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a b s t r a c t

Surface registration is often performed as a two step process. A feature matching scheme is first adopted
to find a coarse initial alignment between two meshes. Subsequently, a refinement step, which usually
operates in the space of rigid motions, is applied to reach an optimal registration with respect to
pointwise distances between overlapping areas. In this paper we propose a novel technique that allows
to obtain an accurate surface registration in a single step, without the need for an initial motion
estimation. The main idea of our approach is to cast the selection of correspondences between points on
the surfaces in a game-theoretic framework, where a natural selection process allows matching points
that satisfy a mutual rigidity constraint to thrive, eliminating all the other correspondences. This process
yields a very robust inlier selection scheme that does not depend on any particular technique for
selecting the initial strategies as it relies only on the global geometric compatibility between
correspondences. The practical effectiveness of the approach is confirmed by an extensive set of
experiments and comparisons with state-of-the-art techniques.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Surface alignment is a pervasive problem throughout Computer
Vision literature. In fact, it finds useful applications as a tool for in-line
quality control [1], 3D object recognition [2], advanced human
interfaces [3], and SLAM [4], just to name a few. For this reason,
surface registration is one of the most studied topics in the field of 3D
data acquisition and processing. With this paper we try to introduce a
fresh view on the problem by proposing a game-theoretic approach
that is robust to noise and allow to attain a very accurate registration
without requiring an initial motion estimation.

1.1. Fine and coarse registration techniques

The distinction between fine and coarse surface registration
methods is mainly related to the different strategies adopted to find
pairs of corresponding points to be used for the estimation of the rigid
transformation. Almost invariably, fine registration algorithms exploit
an initial guess in order to constrain the search area for compatible
mates and minimize the risk of selecting outliers. On the other hand,

coarse techniques, which cannot rely on any motion estimation, must
adopt a matching strategy based on the similarity between surface-
point descriptors or resort to random selection schemes. The tension
between the precision required for fine alignment versus the recall
needed for an initial motion estimation stands as the main hurdle to
the unification of such approaches.

The vast majority of current fine alignment methods are mod-
ifications to the original ICP proposed by Zhang [5] and Besl and
McKay [6]. These variants generally differ in the strategies used to
sample points from the surfaces, reject incompatible pairs, or measure
error. In general, the precision and convergence speed of these
techniques is highly data-dependent and sensitive to the fine-
tuning of the model parameters. Several approaches that combine
these variants have been proposed in the literature in order to
overcome these limitations (see [7] for a comparative review). No
matter which variant is used, ICP, being an iterative algorithm based
on local, step-by-step decisions, is susceptible to the presence of local
minima. Some recent variants mitigate this problem by avoiding hard
culling assigning a probability to each candidate pair by means of
evolutionary techniques [8] or Expectation Maximization [9]. Other,
non-ICP-based, fine registration approaches include the well-known
method by Chen [10] and signed distance fields matching [11].

Coarse registration techniques can be roughly organized into
three main classes: global methods, feature-based methods and
techniques based on RANSAC [12] or PROSAC [13] schemes. Global
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methods such as PCA [14] or Algebraic Surface Model [15] exploit
some global property of the surface and are thus very sensitive to
occlusion. Feature-based approaches aim at the localization and
matching of interesting points on the surfaces. They are more
precise and can align surfaces that exhibit only partial overlap.
Nevertheless, the unavoidable localization error of the feature
points prevents them from obtaining accuracies on par with fine
registration methods.

A completely different coarse registration approach is the one
taken by RANSAC-based techniques. DARCES [16] is based on the
random extraction of sets of mates from the surfaces and their
validation based on the accuracy of the estimated transformation.
The more recent Four Points Congruent Sets method [17] follows a
similar route, but filters the data to reduce noise and performs
early check in order to reduce the number of trials.

A recent and extensive review of many different methods can
be found in [19]. Regardless of the criteria used to obtain pairs of
mating points, the subsequent step in surface registration is to
search for the rigid transformation that minimizes the squared
distance between them. Many mature techniques are available to
do this (see for instance [20]).

1.2. Feature detection on 3D objects

Feature detection and characterization is a key step inmany tasks
involving the recognition, registration or database search of 2D and
3D data. Specifically, when suitable interest points are available, all
these problems can be tackled by working with the set of extracted
features rather than dealing with the information carried by the
whole data, which is less stable and noisier. For an interest point to
be reliable it must exhibit two properties: repeatability and distinc-
tiveness. A feature is highly repeatable if it can be detected with good
positional accuracy over a wide range of noise levels and sampling
conditions as well as different scales and transformations of the data
itself. Further, description vectors calculated over interesting points
are said to be distinctive if the descriptors related to different
features lie far apart in feature space, while descriptors associated
to multiple instances of the same point lie within a small distance
from one another. These properties are somewhat difficult to attain
since they are subject to antithetical goals: In fact, to achieve good
repeatability despite of noise, larger patches of data must be
considered, which unfortunately leads to a lower positional preci-
sion and a less sharp culling of uninteresting points. Moreover, for
descriptor vectors to be distinctive among different features, they
need to adopt a large enough basis, which, owing to the well known
“curse of dimensionality,” also affects their coherence over per-
turbed versions of the same feature. In the last two decades these
quandaries have been addressed with great success in the domain of
2D images, where salient points can be localized with sub-pixel
accuracy using detectors exploiting strong local variation in inten-
sity, such as Harris Operator [21] and Difference of Gaussians [22], or
using techniques that are able to locate affine invariant regions, such
as Maximally Stable Extremal Regions (MSER) [23] and Hessian-
Affine [24]. Among the most used descriptors are the Scale-invariant
feature transform (SIFT) [25], the Speeded Up Robust Features
(SURF) [26] and Gradient Location and Orientation Histogram
(GLOH) [27]. While these approaches work well with 2D intensity
images, they cannot be easily extended to handle 3D surfaces since
no intensity information is directly available. On the other hand,
there has been huge effort to use other local measures, such as
curvature or normals. One of the first descriptors to capture the
structural neighborhood of a surface point was described by Chua
and Jarvis, who with their Point Signatures [28] suggest both a
rotation and translation invariant descriptor and a matching tech-
nique. Later on, Johnson and Hebert introduced Spin Images [29], a
rich characterization obtained by binning the radial and planar

distances of the surface samples respectively from the feature point
and from the tangent plane. Given their ability to perform well with
both surface registration and object recognition, spin Images have
become one of the most used 3D descriptors. More recently,
Pottmann et al. proposed the use of Integral Invariants [30], stable
multi-scale geometric measures related to the curvature of the
surface and the properties of its intersection with spheres centered
on the feature point. Zaharescu et al. [31] presented a comprehen-
sive approach for interest point detection (MeshDOG) and descrip-
tion (MeshHOG), based on the value of any scalar function defined
over the surface (i.e. curvature or texture, if available). MeshDOG
localizes feature points by searching for scale-space extrema over
progressive Gaussian convolutions of the scalar function and thus by
applying proper thresholding and corner detection. MeshHOG
calculates a histogram descriptor by binning gradient vectors with
respect to a rotationally invariant local coordinate system. Finally,
the recent SHOT descriptor [32], introduced by Tombari et al.
exploits a novel 3D reference frame to offer enhanced descriptive
power and robustness. The reader interested in a comparison
between recent geometric descriptors and feature descriptions can
find an in-depth coverage within [33].

In the following sections we introduce a novel pipeline that can be
used to obtain an accurate surface registration without requiring an
initial motion estimation. The contribution is twofold. First we
propose very simple descriptors, named Surface Hashes, that span
only 3–5 dimensions. As their name suggests, we expect Surface
Hashes to be repeatable through the same feature point, yet to suffer
from a high level of clashing due to their limited distinctiveness. In
order to overcome this liability we also adopt a robust game-theoretic
inlier selector which exploits rigidity constraints among surfaces to
guarantee a global geometric consistency. The combination of these
loosely distinctive features and our robust matcher leads to an
effective and robust surface alignment approach.

2. Game theoretical matching

The use of tools coming from Game Theory for matching purposes
is rather novel: it has been introduced as an effective heuristic in the
domain of graph matching in [34] and has recently been applied
successfully to other Computer Vision scenarios [38,35,37]. In parti-
cular, the concept of Game-Theoretic Matching (GTM) has a central
role within the framework discussed in this paper and will be
explored thoroughly in the next two sections.

2.1. Basic ideas

This kind of matching process is performed on the basis of two
premises. The first is the ability to model a set of potentially
matching features as strategies in a non-cooperative game. The
second requirement is the availability of a suitable payoff function
between strategies that measures how well two matches behave
together. The main idea that underlies the proposed technique is
quite simple: if both the strategy definition criterion and the payoff
function are chosen properly with respect to a given problem, it is
reasonable to think that a subset of strongly mutually compatible
strategies (i.e. putative matches) can be found embedded in the
initial set. Those matches must be found and isolated from the
outliers with some selection technique.

In principle, those assumptions are not that different from those
that subtend to the very popular RANSAC inlier selection method. In
fact, any RANSAC or PROSAC flavor assumes that a subset of large
consensus exists in correspondence with the correct solution. In
addition, some compatibility function is always defined in order to
evaluate the consensus that a proposed solution receives from all the
remaining samples. However, the loose connection between GTM and
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RANSAC breaks as we analyze the selection process itself. Specifically,
in GTM there is no majority validation for a random subset. Rather,
the selection happens by letting the strategies compete in a non-
cooperative game. The game starts with an initial population where
each strategy is played by an equal percentage of players. Such
population is then evolved through the action of discrete time
replicator dynamics until it reaches some stable state from which a
(conceivably) correct matching set can be extracted.

More formally, we model the evolutionary success of each
feasible match (among an initial set of n) through a probability
distribution represented by a point in the n-dimensional standard
simplex

xAΔn ¼ xARn : xiZ0 for all iA1…n;
Xn
i ¼ 1

xi ¼ 1

( )
:

Furthermore, we model the mutual support between matches i
and j as a non-negative, symmetric payoff function Π ¼ ðπijÞ.

It can be shown [39] that under very loose assumptions, any
initial distribution x that is evolved through the replicator
dynamics [40]

xiðtþ1Þ ¼ xiðtÞ
ðΠxðtÞÞi

xðtÞTΠxðtÞ
ð1Þ

converges to an asymptotically stable state corresponding to a
local maximum of the average payoff xTΠx.

Previous research has demonstrated that by properly choosing
function Π, such local maximum can correspond to locally optimal
configurations for a given problem. Furthermore, despite the
locality of the solution, obtained results have often been able to
compete with the state-the-art for each context. In the following
subsections two closely related approaches are described, after-
wards, the contribution of this paper with respect to the use of the
general framework within the specific context of surface registra-
tion is discussed.

2.2. Structure from motion

Correspondence selection using Game Theory has been widely
explored in [35]. In such work, however, the matching happens
between images rather than 3D surfaces. This results in a rather
different scenario, since the loss of information due to the projective
imaging process hinders the ability to use Euclidean constraints for
matches validation. This limitation is solved by exploiting the scale
and orientation information provided by 2D feature descriptors.
Namely, corresponding features are expected to exhibit similar affine
transformations, at least within a local neighborhood. Thus, as the
transformation associated to one match is applied to one other, the
latter it is expected to be projected near the location of its mate, and
vice versa. If this does not happen, then the two correspondences are
not compatible.

To this end, the payoff function has been defined to be decreasing
with the growth of the distance between correspondence hypoth-
eses and reprojected features (see Fig. 1). Of course this is a coarse
approximation of the reality and only works if features are close
enough for the “affine hypothesis” to hold. In fact, to be able to select
enough correspondences between two images, the game has to be
repeated over and over, producing several partial results, each one
corresponding to an ideal parallax plane. Moreover, the coarse
nature of the result, required a further refinement of the selection
based on the enforcing of epipolar constraints between the images.

Even considering these limitations, Ref. [35] represents a
seminal work in the field of Game Theoretical matching, and we
would direct the interest user to it for more in-depth details about
this kind of selection process.

2.3. Object recognition in cluttered scenes

Three dimensional surfaces are first addressed using Game
Theory in [36]. The focus of this work is on the detection of an
object within cluttered scenes. The reference object is supplied as
a complete model and the scene into which it can be searched can
be anything, from stereo reconstruction, to 3D scans or synthetic
layouts.

Given the general conditions and the specific scope, some
scenario-specific choices have been made during the design of
the method.

For starters, since the goal of the technique is not precise surface
alignment, but just object detection, the accuracy of the matches has
been sacrificed in spite of coverage. Namely, the initial point selection
is performed using just unary implicit information (curvature), rather
than seeking for a small number of very distinctive points. This is
needed since, as clutter and occlusion grow, the probability of finding
correspondences decreases steeply if the initial sample becomes too
tight. In addition, occlusion could result in artificially distinctive
points around border areas that are not repeatable in the model as
they do not actually exist.

Furthermore, the descriptor adopted to compute the payoff has
been explicitly designed to boost recall over precision, as it only
gathers mono dimensional information along the direction of the
two involved correspondences. This was needed for several
reasons, including the requirement of performing a scale-
independent recognition and of being robust to strong occlusion.
In addition, recall is further boosted by the fact that, with the
proposed scenario, the model is complete and noiseless, allowing
for an off-line pre-computation of a large number of dependable
descriptors that can be collected in a reference dictionary.

Finally, differently from [35], Euclidean distances could be (in
principle) enforced within the payoff function. Still, this is not
actually done, since such choice would have ruled out the ability of
making the method scale independent.

All these trade-offs allowed the approach to be really effective
with the problem it was created for, that is matching a model to a
general scene. However, as shown in the experimental section of
this paper, its performance is not first-rate if directly adopted to
seek accurate surface registration.

2.4. Contribution of this paper

With this paper we are proposing to address the shortcomings
exhibited by [36] and [46] as a surface registration tool. Clearly,
this goal is reached by leveraging on the different characteristic of
the alignment problem.

The scenario we are dealing with is the one arising when a 3D
reconstruction technique is adopted to produce partial views of an

Fig. 1. The payoff between two pairs of matching features is inversely proportional
to the maximum reprojection error obtained by applying the affine transformation
estimated by one to the other.
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object or a scene. The goal is to align such partial reconstructions
yielding a low residual error between surfaces. While this is not
required, all the surfaces are usually been produced by the same
(or similar) sensor and a complete and noiseless reference model
is not available. The overlap is usually partial, however the clutter
is limited since, besides effects due to occlusion, objects do not
appear or disappear form the scene. In fact we can deem the scene
to be made up of rigid objects which do not move and which
preserve size and scale between subsequent acquisitions.

The first consequence of this set of conditions is that we are
interested in a (relatively) small number of very accurate corre-
spondences rather that trying to be as much inclusive as possible.
To this end we propose an initial feature culling (in Section 4.1)
that is very aggressive and aim at keeping only very distinctive and
well localized points.

Such points, in turn, are characterized and initially matched
through quite loose surface descriptors (see Section 3.4) that are
fast to compute and can combined together to reach the desired
level of descriptiveness. Experiments will show that, according to
the premises, stricter characterization is to be preferred, even at the
expense of the overall number of correspondences.

Note however, that the descriptors are not used at all during the
selection process. This is in strong contrast with [36], where they are
actually part of the payoff function. This is possible because the
rigidity assumption and the fixed scale allow to use a payoff that is
computed using only Euclidean distances, thus enforcing the isometry
between different surfaces. Additionally, this assumption allows to
guarantee a sound theoretical relation between the payoff function
and optimal alignments, as described in Section 5.

Besides the theoretical properties of the proposed method, its
practical effectiveness is discussed at length in the experimental
section where it is tested under several different conditions and
compared with state-of-the-art alignment methods.

3. An isometry-enforcing alignment game

In our approach, we let matches compete with one another,
each obtaining support from compatible associations and compe-
titive pressure from all the others. At equilibrium, only pairings
that are mutually compatible should survive and are then taken to
be inliers. In practice, the full process happens through the
following steps: First, we extract a set of candidate matches, then
we define a payoff function between such candidates, finally, we
use the replicator dynamics (1) to evolve towards an equilibrium
state. These steps will be detailed in the following three sections.

3.1. Matches as strategies

Since we will deal with the registration of two different surfaces
we will refer to the points belonging to the first surface with the
term model points, while we will use the term data points with
respect to the second surface. This distinction is captious since there
is no actual difference in role between the two surfaces, however it

is consistent with the current registration literature and helps in
defining an order within matches.

Given the set of all model points M and the set of all data points
Dwe call a matching strategy any pair ða1; a2Þ with a1AM and a2AD
(see Fig. 2). We call the set of all the matching strategies S. Our goal
is to extract from S the subset of correct matches, that is, strategies
that associate a point in the model surface with the same point in
the data surface. In principle, all the model and data points could be
used to build the matching strategies, thus giving S¼M � D. In
practice, however, this would lead to a very big set of candidates
with a huge portion of outliers. In order to reduce the number of the
initial candidates, we subsample model points by keeping only
points that are deemed to be interesting, and we use a semi-local
surface descriptor (Section 4) to assign to each of them a small set of
feasible matches. This is done simply by choosing the mates with the
nearest descriptor in the Euclidean sense. The amount of model
subsampling, the level of distinctiveness required, and the number
of matching candidates to select for each model point is parameters
of the method and can be modulated to balance speed and accuracy.
Of course, the distinctiveness of the descriptor used to characterize
the data points has a big influence in fixing a reasonable number of
candidates for each match. This observation, in turn, raises the
quandary between the repeatability and the distinctiveness of
feature descriptors. In fact, while a high distinctiveness is always
desirable, this often comes at the price of much more instability
with respect to noise and thus can lead to a poor repeatability.
Fortunately, with our approach, the descriptor itself is only used to
construct the set S and has no role in the evolutionary selection,
which is purely driven by the payoff function. For this reasonwe find
it reasonable to resort to a feature characterization that is scarcely
distinctive and to allow for several candidate matches, leaving the
game-theoretic selection process to operate a severe culling. The
loose descriptor that we are introducing has many other advantages,
such as being easy to implement and fast to compute, and it will be
described in full depth in Section 4.

3.2. Definition of a payoff function

Since the set of strategies S is built by proposing several attainable
matches for each considered model point it is clear that the number
of outliers in S will be far superior to the number of correct
correspondences. In fact, given that the surfaces are not warped, we
expect the correspondences to be one-to-one, thus at most one match
for each set of strategies that involve the same model or data point
can be correct. In order to extract this minority of correct matches
buried into S, the GTM framework must exploit the consistency of any
pair of those strategies with respect to some property. By contrast, all
the other wrong and thus randomly paired matches should not
exhibit a wide agreement of the same property. This degree of
compatibility is usually expressed through a (symmetric) real valued
function π : S � S-Rþ which is usually materialized in a symmetric
payoff matrix Π (see Fig. 3). Again, this concept is somewhat similar
to the basic idea that drives RANSAC. However, by casting the search
in an evolutionary process, we are not relying on a one-shot vote
counting validation, but rather we are using self-validation to drive to
a consensus what can be seen as an iterated voting process.

The very nature of the property to which pairs of correct matches
must adhere depends on the exact scenario to which GTM is applied.
For instance, in [34] adjacency relations of graphs built on segments
extracted from the images are used; in [35] the payoff between pairs
of potential matches is boosted by the compatibility of the locally
affine transformation assigned to points by the SIFT descriptor, and in
[38] the similarity between potential matches is associated with a
measure of metric distortion on deformable 3D shapes. Also, in [37]
the payoff is used both to cluster patches of nondistinctive features
and to match the remaining ones.Fig. 2. Example of three matching strategies.
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Since in this paper we are dealing with rigid alignment of
surfaces, it is quite natural to exploit the rigidity constraint to
measure the feasibility of a pair of matches. In fact (as described in
Section 5) we relax the rigidity assumption to an isometry
assumption, assigning a high payoff to pairs of matching strategies
that preserve the Euclidean distance between the corresponding
points on model and data (see Fig. 3). Also, we will assign a payoff
equal to zero to pairs that share the same source or destination
point, so as to enforce a one-to-one matching.

3.3. Evolution through replicator dynamics

The goal of the selection process is to evolve an initial mixed
strategy x to a stable state fromwhich the non-extinct matches will
be extracted. Since x is associated to strategies in S, it can be seen as
a point in Δj Sj . Each coordinate of such a point expresses the
proportion of population playing a strategy, and for this reason we
will refer to x as a population vector. At the beginning of the process,
x is initialized near the barycenter of Δj Sj . In practice this means
that to each element of x is assigned the amount of population
1=jSj and then x is slightly perturbed. The perturbation serves two
goals: First, to introduce some randomness in the process (which
can be useful if different alternative configurations are sought);
second, to avoid some rare stall conditions in replicator dynamics
that could occur with some highly symmetric payoff configurations.

This initial population is evolved by means of Eq. (1) until
convergence. In order to assess when this happens, a threshold on
the speed of x in Δj Sj or a maximum number of iterations can be set.
After a stable state has been reached all the matching strategies that
thrive under the replicator dynamics should be retained. Since no
strategy will be completely extinct (as the dynamics do not allow to
reach the faces of the simplex) another threshold is needed to select
the strategies that succeeded. This is not done through an absolute
threshold, but rather by fixing a ratio over the maximum value in
the population vector. In the experimental section we will show that
the value of this threshold has little influence over the quality of the

registration obtained. Further, we can weight the contribution of the
surviving matches according to the corresponding value in x. This
has the consequence of reducing the impact of relatively low-quality
points and was shown to allow a slight enhancement in [34]. In
Fig. 3, a complete example of the process is shown. While the
example is kept simple on purpose and the data does not come from
real surfaces the illustrated evolution is computed exactly with the
payoff matrix Π using Eq. (1).

Since the proposed framework relies on geometric consistency, we
choose to adopt a very loose feature descriptor that enhances the
probability for a feature point to be repeatable, albeit allowing a much
higher number of outliers to get into the set of initially proposed
matches.

It is interesting to note that, in order to avoid feature points
that carry little useful information for registration purposes (such
as flat areas or regions of constant curvature), a minimal matching
game will be run also between model points.

3.4. Surface hashes

Intuitively, a Surface Hash is a concise point feature descriptor
which exhibits the property of being highly repeatable at the cost of
a relatively high probability of clashing. In practice this happens
with any low-dimensional descriptor, such as the Gaussian or Mean
Curvature (1 dimension), the first two Principal Components of a
patch (2 dimensions), or the normal vector associated to a point (2
dimensions). While those descriptors could be used with our
registration pipeline, we prefer to introduce two multi-scale Surface
Hashes based respectively on the dot product between normals and
a local surface integral. Each of our descriptors corresponds to a
vector of scalar measures evaluated at different scales. By increasing
or reducing the number of scales, we are able to obtain vectors of
different length, thus being more or less distinctive.

The Normal Hash (see Fig. 4(a)) is obtained by setting as a reference
the average surface normal over a patch that extends to the largest
scale (red arrow in figure) and then, for each smaller scale, calculate

Fig. 3. An example of the evolutionary process. Four points are sampled from the two surfaces and a total of six mating strategies are selected as initial hypotheses. Matrix Π

shows the compatibilities between pairs of mating strategies according to a one-to-one rigidity-enforcing payoff function. Each mating strategy got zero payoff with itself
and with strategies that share the same source or destination point (e.g., πððb1 ;b2Þ; ðc1 ;b2ÞÞ ¼ 0). Strategies that are coherent with respect to a rigid transformation exhibit
high payoff values (e.g., πðða1; a2Þ; ðb1 ;b2ÞÞ ¼ 1 and πðða1 ; a2Þ; ðd1; d2ÞÞ ¼ 0:9Þ), while less compatible pairs get lower scores (e.g., πðða1 ; a2Þ; ðc1; c2ÞÞ ¼ 0:1). Initially (at T¼0) the
population is set to the barycenter of the simplex and slightly perturbed (3–5%). After just one iteration, ðc1 ; b2Þ and ðc1 ; c2Þ have lost a significant amount of support, while
ðd1; c2Þ and ðd1 ; d2Þ are still played by a sizable amount of population. After ten iterations (T¼10), ðd1 ; d2Þ has finally prevailed over ðd1 ; c2Þ (note that the two are mutually
exclusive). Note that in the final population ða1 ; a2Þ; ðb1; b2Þ have a larger support than ðd1 ; d2Þ since they are a little more coherent with respect to rigidity.

Fig. 4. Example of the two basic Surface Hashes proposed in this paper: (a) Normal hash and (b) integral hash.
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the dot product between the reference and the average normal over
the reduced patches (blue arrows in figure). This measure finds its
rationale in the observation that at the largest scale the average
normal is more stable with respect to noise and that the dot product
offers a concise representation of the relation between the vectors
obtained at various scales.

The Integral Hash (see Fig. 4(b)) is similar in spirit to the Normal
Hash. In this case we search for the best fitting plane (in the least
squares sense) with respect to the surface patch associated to the
largest scale. Then we calculate the volume enclosed between the
surface and such a plane. In practice, it is not necessary to evaluate
this volume accurately: even naive approximations, such as the
sum of the distances of the surface points from the plane, have
shown to provide a reasonable approximation in all the empirical
tests. Note that Normal Hashes evaluated over n scales yield
descriptor vectors of length n�1 (since the larger scale is used
only to calculate the reference normal), while Integral Hashes
provide n-dimensional vectors. In Fig. 5 a Normal Hash of dimen-
sion 3 (respectively from (a) to (c)) evaluated over 4 scales is
shown. Note that the descriptor is not defined on the points for
which the larger support is not fully contained in the surface, i.e.,
points close to the surface boundary.

4. Matching using local features

4.1. Interest points selection

Given the large number of points contained in typical 3D objects,
it is not practical for any matching algorithm to deal with all of them.
In addition, the isolation of a relatively small number of interest
points can enhance dramatically the ability of the matcher to avoid
false correspondences, usually due to a large number of features with
very common characterizations. This is particularly true when using
Surface Hashes, which are loosely distinctive by design. Paradoxically,
we use exactly this property to screen out features exhibiting

descriptors that are too common over the surface. This happens by
defining a Matching Game where the strategy set S corresponds to
the set of all the surface points and the payoff matrix is defined by
πij ¼ e�αj di �dj j , where di and dj are the descriptor vectors associated
to surface point i and j, and α is a parameter that controls the level of
selectivity. Clearly, features that are similar in terms of Surface Hashes
will get a large mutual payoff and are thus more likely to be selected
by the evolutive process. In this sense, our goal is to let the population
evolve to an ESS and then remove from the set of interest points the
features that survived the evolutive process. At the beginning we can
initialize the set of retained features to the whole surface and run a
sequence of Matching Games until the desired number of points are
left. At this point, the remaining features are those characterized by
less-common descriptors which are more likely to represent good
cues for the matching. It should be noted that by choosing large
values for α the payoff function decreases more rapidly with the
growth of the distance between the Surface Hashes, thus the
Matching Game becomes more selective and less points survive after
reaching an ESS. In the end this results in a blander decimation and
thus in a larger ratio of retained interest points. By converse, a small
value for α leads to a more greedy filtering and thus to a more
selective interest point detector. In Fig. 5 (from (d) to (f)) we show
three steps of the evolutive interest point selectionwith respect to the
3-dimensional Normal Hash shown from (a) to (c). In Fig. 5(d) we see
that after a single pass of the Matching Game most of the surface
points are still considered interesting, while after respectively two
and three passes only very distinctive points (belonging to areas with
less common curvature profile) are left.

5. Isometry-enforcing payoff

As already stated, for this particular application of the GTM
framework we decided to assign to each pair of matching strategies
a payoff that is inversely proportional to a measure of violation of
the surface rigidity constraint. This violation can be expressed in

Fig. 5. Example of a 3-dimensional Normal Hash and the related detection process. In the first row we show, for each column, the value of the nth component of the
computed Normal Hash using a JET color scale normalized with respect to the higher value. In the second row we used red dots to highlight the surface points that have been
selected using a game theoretical matcher as described in Section 4.1. The first column shows the points selected at the first pass of the game and the other two the
remaining culled points for the second and third pass of the same game. (a) First dimension; (b) second dimension; (c) third dimension; (d) first pass; (e) second pass;
(f) third pass. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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several ways, but since all the rigid transformations preserve
Euclidean distances, we choose this property to express the coher-
ence between matching strategies. Clearly this isometry constraint is
looser than the rigidity constraint as it cannot prevent specular flips
of the surfaces, but the global consistency provided by the game-
theoretic framework ensures that only rigid alignments will prevail.

Definition 1. Given a function π : S � S-Rþ , we call it an isometry-
enforcing payoff function if for any ðða1; a2Þ; ðb1; b2ÞÞ and ððc1; c2Þ;
ðd1; d2ÞÞAS � S we have that Ja1�b1 j � ja2�b2 J4 Jc1�d1 j �
j c2�d2 J implies πðða1; a2Þ; ðb1; b2ÞÞo πððc1; c2Þ; ðd1; d2ÞÞ. In addition,
if πðða1; a2Þ; ðb1;b2ÞÞ ¼ πððb1; b2Þ; ða1; a2ÞÞ, π is said to be symmetric.

An isometry-enforcing payoff function is a function that is
monotonically decreasing with the absolute difference of the
Euclidean distances between respectively the model and data
points of the matching strategies compared. In other words, given
two matching strategies, their payoff should be high if the distance
between the model points is equal to the distance between the
data points and it should decrease as the difference between such
distances increases. In the example of Fig. 2, matching strategies
ða1; a2Þ and ðb1; b2Þ are coherent with respect to the rigidity
constraint, whereas ðb1; b2Þ and ðc1; c2Þ are not, thus it is expected
that πðða1; a2Þ; ðb1; b2ÞÞ4πððb1; b2Þ; ðc1; c2ÞÞ.

Further, if we want mating to be one-to-one, we must put an
additional constraint on the payoffs, namely that mates sharing a
point are incompatible.

Definition 2. An isometry-enforcing payoff function π is said to be
one-to-one if a1 ¼ b1 or a2 ¼ b2 implies πðða1; a2Þ; ðb1; b2ÞÞ ¼ 0.

Given a set of matching strategies S and an enumeration
O¼ f1;…; j Sj g over it, a matching game is a non-cooperative game
where the population is defined as a vector xAΔj Sj and the payoff
matrix Π ¼ ðπijÞ is defined as πij ¼ πðsi; sjÞ, where si; sjAS are
enumerated by O and π is a symmetric one-to-one isometry-
enforcing payoff function. Intuitively, xi accounts for the percen-
tage of the population that plays the ith matching strategy. By
using a symmetric one-to-one payoff function in a matching game
we are guaranteed that ESS's will not include mates sharing either
model or data nodes. In fact, given a non-negative payoff function,
a stable state cannot have in its support pairs of strategies with
payoff 0 [34]. Moreover, a matching game exhibits some additional
interesting properties.

Theorem 1. Given a set of model points M, a set of data points
D¼ TM that are exact rigid transformations of the points in M, a set
of matching strategies SDM � D with ðm; TmÞAS for all mAM, and a
matching game over them with a payoff function π, the vector
x̂AΔj Sj defined as

x̂ i ¼
1=jMj if si ¼ ðm; TmÞ for some mAM;

0 otherwise;

(

is an ESS and obtains the global maximum average payoff.

Proof. Let ŜDS be the set of mates that match a point to its copy,
clearly for all s; qA Ŝ; saq we have πðs; qÞ ¼ 1, while for sA Ŝ and
qAS\Ŝ, we have πðs; qÞo1. For all sA Ŝ we have that πðx̂ ; x̂Þ ¼
ðjMj �1Þ= jMj while, since π is one-to-one, for any qAS\Ŝ there
must be at least one sqA Ŝ with πðq; sqÞ ¼ 0, thus πðq; x̂Þo
ðjMj �1Þ=jMj , thus x̂ is a Nash equilibrium. Further, since the
inequality is strict, it is an ESS. Finally, x̂ is a global maximizer of π
since ðjMj �1Þ=jMj is the maximum value that a one-to-one
normalized payoff function over jMj points can attain. □

This theorem states that when matching a surface with a
rigidly transformed copy of itself the optimal solution (i.e., the
population configuration that selects all the matching strategies

assigning each point to its copy) is the stable state of maximum
payoff. Since well established algorithms to evolve a population to
such a state exist, this provides us with an effective mating
approach. Clearly, aligning a surface to an identical copy is not
very useful in practical scenarios, where occlusion and measure-
ment noise come into play. While the quality of the solution in the
presence of noise will be assessed experimentally, we can give
some theoretical results regarding occlusions.

Theorem 2. Let M be a set of points with MaDM and D¼ TMb a rigid
transformation of MbDM such that jMa \ Mb jZ3, and SDMa � D
be a set of matching strategies over Ma and D with ðm; TmÞAS for all
mAMa \ Mb. Further, assume that the points that are not in the
overlap, that is the points in Ea ¼Ma\ðMa \ MbÞ and Eb ¼Mb\

ðMa \ MbÞ, are sufficiently far away such that for every
sAS; s¼ ðm; TmÞ with mAMa \ Mb and every qAS; q¼ ðma; TmbÞ
with maAEa and mbAEb, we have πðq; sÞo ðjMa \ Mb j �1Þ=
jMa \ Mb j , then, the vector x̂AΔj Sj defined as

x̂ i ¼
1=jM j if si ¼ ðm; TmÞ for some mAMa \ Mb;

0 otherwise;

(

is an ESS.

Proof. We have πðx̂ ; x̂Þ ¼ ðjMa \ Mb j �1Þ=jMa \ Mb j . Let qAS be
a strategy not in the support of x̂ , then, either it maps a point inMa

or Mb, thus receiving payoff πðq; x̂ÞoðjMa \ Mb j �1Þ=jMa \ Mb j
because of the one-to-one condition, or it maps a point in Ea to
a point in Eb, receiving, by hypothesis, a payoff πðq; x̂Þo ðjMa \
Mb j �1Þ= jMa \ Mb j . Hence, x̂ is an ESS. □

The result of Theorem 2 is slightly weaker than Theorem 1, as
the face of the simplex corresponding to the “correct” overlap,
while being an evolutionary stable state, is not guaranteed to
obtain the overall highest average payoff. This is not a limitation of
the framework as this weakening is actually due to the very nature
of the alignment problem itself. The inability to guarantee the
maximality of the average payoff is due to the fact that the original
object (M) could contain large areas outside the overlapping
subset that are perfectly identical. Further, objects that are able
to slide (for instance a plane or a sphere) could allow to move
between different mixed strategies without penalty. These situa-
tions cannot be addressed by any algorithm without relying on
supplementary information. However, in practice, they are quite
unlikely, exceptional cases. In the experimental section we will
show that our approach can effectively register a wide range of
surface types.

In theory, any rigidity-enforcing payoff function can be used to
perform surface registration. Throughout the experimental section
we adopted:

πðða1;b1Þ; ða2;b2ÞÞ ¼
minðja1�a2 j ; jb1�b2 j Þ
maxðja1�a2 j ; jb1�b2 j Þ

� �λ

ð2Þ

where a1, a2, b1 and b2 are respectively the two model (source) and
data (destination) points in the compared matching strategies.
Parameter λ allows to make the enforcement of the Euclidean
distance more or less strict.

In Fig. 6 we show a complete example of the evolutionary
matching process. In order to make the example easy to understand
we restricted our focus to a detail of a range scan of the Stanford
dragon [43]. In this example (and throughout all the experimental
section) S is built by including all the strategy pairs composed by a
feature point in the model and the 5 nearest feature points in the data
in terms of Surface Hash (in this example we used an Integral Hash
with 3 scales). In Fig. 6(g) we show, on a color scale from 0 to 1, the
payoff matrix of the rigidity enforcing function (2). Note that in the
diagonal area of the matrix blocks of five strategies with reciprocal
0 payoff can be found: this is related to the way we built S. In fact we
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chose to include for each model point 5 candidates in the data which
are mutually noncompatible as they share the same source point and
we are looking for a one-to-one match. In the first and second row of
Fig. 6(d) we can see respectively model and data feature points at the
beginning of the matching process. After just one round of replicator
dynamics we see that many outliers have been eliminated from the
initial set S, but still some wrong matches are present. After 100
iterations only a few matches are retained, but it is easy to see that
they are extremely coherent. Finally, in Fig. 6(h) and (i) we show the
(sorted) population histogram respectively after 1 and 100 iterations.
The first histogram shows that all the strategies are still played by a
sizeable amount of the population, while after 100 iterations most of
the consensus is held by the few surviving matches.

6. Experimental results

In this paper we introduce a Game-Theoretic Registration
approach (GTR) that is based both on a feature detector/descriptor
and on a matching technique. To better explore the role of both, we
designed a wide range of experimental validations. First, we
analyzed the sensitivity of the descriptor to several sources of noise
and the influence of the number of scales (and thus of the size of the
descriptor vector). Further, we studied the sensitivity of the match-
ing algorithm to its parameters, with the goal of identifying an
optimal parametrization (if any) and assess the stability of the
method. A number of comparative tests were also made. Specifically,
we analyzed the performance obtained by using our matcher with

different feature detectors and the overall comparison with respect
to other well-known registration pipelines.

All the experiments were performed on a modern personal
computer equipped with a Core i7 Intel processor and 8 GB of
memory. The dataset used, where not differently stated, was built
upon publicly available models; specifically the Bunny [41], the
Armadillo [42] and the Dragon [43] from the Stanford 3D scanning
repository. To further assess the shortcomings of the various
approaches, we used two synthetic surfaces representative of as
many difficult classes of objects: a wave surface and a fractal
landscape (see Fig. 7). Since a ground truth was needed for an
accurate quantitative comparison, we generated virtual range
images from the models and then applied additive Gaussian noise
to them. All the registration experiments adopted the payoff
function (2) with the additional one-to-one constraint.

6.1. Implementation details

Several practical details should be defined and some parameters
must be fixed to produce an actual implementation of the registra-
tion method presented. Most of such details are explored in the
following experimental evaluation, where we study the role of
parameters and the general feasibility of our approach. However,
before describing in detail the tests performed and the results
obtained, we are going to give an overview of the steps involved
and an in-depth analysis of the role and behavior of each step. The
scope of such coverage is two-fold: it is useful in order to better
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Fig. 6. Example of a rigidity enforcing payoff and of the evolution of the matching process. The upper part of the figure shows color-coded matching points between model
and data before the game, after 1 round of replicator dynamics and after 100 rounds (see the text for details). The last row shows respectively the payoff matrix (using a
colored JET scale) and the (ordered) population vector after 1 and 100 iterations of the replicator dynamics. Notice that upon convergence most probability density is
concentrated in few strategies: (a and d) Initial matches; (b and e) matches in 1 round; (c and f ) matches in 100 rounds; (g) payoff matrix; (h) population in 1 round;
(i) population in 100 rounds.
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understand the experimental evaluation, and it can serve as an
effective implementation guide.

The general method can be broken into a sequence of indivi-
dual steps, each with a specific goal:

� Selection of the relevant points to be matched.
� Creation of the initial candidate matches between relevant

points.

� Computation of a payoff matrix between candidates.
� Evolution of an initial population towards a stable state.
� Surface alignment by means of the surviving strategies.

The implementation details for each step, according to the config-
uration we used for our evaluation, are given in the following.

Selection of relevant points: In principle the evolutionary selec-
tion process could be performed between all the possible pairs of
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Fig. 7. Performance comparison of different descriptors using real and synthetic objects under different amounts of noise and occlusion. The error is expressed as a ratio
between the obtained RMS and the RMS of the ground-truth alignment. Noise is expressed as percentage of the standard deviation of Gaussian additive noise over the
average edge length. Occlusion is expressed as percentage of occluded surface area.
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source and destination points between the data and model surfaces.
Unfortunately, this would result in a huge number of candidates and
an even bigger payoff matrix (give that its size grows with the
square of the candidates). For this reason, it is important to operate a
subsampling over surface points. Of course, different subsamplings
will result in different performance levels, depending on the quality
of the sampled points with respect to the registration task [47]. In
this paper we introduce the Surface Hashes descriptor that can be
coupled with a game-theoretical selector in order to operate
subsampling using the approach described in Section 4.1. Specifi-
cally, in our experiments we set the selectivity parameter α to 1 and,
after evolving an initially random population to a stable state, we
selected the k points exhibiting lower densities in the final popula-
tion vector, i.e. the k points that have less common descriptors. In
Section 6.3 we analyze the behavior of the method for different
amounts of sampled points and we conclude that as few as 1000
samples are enough to obtain a satisfying performance level. In
Section 6.2 we study the effect of using different Surface Hashes
flavors, and we conclude that Mixed Hashes performs better, hence
being the recommended choice for implementation. Of course,
nothing prevents to adopt completely different subsampling
schemes and point descriptors that can be dropped-in as a sub-
stitute for Surface Hashes within this first step. In Section 6.5 we do
exactly this, by studying what happens by using alternative descrip-
tors, leaving all the other aspects of the pipeline untouched.

Creation of the initial candidate set: After selecting relevant
points from each surface, a set of putative matches (i.e. strategies
in our selection game) must be created. Again, in principle, we
could make this set the Cartesian product between the points just
sampled from source and data surfaces. Still, it would be more
reasonable to perform an initial selection of the matches that are
most likely to be correct. To this end, we took the most naive
approach: each model point generates a candidate match with the
n data points with the most similar descriptor vector. Clearly, n
should be large enough in order to include most of the correct
matches, at the same time it should be kept reasonably small to
avoid the excessive growth of the payoff matrix. In Section 6.3 we
investigate the optimal value for n and we find that setting it to
6 gives good results that are not significantly improved by raising
it further. Thus, we recommend to use this value in practice.

Computation of the payoff matrix: Once the candidates have
been created, the compatibility between each pair of them must
be computed and used to populate the payoff matrix that will
drive the evolutionary process. This is done by means of Eq. (2),
which depends on parameter λ. As already described such para-
meter can be modulated to obtain different levels of selectivity.
The optimal value for λ, which we use and recommend, has been
determined to be about 1 through an apt experiment described
within Section 6.3.

Evolution toward a stable state: The game-theoretical selection
process is performed by evolving an initial population through Eq. (1).
For an actual implementation to be feasible, two practical choices are
to be made. The first one is the initial state of the population. In
practice we observed that a well-performing initial position for the
population vector is a slightly perturbed barycenter, that we obtain by
adding 5% random noise to each element of a uniform distribution
which is subsequently normalized again. The second choice to be
made is when to stop the iterations of Eq. (1). In fact, reaching a truly
stable state would require an infinite number of iterations, but in
practice a near enough population configuration is reached quite soon.
To this end, in our implementation we considered a stable state to be
obtained when the higher change among all the strategies in the
population vector is below a given threshold, that we fixed at 0.1% for
all the experiments.

Extraction of surviving strategies and surface alignment: The
actual registration takes place using Horn's quaternion-based

method [20] between the model and data points available in the
surviving strategies. However, since a true stable state has not
been reached, in practice all the strategies exhibit non-zero values
in the population vector. For this reason, a criterion to tell a
surviving strategy from an extinguished one must be chosen. In
our implementation we set an adaptive threshold expressed as a
fraction of the maximum value in the final population. As
described in the experimental evaluation of Section 6.3, any value
below 0.8 seems to be suitable for a proper culling.

6.2. Sensitivity analysis of the descriptor

The performance of different descriptors was tested for various
levels of noise and occlusion applied to two surfaces obtained from
real range scans (“armadillo” and “dragon” from Stanford) and two
synthetic surfaces designed to be challenging for coarse and fine
registration techniques (“fractal” and “wave”).

The noise is a positional Gaussian perturbation on the point
coordinates with its level (σ) expressed in terms of the percentage
of the average edge length, while occlusion denotes the percen-
tage of data and model surfaces removed. Notice that expressing
the noise as a percentage over the average edge length makes
sense for several reasons. First, our method is scale independent
since replicator dynamics will yield the same solution for any
multiplicative constant applied to the payoff matrix. For this
reason, using a percentage rather than an absolute value allows
to make the comparison fair among objects of different size in the
adopted database. Moreover, the average edge length, especially
for scanned data, can be regarded as a measure of density of the
signal, thus adding a noise level related to it is a more fair measure
of the noise-to-signal ratio. The net effect arising from the
combination of the scale independence of our approach and the
definition of an error level proportional to the average edge length
is indeed a sort of normalization of the models in the database
with respect to the edge length.

The occlusion is measured as a percentage of the surface and is
applied to the range images in opposite directions of the over-
lapped area. That means that with an occlusion of 10% the actual
overlap is reduced by 20%. Notice that, since we are applying
occlusions up to 40%, in the more extreme tested conditions the
overlap is very low.

The RMS Ratio in the charts is the ratio of the root mean square
error (RMS) obtained after registration and the RMS of ground
truth alignment.

The Normal and Integral Hashes were calculated over 3 levels
of scale and the “Mixed” Hash is simply the concatenation of the
previous two.

In Fig. 7 we see that all the descriptors obtain good results with
real range images and the registration “breaks” only with very high
levels of noise (on the same order of magnitude of the edge length).
It is interesting to observe that the Mixed Hash always obtains the
best performance, even with high level of noise: This higher
robustness is probably due to the orthogonality between the Normal
and Integral Hashes. The behavior with the “fractal” synthetic
surface is quite similar, by contrast all the descriptors seem to
perform less well with the “wave” surface. This is due to the lack of
distinctive features on the model itself, which indeed represents a
challenge for any feature based registration technique [7]. The
performance obtained with respect to occlusion is similar: all the
descriptors achieve fairly good results and are resilient to high levels
of occlusion (note that 40 percent occlusion is applied both to data
and model). Overall the Mixed Hash appears to be consistently more
robust. Since we found that the descriptors calculated over 3 levels
of scale break at a certain level of noise, we were interested in
evaluating if their performance can be improved by increasing their
dimension.
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In Fig. 8 we present the results obtained with different levels of
scale for the Mixed Hash. The graphs show the average over all the
surfaces and the associated RMS. It is interesting to observe that by
reducing the scale level the technique becomes less robust,
whereas its performance increases dramatically when the number
of scales increases. With a scale level of 5 our approach can deal
even with surfaces subject to Gaussian positional noise of σ greater
than the edge length. Unfortunately, this enhanced reliability
comes with a drawback: by using larger levels of scale the portion
of boundary that cannot be characterized grows. In the right half
of Fig. 8 the shrinking effect is shown for scale levels from 2 to 5.

6.3. Sensitivity to the parameters of the matcher

The game-theoretic matching technique presented basically
depends on four parameters:

� The number of points sampled from the model object.
� The number of neighbors considered when building the initial

set of candidates.
� The selectivity λ for the rigidity-enforcing payoff (2).
� The quality threshold used to deem a strategy as non-extinct

upon convergence.

The first two parameters are related to the creation of the set of
strategies S. From a performance point of view, adopting a strong
subsampling will produce a smaller set of strategies and a smaller
payoff matrix, thus each occurrence of the replicator dynamics (1)
will be faster. However, a too sparse sampling can lead to groups of
mutually compatible matches that are too small and are unable to
thrive during the evolutionary process. In a similar manner, a
small number of neighbors will reduce the number of strategies.
However, this will give fewer chances of capturing the correct
pairings since such tightening would require the descriptor to
always give a high rank to the correct pairing. In Fig. 9 it can be
seen that optimal results can be achieved with less than 1000
samples and that there is virtually no gain in using more than
6 neighbors. Later in this chapter we will show that on the test
system used these conditions allow to perform an alignment in
less than one second.

The third parameter (λ) is related to the level of strictness with
respect to the enforcement of the rigidity constraint: Higher values
for λ will make the payoff function more steep, thus making the
selection process more picky. By contrast, lowering λ will yield a
payoff matrix with smaller variance, up to the limit value of 0,

when the matrix assumes value 1.0 for all the strategies pairs that
do not break the one-to-one constraint and 0 otherwise. As
expected, our experiments show that very low or very high values
for λ deliver poor results and, while there is clearly a larger
variance that what has been captured by the experiments, the
optimal value seems to be around 1.

Finally, the fourth parameter sets the ratio (with respect to the
most successful match) used to classify a strategy as surviving or
extinct. The last experiment of Fig. 9 shows that all the tested
values below 0.8 give similarly good results. This simply means
that there is good separability between extinct and non-extinct
strategies, the former being very close to 0.

Overall we can assess that the matching method has a very
limited dependency on its parameters, which can easily be fixed at
values that are both safe and efficient. The most influential para-
meter is probably λ, however a value of 1.0 (that indeed simplifies
equation (2) to a simple ratio) appears to be optimal for our test set.

6.4. Comparison with full pipelines

The whole registration algorithm introduced with this paper can
be classified as a coarse method, since it does not require initializa-
tion. For this reason we compared it with several other coarse
techniques. Specifically, we implemented the whole Spin Images
pipeline [29], the RANSAC-Based and PROSAC-Based Darces meth-
ods [16], and we adopted the implementation supplied by the
authors respectively for the MeshHOG/MeshDOG [31] and the Four
Points Congruent Sets [17] methods. The latter method was initi-
alized both with the parameters suggested by the authors and also
with values for δ (agreement threshold) and s (number of samples)
that we manually optimized to get the best possible results from our
dataset. In addition, we also included in the comparison the scale-
invariant game theoretical method proposed in [36] as a technique
for object recognition in cluttered scenes.

In the first row of Fig. 10 we present the results of this comparison.
The noise is the usual additive Gaussian noise with a standard
deviation expressed as a percentage over the average edge length
and the occlusion is measured with respect to each range image and
is applied in opposite directions of the overlapped area. The occlusion
test has been made with noise at level 10% and the noise test was
performed with no occlusion. From the tests our method exhibits
better results in both scenarios and breaks only with high levels of
occlusion and noise. Note that the 4PCS method with parameters
δ¼ 0:9 and s¼500 does not always give a feasible solution with any
occlusion greater than 10%. With extreme levels of noise the 4PCS
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Fig. 8. Effect of scale on the matching accuracy computed over all the 5 test surfaces (plot on the left). The error is expressed as a ratio between the obtained RMS and the
RMS of the ground-truth alignment. Noise is expressed as percentage of the standard deviation of Gaussian additive noise over the average edge length. Scalar fields for scale
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Fig. 9. Analysis of the sensitivity of the Game-Theoretic Matcher with respect to the parameters of the algorithm. The test has been performed using all the 5 test surfaces.

Fig. 10. Comparisons between our Game-Theoretic Registration technique and other widely used surface registration pipelines.

A. Albarelli et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎12

Please cite this article as: A. Albarelli, et al., Fast and accurate surface alignment through an isometry-enforcing game, Pattern
Recognition (2015), http://dx.doi.org/10.1016/j.patcog.2015.01.020i

http://dx.doi.org/10.1016/j.patcog.2015.01.020
http://dx.doi.org/10.1016/j.patcog.2015.01.020
http://dx.doi.org/10.1016/j.patcog.2015.01.020


seems to get better and obtains lower RMS ratios than our method.
The reduction in performance of our method is related to the breaking
of the descriptors, that at such high levels of noise do not carry
sufficient information anymore. A clarification should finally be made
about the apparent improvement that 4PCS seems to exhibit as noise
increases. In fact, at high noise levels the RMS associated to ground-
truth motion is also high. In such conditions the additional error due
to misalignment becomes less relevant in terms of contribution to the
overall RMS ratio, which is dominated by random noise. Since 4PCS
explores thoroughly the set of feasible motions until a solution with
RMS low enough is found (depending on the stopping criterion), it is
expected to test more alignments when surfaces are noisier and thus
yield lower RMS ratio values. However, it is easy to build simple
examples where a solution can obtain a low RMS ratio (even lower
than one) and still be far from the correct alignment. Finally, we also
note that this newly introduced method consistently outperforms the
method presented in [36]. This is due to the task-specific optimiza-
tions and design choices described in Section 2.

These results only indicate that GTR gives a better coarse registra-
tion, however to seek a perfectly fair comparison it is also needed to
measure how much enhancement can be obtained by performing a
fine registration step starting from the obtained coarse initialization.
To this end we applied the ICP algorithm starting from the initial
motion estimated with the different methods with no occlusion and
random noise values below 60%. The results are shown in the bottom
row of Fig. 10 with histograms obtained by binning the distance
between model points and data surface along the normal vector.
Normals that do not intersect the data surface are discarded. The size
of the bins grows exponentially. The first histogram shows the
distribution obtained from the coarse registration and the second
reports the enhancement obtained by applying ICP. Again, the results
are favorable to our method, with very few points exhibiting large
errors after refinement.

6.5. Influence of different feature descriptors

In principle, there is nothing that binds the proposed method
to the Surface Hashes descriptors. Actually, the game-theoretic
step does not use the descriptor at all and any other interest point
characterization could be used as a drop-in replacement in order
to build the initial matching strategies. To show the generality of
the technique and to investigate the robustness of GTR we
swapped the Surface Hashes descriptor with a dense variation of
Spin Images [44] and the more recent SHOT 3D feature [32].

In Fig. 11 the results obtained performing the same experi-
ments designed to compare different methods are shown. It is
apparent that Spin Images do not work very well with our method.
By contrast, the SHOT descriptor behaves well with respect to high

noise levels and is even a little more tolerant to occlusion than
Surface Hashes. This is mainly due to the large support needed by
the latter. On the other hand, Surface Hashes offer better align-
ment under noise, and are also much faster to compute.

6.6. Quality of fine registration

In addition to the full pipeline comparisons we also investigated
how reliable the proposed approach would be if directly used as a fine
registration technique. The goal of this test is two-fold: we want to
evaluate our quality as a complete alignment tool and, at the same
time, find the breaking point of traditional fine registration techniques.

The method we used for comparison is a best-of-breed ICP variant,
similar to the one proposed in [41]. Point selection is based on Normal
Space Sampling [7], and point-surface normal shooting is adopted for
finding correspondences; distant mates or candidates with back-
facing normals are rejected. To minimize the influence of incorrect
normal estimates, matings established on the boundary of the mesh
are also removed. The resulting pairings are weighted with a
coefficient based on compatibility of normals, and finally a 5%-
trimming is used. Each test was performed by applying a random
rotation and translation to different range images selected from the
Stanford 3D scanning repository. Additionally, each range image was
perturbed with a constant level of Gaussian noise with standard
deviation equal to 12% of the average edge length. We completed 100
independent tests and for each of them we measured the initial RMS
error between the ground-truth corresponding points and the
resulting error after performing a full round of ICP (ICP) and a single
run of our registration method (GTR). In addition, we applied a step of
ICP to the registration obtained with our method (GTR þ ICP) in order
to assess how much the solution extracted using our approach was
further refinable.

A scatter plot of the obtained errors before and after registra-
tion is shown in Fig. 12. The final error is on a log scale, so the
dotted curve represents the points with identical initial and final
error. We observe that ICP reaches its breaking point quite early; in
fact with an initial error above the threshold of about 20 mm it is
unable to find a correct registration. By contrast, GTR is able to
obtain excellent alignment regardless of the initial motion pertur-
bation. Finally, applying ICP to GTR decreases the RMS only by a
very small amount.

6.7. Sensitivity to sampling

One of the main applications of the proposed method is the
registration of range images acquired using 3D scanners. Within
this context, both model and data surfaces will exhibit a similar
sampling density, which is usually quite high even when using
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Fig. 11. Performance of the Game-Theoretic Registration method using different feature descriptors.
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consume-grade off-the-shelf 3D capturing devices. Still, it is
possible to describe usage scenarios where the model contains a
very low number of vertices. This could be the case, for instance, if
the registration between an acquired object and the corresponding
CAD model is sought in order to measure the quality of a
manufactured part. In fact, CAD models (or mechanical parts in
general) are usually characterized by large regular surfaces and
few key vertices. Under these conditions, a direct application of
our method would fail, since not enough correct matching
candidates could be established between the dense representation
of the captured surface and the sparse model.

A quite straightforward solution is to resample the sparse object
obtaining additional vertices distributed over its surface. To evaluate
the effect of the introduction of artificial vertices and to study how
many should be added for a satisfying alignment we designed a
specific experiment. We selected 6 models of technical objects, 3 of
them being synthetic CAD models and the remaining 3 watertight
reconstructions of actual mechanical parts (see Fig. 13). For each part
we produced synthetic range images using a virtual 3D imaging
device with a sensing grid of 1000�1000 points. Each part was
captured 10 times with random orientations, thus producing a total of
60 virtual ranges. Finally, each range image was perturbed by additive

Gaussian noise with standard deviation equal to 12% of the average
edge length of the surface. In Fig. 13 we plot, for several levels of
resampling, the average ratio between the ground-truth RMS error
and the RMS error obtained after applying the registration process.
Note that we were not able to get stable registrations with fewer than
250 points per model. We can observe that the quality of the final
registration increases with the number of resampled points (which is
of course expected) and that the additional improvement that can be
obtained with more than 1000 artificial vertices is almost negligible.

6.8. Some qualitative results

In addition to the quantitative experiments presented, we also
performed some qualitative tests. While these tests do not offer a
measurable comparison between the results obtained by different
methods, they certainly help in putting the number presented so
far in perspective. It is in fact sometimes harder to tell how much
the RMS ratio affects the registration than judging some anecdotal
alignment.

In Fig. 14 we show some coarse alignments obtained with the
four methods under comparison. We are using surfaces with 100%
overlap and moderate noise just for illustrative purposes. In fact,
this way, it is easier to recognize the non-perfectly aligned areas
all over the surfaces. The reader should refer to the previous
section for a complete quantitative analysis covering different
levels of overlap and noise.

In this particular example we can see that Spin Images fail on
the Dragon, MeshDOG does not perform well with any of the
tested meshes, while the Four Points Congruent Sets method
obtains good results in all cases. On the other hand, GTR exhibits
by far the best alignment in every example.

Fig. 15 illustrates qualitative differences with the registration
obtained by using different descriptors with and without ICP
refinement. The goal of this test is to visually illustrate that our
method works very well also without applying the additional ICP
step, thus it can be effectively used as a proper fine alignment
approach. Since it is very difficult to spot defects on registration
after the refinement we decided to perform a full registration of
ranges acquired from a laser scanner contained in a publicly
available database [2] and to build a closed surface using the
Poisson Surface Reconstruction technique [45].
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It is easy to note that for the same detail Surface Hashes and
SHOT allow to build a smoother surface with no artifacts even
before applying the refinement step. However a small defect can
be spotted on the third finger on the foot reconstructed using
SHOT without refinement. By contrast, Spin Images cannot be used
to obtain reliable alignment even after applying ICP (the big
artifacts that can be observed are mainly due to a few grossly
misaligned ranges).

In Fig. 16 we show the result obtained using the GTR pipeline as
a fully automatic tool for aligning 12 range images acquired by a
laser scanner. Again, it can be observed that the effect of ICP
refinement is very limited (if any).

Finally, in Fig. 17, we show a couple of examples of alignment
between two range images [32,18] acquired using a Microsoft
Kinect sensor. The first example shows the registration between
two views of a man-made object characterized by an irregular
surface and without any background or supporting surface that
could help the registration process. The second example shows the
alignment between two views of a complex scene captured from
an office room containing several different objects.

6.9. Memory and execution time

Finally, we analyze the memory and cpu time requirements for
our method.

The memory needed depends on the number of strategies in the
initial set S. Since the payoff matrix sets a compatibility between
each pair of strategies, the memory required is quadratic with jSj .
To give a rough figure, with 1000 points sampled from the model
and 6 neighbors for the initial matches, a single-precision matrix
would require a little more than 64 MB. Of course, it is not really
needed to materialize the payoff matrix. In fact, if the payoff
function is simple enough, it could be advantageous to compute it
on the fly during the iteration of the replicator dynamics. Actually,
given that memory access is often the bottleneck on modern
architectures, this could even speed-up computation (especially
for GPU-based implementations of the replicator dynamics).

Regarding the execution time, each iteration of the replicator
dynamics is quadratic with jSj . In principle, convergence time
could be estimated using stochastic modelling [48,49]. However, it
is not easy to state how many iterations are required to converge
as it depends on many factors and parameters. In Fig. 18 we
plotted a point cloud that relates the number of strategies with the
convergence time (on our setup) for a large number of trials
generated with the database of meshes adopted in the previous
experiments. The convergence time shown includes all the itera-
tions needed to reach a stable state according with the stop
criteria defined in Section 6.1. When dealing with a few thousands
of strategies (which is the common case) the evolution happens in
about one second, which is reasonable for most non-real time
applications.

Fig. 14. Examples of surface registration obtained respectively with Spin Images (first column), MeshDOG (second column), 4PCS (third column) and our Game-Theoretic
Registration technique (last column).
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Fig. 15. Comparison of surface reconstruction using different descriptors before (first row) and after (second row) ICP enhancement of the coarse registration obtained
respectively using Spin Images (first column), SHOT (second column) and Surface Hashes (third column). Notice that Surface Hashes allows to obtain a defect-free
reconstruction even before the ICP step.

Fig. 16. Fully automatic registration of 12 views of the t-rex model from [2] using the GTR pipeline with Surface Hashes. A set of range images (first column) with unknown
initial positions is given; coarse alignment is then performed with our technique and refined with a few steps of ICP (second and third column). The last column shows the
final model obtained by Poisson reconstruction [45].

Fig. 17. Examples of alignment between surfaces acquired with a Microsoft Kinect sensor.
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Finally, in Table 1 we report a comparison of the execution times
of our method and a fast variant of the four-points congruent sets
method, named Super4PCS [18]. The latter method produces the
same solutions as 4PCS, although in linear time. It should be noted
that the timing performance and effectiveness of Super4PCS depend
on the specific choice of parameters for the data at hand: estimates
for vertex noise, surface overlap, and sampling quality constitute
input for the method and directly affect the final matching time. For
these reasons, we show the results obtained with a slower, but more
robust parametrization as suggested by the authors (second row), as
well as an optimal parametrization specifically tuned for each model
(third row). In order to provide a fair comparison, the execution times
reported for our method include both the construction of the
similarity matrix, and the optimization step via replicator dynamics.

7. Conclusions

In this paper we introduced a novel game-theoretic technique that
solves both the coarse and fine surface registration problems at once.
Our approach has several advantages over the state-of-the-art: it does
not require any kind of initial motion estimation, as it does not rely on
spatial relationships betweenmodel and data points, and, unlike most
inlier selection techniques, it is not affected by a large number of
outliers since it operates an explicit selection of good inliers rather
than using random selection or vote counting for validation. The
approach has also shown to be general enough to accept different
feature descriptors. From a theoretical point of view, a sound
correspondence between optimal alignments and evolutionary equi-
libria has been presented and a wide range of experiments validated
both the robustness of the approach with respect to noise and its
performance in comparison with other well-known techniques.
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