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Abstract
3D range sensors, particularly 3D laser range scanners, enjoy a rising popularity and are used nowadays for many
different applications. The resolution 3D range sensors provide in the image plane is typically much lower than
the resolution of a modern colour camera. In this article we focus on methods to derive a high-resolution depth
image from a low-resolution 3D range sensor and a colour image. The main idea is to use colour similarity as an
indication of depth similarity, based on the observation that depth discontinuities in the scene often correspond to
colour or brightness changes in the camera image. We present five interpolation methods and compare them with
an independently proposed method based on Markov Random Fields. The proposed algorithms are non-iterative
and include a parameter-free vision-based interpolation method. In contrast to previous work, we present ground
truth evaluation with real world data and analyse both indoor and outdoor data. We further suggest and evaluate
four methods to determine a confidence measure for the accuracy of interpolated range values.

Keywords: 3D range sensor, laser range scanner, vision-based depth interpolation, 3D vision

1 Introduction

3D range sensors are getting more and more common
and are found in many different areas. A large research
area deals with acquiring accurate and very dense
3D models, potential application domains include
documenting cultural heritage [1], excavation sites
and mapping of underground mines [2]. A lot of
work has been done in which textural information
obtained from a camera is added to the 3D data. For
example, Sequeira et al. [3] present a system that
creates textured 3D models of indoor environments
using a 3D laser range sensor and a camera. Früh and
Zakhor [4] generate photo-realistic 3D reconstructions
from urban scenes by combining aerial images with
textured 3D data acquired with a laser range scanner
and a camera mounted on a vehicle.

In most of the approaches that use a range scanner and a
camera, the vision sensor is not actively used during the
creation of the model. Instead vision data is only used
in the last step to add texture to the extracted model. An
exception is the work by Haala and Alshawabkeh [5], in
which the camera is used to add line features detected
in the images into the created model.

To add a feature obtained with a camera to the point
cloud obtained with a laser range scanner, it is required
to find the mapping of the 3D laser points onto pixel
coordinates in the image. If the focus instead lies on
using the camera as an active source of information
which is considered in this paper, the fusing part in

addition addresses the question of how to estimate a
3D position for each (sub) pixel in the image. The
resolution that the range sensor can provide is much
lower than obtained with a modern colour camera. This
can be seen by comparing figure 1, created by assign-
ing the intensity value of the projected laser point to
its closest neighbours, with the corresponding colour
image in figure 1.

To our knowledge the only approach that uses colour
information from a camera image to obtain a high-
resolution 3D point model from a low-resolution
3D range scan is the algorithm by Diebel et al. [6],
where both colour information and the raw depth
information are used. Their method is also compared
with the methods suggested in this paper and is further
described in section 3.

2 Suggested Vision-based Interpola-
tion Approaches

The main idea is to interpolate low-resolution range
data provided by a 3D laser range scanner under the
assumption that depth discontinuities in the scene of-
ten correspond to colour or brightness changes in the
camera image of the scene.

For the problem under consideration, a set of N laser
range measurements r1..rN is given where each mea-
surement ri = (θi,πi,ri) contains a tilt angle θi, a pan
angle πi and a range reading ri corresponding to 3D
Euclidean coordinates (xi,yi,zi).



Figure 1: Left: Image intensities plotted with the
resolution of the 3D scanner. The laser range readings

were projected onto the right image and the closest
pixel regions were set to the intensity of the projected
pixel for better visualisation. Right: Calibration board
used for finding the external parameters of the camera,

with a chess board texture and reflective tape (gray
border) to locate the board in 3D using the remission /

intensity values from the laser scanner.

The image data consists of a set of image pixels
P j = (X j,Yj,C j), where X j,Yj are the pixel coordinates
and C j = (C1

j ,C
2
j ,C

3
j ) is a three-channel colour

value. By projecting a laser range measurement
ri onto the image plane, a projected laser range
reading Ri = (Xi,Yi,ri,(C1

i ,C2
i ,C3

i )) is obtained, which
associates a range reading ri with the coordinates and
the colour of an image pixel. An image showing the
projected intensities can be seen in figure 1, where
the closest pixel regions are set to the intensity of the
projected pixel for better visualisation.

The interpolation problem can now be stated for a given
pixel P j and a set of projected laser range readings R,
as to estimate the interpolated range reading r∗j as ac-
curately as possible. Hence we denote an interpolated
point R∗

j = (X j,Yj,r∗j ,C
1
j ,C

2
j ,C

3
j ).

Five different interpolation techniques are described in
this section and compared with the MRF approach de-
scribed in section 3.

2.1 Nearest Range Reading (NR)

Given a pixel P j, the interpolated range reading r∗j is
assigned to the laser range reading ri corresponding
to the projected laser range reading Ri which has the
highest likelihood p given as

p(P j,Ri) ∝ e−
(Xj−Xi)

2+(Yj−Yi)
2

σ2 (1)

where σ is the point distribution variance. Hence, the
range reading of the closest point (regarding pixel dis-
tance) will be selected.

2.2 Nearest Range Reading Considering
Colour (NRC)

This method is an extension of the NR method using
colour information in addition. Given a pixel P j, the
interpolated range reading r∗j is assigned to the range

Figure 2: Top left: Depth image generated with the
NR method. Top right: Depth image generated with
the NRC method, small details are now visible. Note
that a depth image generated from a similar viewpoint
as the laser range scanner makes it very difficult to see
flaws of the interpolation algorithm. Bottom left: MLI.

Bottom right: LIC.
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Figure 3: Natural neighbours R1..R5 of R∗
i . The

interpolated weight of each natural neighbor Ri is
proportional to the size of the area which contains the
points Voronoi cell and the cell generated by R∗

j . For
example the nearest neighbor R1 will have influence

based upon the area of A1.

value ri of the projected laser range reading Ri which
has the highest likelihood p given as

p(P j,Ri) ∝ e
−

(Xj−Xi)
2+(Yj−Yi)

2

σ2p
−

||Cj−Ci||2

σ2c (2)

where σp and σc is the variance for the pixel point and
the colour respectively.

2.3 Multi-Linear Interpolation (MLI)

Given a set of projected laser range readings R1..RN ,
a Voronoi diagram V is created by using their
corresponding pixel coordinates [X ,Y ]1..N . The natural
neighbours NN to an interpolated point R∗

j are the
points in V , which Voronoi cell would be affected
if R∗

j is added to the Voronoi diagram, see figure 3.
By inserting R∗

j we can obtain the areas A1..n of the



intersection between the Voronoi cell due to R∗
j and the

Voronoi cell of Ri before inserting R∗
j and the area AR∗

j

as a normalisation factor. The weight of the natural
neighbor Ri is calculated as

wi(R∗
j) =

Ai

AR∗
j

. (3)

The interpolated range reading r∗j is then calculated as

r∗j = ∑
i∈NN(R∗

j )
wiri. (4)

This interpolation approach is linear [7]. One disadvan-
tage is that nearest neighborhood can only be calculated
within the convex hull of the scan-points projected to
the image. However, this is not considered as a problem
since the convex hull encloses almost the whole image,
see figure 2.

2.4 Multi-Linear Interpolation Consider-
ing Colour (LIC)

To fuse colour information with the MLI approach
introduced in the previous subsection, the areas ARi

and AR∗
j

are combined with colour weights wc
1..n for

each natural neighbor based on spatial distance in
colour space.

Similar as in section 2.2, a colour variance σc is used:

wc
i (R

∗
j) = e

−
||Ci−Cj ||2

σ2c . (5)

The colour based interpolated range reading estimation
is then done with

r∗j = ∑
i∈NN(R j)

wiwc
i

W c (6)

where W c = ∑
n
i=1 wc

i is used as a normalisation factor.

2.5 Parameter-Free Multi-Linear Interpo-
lation Considering Colour (PLIC)

One major drawback of the methods presented so far
and the approach presented in the related work section
is that they depend on parameters such as σc, for ex-
ample. To avoid the need to specify colour variances,
the intersection area ARi defined in Section 2.3 is used
to compute a colour variance estimate for each nearest
neighbor point Ri as

σci =
1

ni −1 ∑
j∈Ai

||µi −C j||2 (7)

where µi = 1
ni

∑ j∈Ai C j and ni is the number of pixel
points within the region Ai. σci is then used in Eq. 5.

δ 

Figure 4: Left: The simulated 3D scan, which
provided 4165 scan points as ground truth data. Right:
When the laser range finder spot covers an area which
contains different depths (blue and white areas), the
range reading returned might be unreliable and vary
anywhere between the closest to the furthest range

(shown as the region δ ).

This results in an adaptive adjustment of the weight
of each point. In case of a large variance of the local
surface texture, colour similarity will have less impact
on the weight wi.

3 Related Work

To our knowledge, the only work using vision for
interpolation of 3D laser data is [6] where a Markov
Random Field (MRF) framework is used. The method
works by iteratively minimising two constraints: ψ

stating that the raw laser data and the surrounding
estimated depths should be similar and φ stating that
the depth estimates close to each other with a similar
colour should also have similar depths.

ψ = ∑
i∈N

k(r∗i − ri)2 (8)

where k is a constant and the sum runs over the set of
N positions which contain a laser range reading ri and
r∗i is the interpolated range reading for position i. The
second constraint is given as

φ = ∑
i

∑
j∈NN(i)

e(−c||Ci−C j ||2)(r∗i − r∗j )
2 (9)

where c is a constant, C is the pixel colour and NN(i)
are the neighborhood pixels around position i.

The function to be minimised is the sum ψ +φ .

4 Evaluation

Experimental evaluation is a crucial point and has been
done using both simulated and real data. All data sets
D were divided into two equally sized parts D1 and D2.
One dataset, D1, is used for interpolation and D2 is used
as the ground truth where each laser range measure-
ment is projected to image coordinates. Hence for each
ground truth point Ri we have the pixel positions [X ,Y ]i



and the range ri. The pixel position [X ,Y ]i is used
as input to the interpolation algorithm and the range
ri is used as the ground truth. The performance of
the interpolation algorithms is analysed based on the
difference between the interpolated range r∗i and the
range ri from the ground truth.

5 Experimental Setup

5.1 Hardware

The scanner used is a 2D SICK LMS-200 mounted
together with a 1 MegaPixel (1280x960) colour CCD
camera on a pan-tilt unit from Amtec where the dis-
placement between the optical axis is approx 0.2 m.
The scanner is located on our outdoor robot, see fig-
ure 5, a P3-AT from ActivMedia. The SICK scanner
has a larger spot size compared to many other laser
scanners and often gives wrong range estimates close
to edges where the laser spot covers multiple objects at
different distances, see figure 4. Of course, this flaw
of the sensor will be reflected in the ground truth as
well. The angular resolution of the laser scanner is 0.5
degrees. Half of the readings were used as ground truth,
so the resolution for the points used for interpolation is
1 degree.

5.2 Calibration

In our case the displacement of the laser scanner and
the camera is fixed, i.e. it’s required to find 6 external
calibration parameters (3 for rotation and 3 for transla-
tion) once. This is done by simultaneously optimising
the calibration parameters for several calibration scans.
The method we use requires a special calibration board,
see figure 1, which is also used to determine the internal
calibration parameters of the camera. The calibration
board is using reflective tape at the borders enabling
to use the reflective (remission) values from the laser
to automatically estimate the 3D position of the chess
board corners detected in the image.

The external parameters for the camera are obtained
by minimising the sum of squared distances (SSD) be-
tween the chess board corners found in the image and
the 3D position of the chess board corners derived from
the laser range readings.

6 Results - Interpolation

The most common colour spaces were compared to
evaluate if better illuminance/shading invariance could
be useful. The colour spaces compared were standard
RGB, Normalised RGB, HSV and YUV. Since a
consistent improvement could not be observed for
neither of the colour spaces tested, only results based
on standard RGB normalised to [0,1] are presented in
this paper.

Table 1: Distance error from ground truth using the
simulation data.

NR NRC LI LIC
mean 0.039 0.028 0.017 0.007
max 1.685 0.198 1.112 1.095
σ2 0.120 0.020 0.096 0.028

In all experiments the colour variance σc = 0.05 and
the pixel distance variance σd = 10mm where used,
which were found empirically. The parameters used
within the MRF approach described in section 3, where
obtained by extensive empirical testing and were set
to k = 2 and C = 10. The optimisation method used
for this method was the conjugate gradient method de-
scribed in [8] and the initial depths were estimated with
the NR method. In all experiments the full resolution
(1280x960) of the camera image was used.

6.1 Simulated Data

The simulated data are shown in figure 4, which is cre-
ated from a model based on a set of coloured planes
where each point is detected by finding the intersec-
tion between the simulated scanner ray and the model.
The simulated scans show the benefits of using the dis-
tance and colour for interpolation. By using colour
information the selection of interpolation points are im-
proved. In the results the LIC gives the lowest mean
error. However the NRC gives the lowest max error
which is likely caused by an overestimation of the color
variance in LIC. This approves scan points with differ-
ing colour to have to much influence of the interpola-
tion.

This would be avoided if the colour variance estimation
would be used (PLIC). Note that both PLIC and MRF
requires a full image and are therefore not considered.
Since the simulated environment consist only of planes,
the multi-linear approaches works fairly well.

6.2 Experimental Data

All the interpolation algorithms described in this paper
were tested on real data consisting of three indoor scans
and two outdoor scans. The outdoor scans were taken
in winter time with snow, which presents the additional
challenge that most of the points in the scene have very
similar colours.

The results are summarised in table 2 and table 3,
which show the mean error with respect to the
ground truth e, and the percentage of outliers ot for
different thresholds t. The percentage of outliers is the
percentage of points for which the interpolated range
value deviates from the ground truth value by more
than a threshold t (specified in meters in table 2 and
table 3).

For the indoor data sets, which comprise many pla-
nar structures, the lowest mean error was found with



Figure 5: Left: The third indoor evaluation scan, Indoor3. Middle: Scans taken in winter time with some snow
containing Outdorr1 −Outdoor3. Right: Our outdoor robot with the SICK LMS scanner and a colour CCD

camera mounted on a pan tile unit from Amtec, that were used in the experiments. The close up part shows the
displacement between the camera and the laser which causes parallax errors.

the multi-linear interpolation methods, particularly LIC
and PLIC, and MRF interpolation. LIC and PLIC pro-
duced less (but larger) outliers.

With the outdoor data the results obtained were more
diverse. For the data set Outdoor1, which contains
some planar structures, a similar result as in the
case of the indoor data was observed. For data sets
with a very small portion of planar structures such
as Outdoor2, the mean error was generally much
higher and the MRF method performed slightly better
compared to the multi-linear interpolation methods.
This is likely due to the absence of planar surfaces
and the strong similarity of the colours in the image
recorded at winter time. It is noteworthy that in
this case, the nearest neighbor interpolation method
without considering colour (NR) performed as good as
MRF. The interpolation accuracy of the parameter-free
PLIC method was always better or comparable to the
parameterised method LIC.

7 Confidence Measure

The interpolated range reading r∗j may be a good es-
timate of the actual range or it might deviate substan-
tially from the true value. Therefore a confidence mea-
sure for the correctness of the interpolated range read-
ing estimate is desirable, allowing to detect and handle
errornous measures appropriately.

In this paper we suggest and evaluate four different
confidence measures.

7.1 Proximity to the Nearest Laser Range
Reading (NLR)

This confidence measure is based on the distance be-
tween the pixel position of the interpolated point R∗

j
to the nearest projected laser range reading Ri. The
idea is that if the interpolated pixel point is close to

Table 2: Results from Indoor1, Indoor2 and Indoor3.
NR NRC MLI LIC PLIC MRF

e 0.065 0.054 0.052 0.048 0.049 0.048
o0.1 0.161 0.117 0.149 0.118 0.123 0.136
o0.2 0.112 0.083 0.069 0.076 0.077 0.063
o0.5 0.034 0.029 0.016 0.022 0.023 0.012
o1.0 0.000 0.000 0.000 0.000 0.000 0.000
o3.0 0.000 0.000 0.000 0.000 0.000 0.000
e 0.123 0.134 0.109 0.107 0.109 0.106
o0.1 0.148 0.143 0.172 0.140 0.149 0.154
o0.2 0.095 0.097 0.108 0.090 0.092 0.094
o0.5 0.056 0.068 0.050 0.051 0.053 0.047
o1.0 0.013 0.034 0.026 0.028 0.027 0.025
o3.0 0.006 0.006 0.004 0.004 0.004 0.004
e 0.088 0.072 0.067 0.060 0.060 0.067
o0.1 0.109 0.096 0.143 0.110 0.107 0.132
o0.2 0.080 0.071 0.097 0.072 0.071 0.093
o0.5 0.061 0.048 0.021 0.036 0.034 0.031
o1.0 0.011 0.010 0.008 0.007 0.009 0.009
o3.0 0.004 0.002 0.002 0.002 0.001 0.003

a point where a range measurement is available the
interpolation is considered more trustworthy.

NLR(R∗
j ,Ri) = e

−
√

(X∗
j −Xi)2+(Y ∗

j −Yi)2
(10)

7.2 Proximity to the Nearest Laser Range
Reading Considering Colour (NLRC)

This confidence measure is based on the distance be-
tween the colour of the pixel of the nearest projected
laser range reading Ri and R∗

i . This confidence mea-
sure works better since it takes into account that con-
fidence in the interpolated value should decrease if the
two points have different colour.

NLRC(R∗
j ,Ri) = e−||C j−Ci|| (11)



Figure 6: Visualisation of the confidence measures suggested. From left to right: NLR showing the distance to
the closest point, NLRC using colour distance, PS showing the plane factor of the neighborhood of the

interpolated point and AON showing the angle difference between the normal of the extracted local plane and the
camera axis. The parameter free method (PLIC) were used.

Table 3: Results from Outdoor1, Outdoor2 and
Outdoor3 data sets.

NR NRC MLI LIC PLIC MRF
e 0.067 0.068 0.056 0.059 0.054 0.054
o0.1 0.147 0.160 0.156 0.146 0.138 0.150
o0.2 0.076 0.080 0.078 0.073 0.068 0.076
o0.5 0.032 0.032 0.016 0.020 0.015 0.016
o1.0 0.005 0.002 0.001 0.001 0.002 0.001
o3.0 0.000 0.000 0.001 0.001 0.000 0.000
e 0.219 0.294 0.235 0.322 0.275 0.218
o0.1 0.196 0.240 0.242 0.269 0.264 0.187
o0.2 0.096 0.152 0.140 0.168 0.160 0.098
o0.5 0.047 0.088 0.077 0.094 0.083 0.051
o1.0 0.036 0.057 0.043 0.059 0.049 0.030
o3.0 0.016 0.023 0.019 0.028 0.022 0.017
e 0.526 0.584 0.522 0.574 0.500 0.498
o0.1 0.222 0.232 0.296 0.258 0.268 0.242
o0.2 0.157 0.170 0.224 0.193 0.205 0.181
o0.5 0.102 0.115 0.156 0.125 0.130 0.106
o1.0 0.078 0.085 0.091 0.083 0.086 0.067
o3.0 0.027 0.029 0.029 0.030 0.026 0.026

7.3 Degree of Planar Structure (PS)

Our confidence in the range interpolation also depends
on how well a planar surface can be fitted to the local
neighbours NN(R∗

j) of the interpolation point R∗
j since

planar surfaces support a linear interpolation technique
very well. The neighbours are either determined from
the grid defined by the projected laser range readings
or the nearest neighbours found in the Voronoi tessella-
tion. The parameters of the planar surface are obtained
from the 3D covariance matrix of NN( j) where the two
main eigenvectors are extracted which span a planar
surface S j with the normal vector n j. The confidence
measure is then calculated from the average distance of
the local neighbours to the fitted plane as

PS(R∗
j) = e

− 1
NN ∑i∈NN(R∗

j )
||ri·n j−d j ||

(12)

where d j is the distance of the plane S j to the origin
and ri = (xi,yi,zi) is the 3D position of point i.

7.4 Angle Between the Optical Axis and
the Fitted Plane Normal (AON)

This confidence measure considers the orientation of
the planar surface S j described in the previous section
relative to the optical axis of the camera zcam. If the
angle between the normal vector n j and the optical axis
is small, the confidence should be high since we expect
only one reflexion from the laser scanner and the dis-
placement between the laser and the camera will have
a negligible impact.

AON(R∗
j) = zcam ·n j (13)

8 Result - Confidence Measure

With the exception of the NLR method, a distinct neg-
ative correlation was found for all the confidence mea-
sures suggested in this section. Due to the experimen-
tal setup where the evaluation points were taken from
the laser scanner in an evenly spaced grid, the parallax
errors caused by the displacement, see figure 5, corre-
spond to a low distance between R∗

j and Ri which made
the proposed NLR method to give high confidence cor-
related with parallax errors.

Figure 7 shows the inlier/outlier ratio depending on the
confidence calculated with the NLRC, PS, and AON
method. Interpolated range values were classified as
outliers if the deviation from the ground truth value
was larger than approximately a third of the mean error
obtained with the particular interpolation method. The
same general trend of a clear negative correlation, how-
ever, was observed with all interpolation methods and
for all data sets.

9 Conclusions

This paper is concerned with methods to derive a high-
resolution depth image from a low-resolution 3D range
sensor and a colour image. We suggest five interpo-
lation methods and compare them with an alternative
method proposed by Diebel and Thrun [6]. In contrast
to previous work, we present ground truth evaluation
with simulated and real world data and analyse both
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Figure 7: Suitability of the confidence measures
introduced in this paper. The graphs show the number

of outlier / number of inlier ratio, depending on the
confidence in the interpolated points. All points with a
depth error > 0.03 meter are considered outliers in the
upper image and in the lower graph the threshold was
0.1 meter. Top: Indoor1 data set with method NRC.

Bottom: Outdoor2 with method LIC.

indoor and outdoor data. The results of this evaluation
do not allow to single out one particular interpolation
method that provides a distinctly superior interpolation
accuracy, indicating that the best interpolation method
depends on the content of the scene. Altogether, the
MRF method proposed in [6] and the PLIC method
proposed in this paper provided the best interpolation
performance. While providing basically the same level
of interpolation accuracy as the MRF approach, the
PLIC method has the advantage that it is a parameter-
free and non-iterative method, i.e. that a certain pro-
cessing time can be guaranteed. One advantage of the
proposed methods is that depth estimates can be ob-
tained without calculating a full depth image. For ex-
ample if interpolation points are extracted in the image
using a vision-based method (i.e. feature extraction),
we can directly obtain a depth estmate for each feature.

We further suggest and evaluate four methods to deter-
mine a confidence measure for the accuracy of interpo-
lated range values. Three of the proposed confidence
values showed a distinct negative correlation with the

occurrence of outliers. This was observed independent
of the scene content and the interpolation method ap-
plied.

If vision is used to select interpolation points, it could
be benificial to use a confidence meassure that only
incorporates laser readings and no colour information
since the selected points will contains regions with high
amount of changes in texture / colour.
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