). Even on shapes having more then 10K
vertices just one iteration of the Bayesian estimator
gives very good results, as can be seen in Figure 7.
Memory consumption and run times however limit
the direct applicability of the single-scale Bayesian
estimator.
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Figure 4: Recovering the groundtruth matching from
a functional map with rank deficiency. We matched
70 pairs from the near-isometric SCAPE dataset
(1K). Plotted are the histograms of geodesic errors
(solid line: mean; 90% of the matched pairs produce
results between the dotted lines). All methods boost
their quality with increasing numbers of eigenfunc-
tions. Denoising the results of nearest neighbors (yel-
low) outperforms the state of the art method (green)
while having only a fraction of its runtime (Table 1).
Even better results are achieved when initializing the
Bayesian estimator with the result of bijective NN
(orange).
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Figure 5: Evaluations from Figure 4 repeated on the
higher resolution FAUST shapes. A single iteration
of our denoising algorithm boosts the performance of
the simple nearest neighbor approach above the state
of the art (green). Notice that in this scenario bijec-
tive NN is giving better results than CPD; denoising
this matching leads to 80% exact matches averaged
over all pairs.
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Figure 7: Our method can be applied to recover cor-
respondences between high resolution shapes. Al-
though the percentage of exact hits decreases with
the increase of the sampling density, the geodesic er-
rors are compelling. Due to the significant increase
in runtime particularly of CPD this experiment was
only done on a subset of the pairs from the SCAPE
12.5K benchmark.
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Figure 8: Evaluation on realistic input data. We test
different recovery methods on a low rank functional
map coming from an optimization process. Again our
method gives the best results. Iterating the Bayesian
estimator improves the performance even more.

Using a functional map coming from an opti-
mization process. We follow the approach from
[31] to construct a realistic functional map match-
ing, which typically requires region features as input.
These features were detected using the consensus-
segmentation method proposed in [34], and the re-
sulting regions were matched by intersection w.r.t.
the ground-truth. Both of these two methods were
executed with the same parameters as in their pub-
licly available implementation. In Figure 8 this ini-
tialization is evaluated on the SCAPE dataset.

4.2 Recovery from a sparse correspon-
dence

In this set of experiments the low rank approxima-
tion is given in terms of sparse correspondences be-
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n 1000 1000 6890 6890
k 20 50 20 50

Nearest neighbors 0.04 0.06 1.35 2.88
Bijective NN 2.79 2.30 463.66 253.03

ICP 0.14 0.24 12.72 30.08
CPD 4.79 4.67 1745.06 2085.65

NN + Bayesian 1.75 1.28 382.86 244.10
Bij. NN + Bayesian 4.06 3.44 746.00 440.94

Table 1: Average runtimes in seconds. We compare
the runtimes of different recovery methods. Given
the rank k of a functional map approximating the
correspondence between shapes sampled at n points
each, we report the time it takes to obtain a dense
matching. See Figures 4-8 for evaluations of accu-
racy. Notice that while linear assignment problems
are known to be time demanding to solve for larger
numbers of variables, the most dramatic increase of
run time occurs when applying CPD.

tween high resolution shapes. This type of input can
for instance be obtained by minimizing energies un-
der l1-constraints, such as [33], or appears in mul-
tiresolution settings. We make use of groundtruth
correspondences of a few points and interpolate the
matching with the technique described in the caption
of Figure 9. Figure 10 illustrates how iterations of the
Bayesian estimator improve the matching.

5 Conclusion

We considered the problem of bijective correspon-
dence recovery by means of denoising a given set of
matches coming from any of the existing algorithms
(including those not guaranteeing bijection, or pro-
ducing sparse correspondences). Viewing the denos-
ing as a Bayesian estimation problem, we formulated
the intrinsic equivalent of the mean and median filters
frequently employed in signal processing, with the ad-
ditional constraint of bijectivity embodied through an
LAP.

We find surprising the fact that such a simple idea
demonstrates a consistent improvment in the corre-
spondence quality in all experiments we have con-
ducted. We believe that tools from estimation theory
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Figure 9: Correspondence accuracy on the KIDS 1K
(top plot) and FAUST 7K (middle and bottom plots).
Dense matches were produced by nearest-neighbor
interpolation from 20 (top and middle) and 50 (bot-
tom) sparse matches and used as the initialization of
the Bayesian estimator iterated up to five times.
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Figure 10: Obtaining a dense and bijective matching of high quality by iterative application of the Bayesian
estimator on a sparse correspondence. The sparse correspondence is interpolated by assigning each point
the on the source shape the same image as its nearest neighbor from the sparse set (second column). This
induces large geodesic errors for points being far away from the sparse set (bottom row, left) and is far from
being surjective (second row from the bottom, left). Each iteration of the Bayesian estimator (five rightmost
columns) yields better results, as illustrated by the magnified fragments.
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that have been heavily used in other domains of sci-
ence and engineering might be very useful in shape
analysis, and invite the community to further explore
this direction.

Of special interest are the choice of the loss func-
tion in the posterior expectation (which in this pa-
per was restricted to the absolute and squared dis-
tance), the prior distribution of X (which we assumed
uniform), and the noise distribution (which was as-
sumed Gaussian). Alternative estimators making use
of Bayesian statistics, such as maximum a posteriori
(MAP) estimators, should also be explored.
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