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Abstract—In this paper we present an approach for perform-
ing system calibration of a sensor suite consisting of a fixed
mounted camera and an inertial navigation system without the
usage of a photogrammetric calibration site. The aim of the
presented work is to obtain accurate direct georeferencing of cam-
era images collected with manned or unmanned aerial systems
for search and rescue tasks. These time-critical missions require
a straightforward calibration which can be performed without
additional equipment. This induces an in-flight calibration of
the intrinsic camera parameters in addition to the mounting
offsets between the camera and the inertial navigation system.
The optimization of these values can be done by introducing
them as parameters into a bundle adjustment process. We show
how to solve this by exploiting a graph optimization framework.
The evaluation of the proposed approach with data from flight
experiments leads to an improvement of roughly factor six
compared to a terrestrial calibration.

I. INTRODUCTION

Aerial photogrammetry is widely used for orthophoto and
digital terrain model creation. Nowadays these measuring
flights are usually performed by an aircraft equipped with
a digital large-format camera and a GPS corrected inertial
navigation system (INS). This equipment enables the direct
determination of the camera positions and orientations for
the captured images. Therefore it provides, in contrast to the
classical bundle adjustment, a very flexible flight planning
and no necessity of ground control points (GCP) during the
operation. Nevertheless, the essential system calibration is
generally realized by a flight over a photogrammetric test site
with a high number of signaled GCPs.

Time-critical surveillance and rescue tasks have the same
demand for a flexible flight planning and the direct determi-
nation of object positions from image observations [1], [2].
In contrast to aerial photogrammetry, there is a need for a
straightforward system calibration, which can be performed
without the time-consuming and cost-intensive usage of large-
scale calibration areas. Within the so called INS-camera cal-
ibration the static coordinate system transformation between
the rigidly mounted sensors is determined. More precisely the
translational offsets (lever-arm) and the angle misalignments
(boresight) have to be estimated. The most accurate calibration
procedures integrate these parameters as unknowns in a bundle
adjustment (BA) [3], [4].

In this work, we formulate the system calibration as a
graph optimization problem by representing the parameters
to optimize as vertices and the observations between them as

Fig. 1. Our goal is to calibrate the static coordinate system offsets between
a camera and an INS, which enables the utilization of the INS measurements
as exterior camera orientations. For our flight experiments we integrated the
sensors into a payload pod, which was mounted beneath one wing of a manned
ultra light airplane.

Fig. 2. Visualization of a flight course performed for the evaluation of our
approach. The altitude was about 300 meters.

edges. We determine the optimal configuration of the state
variables by using a graph optimization framework [5]. In
contrast to previous work relying on BA [3], our approach is
more intuitive and can easily be adapted when other calibration
parameters become relevant.

Our previous work on simulated data indicated high accu-
racies for the graph based system calibration [6]. We extend
the procedure to perform the calibration with real-world data
from sensors mounted on an aerial vehicle. In our experiments,
we used a manned ultra light airplane with a wingspan of
9.6 meters (Fig. 1) flying in heights of 300 to 800 meters
(Fig. 2). Our evaluation shows that a calibration can be



performed without the usage of GCPs. The paper starts with an
overview on related research areas. It follows the description
of the realized system calibration. Finally experimental results
achieved with this approach are shown and discussed.

II. RELATED WORK

A related process of the INS-camera calibration is the
so called hand-eye calibration. Given a camera mounted on
a robot arm, the rigid-body transformation between the co-
ordinate systems of these devices is estimated. As a result,
measurements from the acquired images can be transformed
into the robot arm coordinate system to interact with objects
recognized and located in the images. The calibration out of
corresponding robot arm and camera poses was realized with
a direct solution for the rotational part followed by solving
the equations for the translation [7]. Alternatively a nonlinear
optimization of the whole transformation at the same time was
proposed in [8].

These approaches had a big influence on the calibration
between an inertial measurement unit (IMU) and a camera.
Measurements of the IMU in form of rotational velocities
and linear accelerations can be integrated to determine the
positions, velocities and orientations of the device. The small
estimation errors which are summed up over time can be
corrected by camera measurements, if the transformation be-
tween the two devices is known. In [9], the estimation was
realized with a modified hand-eye calibration algorithm. Other
approaches utilize a Kalman filter for the estimation of the pose
transformation [10], [11]. This sensor combination is known
as a vision-aided INS.

By contrast, GPS-aided INS exploit the GPS measurements
to correct the IMU estimations. In conjunction with GPS
correction signals from ground control stations, accuracies in
the range of a few centimeters for the positions and a few
hundredths of a degree for the orientations are achievable. Thus
the INS provides a reliable stand-alone source describing its
own movement. This leads to the estimation of the rigid-body
transformation between the INS and the camera with methods
similar to the hand-eye calibration. In a first step the camera
movement is calculated with a structure from motion (SFM)
approach and refined in a BA procedure. The observations
of ground control points are used to scale the 3D model to
real world coordinates. In a second step, the transformation
between the two devices is estimated by relating these abso-
lute camera poses to time synchronized measurements from
the INS. This widely used approach is known as two-step
procedure [12]. The advantage is that each bundle adjustment
package can be used without modifications. On the other hand,
the integration of the mounting parameters as variables to
optimize in the BA is possible. This approach is known as
single-step calibration and induces a simpler estimation of the
mounting offsets due to more flexible flight courses [3]. The
estimation of the INS-camera calibration has been examined
widely within the OEEPE test [4]. They conclude that this
approach is a serious alternative for many applications, even
though it does not achieve the mapping accuracies of classical
bundle adjustment.

The studies for the INS-camera calibration performed in
the last decades were targeted at aircrafts equipped with high-
precision INS and metric large-format cameras performing
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Fig. 3. Both, the navigation systems of the INS and our world reference
frame are based on East, North, Up (ENU) coordinate systems. They are local
Cartesian coordinate systems with the origin tangential to the earth ellipsoid.
Further we use the global earth-centered, earth fixed (ECEF) coordinate
system, to convert between ENU-coordinates and GPS measurements taken in
latitude (ϕ) and longitude (λ) as polar coordinates.

flights at photogrammetric calibration sites [4]. In contrast to
this our goal is to achieve direct georeferencing with small
manned or unmanned aerial systems, without relying on time-
consuming and cost-intensive GCPs. We phrase the calibration
problem as a graph that we solve using a standard graph
optimizer. This approach allows the intuitive integration of the
mounting offsets as parameters to optimize and can easily be
adapted when more parameters become relevant.

III. INS-CAMERA CALIBRATION

In this section, we describe the performed calibration of a
sensor suite comprising a camera and an INS. First, we define
the utilized coordinate systems and our parametrization of the
rigid-body motions as well as the camera mapping. Then, we
state the problem considered in this work and show how to
solve it with a graph based approach.

A. Preliminaries

The INS measures the orientation as Euler angles with
regard to local navigation systems. The latter are local East,
North, Up (ENU) coordinate systems, each with the origin
in the current device position described through a GPS mea-
surement in form of latitude, longitude and altitude (Fig. 3).
This implies tiny differences between the orientations of these
coordinate systems and thus also in the measured angles for
successive timestamps. Our INS-camera calibration will be
performed in an area of less than one square kilometer, which
allows to neglect these differences. Besides, we perform the
INS-camera calibration in an ENU coordinate system W with
the origin in the middle of the observed area. This prevents the
need for earth curvature corrections which have to be taken into
consideration for mapping frames like the Universal Transverse
Mercator (UTM) coordinate system.

The rigid body motions gCiW
describe the camera poses

at the exposure times ti, i = 1, 2, ..., n with regard to the
world frame W. Likewise, gIiW

specify the corresponding



configurations of the INS as rigid body motions. In general,
a rigid body motion g ∈ SE(3) describes how the points
of a rigid object change over time. Instead of considering
the continuous path of the movement, we bring into focus
the mapping between the initial and the final configuration of
the rigid body motion. This movement can be described by a
rotation matrix R ∈ SO(3) and a translation vector t ∈ R3.
Consequently the rigid body displacement G of a 3D point
p ∈ R3 can be performed as

G : SE(3)× R3 → R3 , G(g,p) = Rp + t . (1)

The representation of the rotational part in form of the overde-
termined rotation matrix R is not suitable for the optimization
performed in this work. Thus we use a minimal representation
in form of YXZ Euler angles (ψ, θ, φ) ∈ R3, called yaw, pitch
and roll. These describe the rotational part of the movement as
a mapping from R3 to SO(3) by consecutive rotations around
the principal axes as

R =

[
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

][
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

][
cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

]
.

(2)
The YXZ rotation order leads to singularities at θ = ±π/2.
This corresponds to a pitch angle of ±90◦, which will never
be achieved in practice by the considered aerial platforms and
therefore does not constitute a problem.

Further we define the set of intrinsic camera calibration
parameters

k = {fx, fy, ox, oy, k1, k2, k3, p1, p2} , (3)

whereby (fx, fy) describe the focal length and (ox, oy) the
principal point of the camera. Further we express the radial
distortion with the parameters (k1, k2, k3) and the tangential
distortion with (p1, p2). The projection π performs the map-
ping from a transformed 3D point G(g,p) = (x, y, z)> to
pixel coordinates by

π(k, G(g,p)) =

(
rfxx

z
− ox + tx,

rfyy

z
− oy + ty

)>
,

(4)
with the radial distortion factor r and the tangential distortion
offsets tx and ty being defined as follows [13]:

r = 1 + k1

(
x2 + y2

z2

)
+ k2

(
x2 + y2

z2

)2
+ k3

(
x2 + y2

z2

)3
,

(5)

tx = 2p1
xy

z
+ p2

(
3x2 + y2

z2

)
, (6)

ty = p1

(
x2 + 3y2

z2

)
+ 2p2

xy

z
. (7)

B. Problem Formulation

The objective of this research is the direct determination of
the camera positions and orientations for the captured images
by exploiting measurements from a high-precision INS. In
order to describe the rigid body motion gCiW

of the camera
using the measured rigid body motion gIiW

of the INS (Fig.
4), the devices have to be synchronized in time and rigidly
mounted. This induces that the offsets between them are

gIiW

gCiW

gCI ?

world frame (W)

INS (I) camera (C)

Fig. 4. The estimation of the static rigid body motion gCI between the devices,
enables by composition with the INS measurement gIiW the description of the
camera pose gCiW.

Fig. 5. The classical checkerboard calibration for a camera equipped with
wide angle lens and focus at infinity requires bulky calibration patterns.

static and especially comprises that the rigid body motions
describing the movements from the INS to the camera at
various exposure times are constant

∀k, l ∈ {1, 2, ..., n} : gCk Ik

!
= gClIl

, (8)

where n is the number of images. Therefore we can simplify
the notation by omitting the time indices for the rigid body
motion gCI = (ψB, θB, φB, xL, yL, zL) describing the mounting
offsets as boresight and lever-arm. The composition with the
measured INS movement leads to the camera motion

gCiW
= gCIgIiW

. (9)

Thus the knowledge of the mounting offsets is required to
describe the camera poses with the INS measurements.

The use of a wide angle lens in conjunction with focus at
infinity makes the use of standard camera calibration proce-
dures laborious (Fig. 5). Furthermore, the estimations for the
intrinsic camera parameters k tend to differ slightly from a
laboratory calibration, due to the climate and environmental
conditions [14]. Thus it is an advantage to optimize these
parameters by using images from a measurement flight.



Therefore the joint calibration of the intrinsic camera
parameters k in conjunction with the mounting offsets gCI out
of synchronized data from measurement flights is the problem
considered in this work.

C. Algorithm Overview

We generate initial camera poses by combining the mea-
sured INS poses with the initial mounting offsets determined
from construction drawings. The images and initial camera
poses are the input for a SFM approach, which calculates a
sparse 3D point cloud out of consistent image observations
[15]. A refinement of these parameters is performed by the
optimization of a non-linear function, which can be phrased
as a graph. Our entire workflow is depicted in Fig. 6.
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Fig. 6. Overview of the algorithm. Data from the INS and the camera are
processed to determine the system calibration. The concatenation of the latter
with the measured INS poses enables the very accurate determination of the
camera poses.
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Fig. 7. The objective function of the stated problem can be illustrated by
a hyper-graph. The measurements (boxes) are presented as links between
the nodes concerning each multiple sets of variables (circles). For improved
overview multiple state variables and measurements of the same type are
visualized in a stacked view unrelated to their number of occurrence.

D. Graph Optimization

We optimize the system calibration by introducing con-
straints between the intrinsic camera parameters, camera poses
and 3D points. The resulting non-linear error function can be
represented as a graph by introducing the variables to optimize
as nodes and the observations between them as edges. We
determine the optimal configuration of the state variables with
a graph optimizer [5]. In the following we will present our
objective function and how to express it in the graph-based
formulation.

The calibration parameters represented as the intrinsic
camera parameters k and the mounting offsets gCI are added as
nodes to the graph. Furthermore, we add each 3D point pj and
each camera pose gCiW

as a node to the graph. The connection
between these nodes is given by inserting observations as edges
into the graph. A pixel measurement connects three different
nodes, namely: a camera, a 3D point and the intrinsic camera
parameters. This constraint can be realized with a hyperedge,
which is able to connect an arbitrary number of nodes. The
edge of an INS measurement connects the corresponding rigid
body motion of the camera with the mounting offsets. A
visualization of the graph is presented in Fig. 7.

Further, we have to define error functions, which measure
how well measurements are described by the state variables
they are connecting. The first constraint measures the error
occurring from the reprojection of a 3D point into the image.
The error function for this constraint can be expressed as

exij(k,gCiW
,pj ,xij) = π(k, G(gCiW

,pj))− xij . (10)

The resulting error vector has dimension two and is 0 if
the pixel observation xij is perfectly described by the state
variables. The second error function states how well the INS
measurements can be described by the composition of the
camera poses gCiW

and the mounting offsets gCI as follows:

egi (gCI,gCiW
,gIiW

) = (g−1CI gCiW
)g−1IiW

. (11)

Using a minimal representation for the rigid body motions in
form of three Euler angles and a three-dimensional translation,
we receive a 6-dimensional error vector, which is 0 if the
parameters perfectly satisfy the measurement.

Without limiting the generality, we refer to the whole
state vector [k,gCiW

,pj ,gCI] as y and formulate our objective



function as follows:

min
y

n∑
i

m∑
j

exij(y)>Ωx
ije

x
ij(y) +

n∑
i

egi (y)>Ωg
i e

g
i (y) , (12)

where the information matrices Ωx
ij and Ωg

i respectively
represent the inverse covariance of the pixel observations and
INS measurements. A numerical solution of Equation (12)
is computed with the Levenberg-Marquardt (LM) algorithm
and therefore a good initial guess y̆ of the state vector is
needed. Iteratively, the first order Taylor expansion around the
current guess y̆ is used to approximate Equation (12) and
optimize the local increments ∆y by solving the resulting
sparse linear system. The center for the next iteration is
obtained by adding the optimized increments to the current
guess. This is done by using the motion composition for the
state variables represented by rigid body motions and a simple
addition for the 3D points and intrinsic camera parameters. For
a detailed description of the LM algorithm we refer the reader
to [5], [16].

IV. EVALUATION

In this section, we present achieved results from flight
experiments to validate the proposed approach. The equipped
INS is based on fibre optic gyroscopes, which have a stability
up to some hundredths of a degree per hour. In combination
with real time kinematic enhanced GPS measurements very
accurate pose information are generated. The optical system
consist of a downward looking camera with 8 megapixels
and a wide angle lens with a field of view of 54 ◦ in the
horizontal and 42 ◦ in the vertical direction. The sensors were
integrated into a payload pod, which was mounted beneath the
wing of a manned ultra light airplane (Fig. 1). The performed
flight course has to introduce measurements that constrain all
dimensions of the calibration parameters. For our platform
small movements in all axes occur even for straight and level
flights, which aim at a constant heading and altitude by accom-
plishing immediate corrections to unintentional movements.
We performed a total of four flights within two days. At an
altitude of 300 meters and above, we captured two images per
second at a speed of approximately 125 km/h. The flights were
performed as crossing straight lines (Fig. 2). To achieve a high
image overlap, we use only images within a circle of a radius
of 600 meters around the central point. This results in a total
number of nearly 700 images for the first two flights and 300
images for the other two.

These images were used to calculate an initial 3D point
cloud of the observed area with a SFM approach under con-
sideration of the camera poses [17]. The latter were generated
by a concatenation of the INS measurements with the initial
mounting offsets determined through terrestrial measurements.
The output of the SFM (Fig. 8) was used as input for
the graph optimization. Thereby the pixel observations were
introduced as measurements with an accuracy of 1 pixel. Since
no quality log files of the INS were available we considered
the manufacturer information of an accuracy of 2 cm in the
position, 0.04 ◦ for the yaw and 0.01 ◦ for the pitch and roll
angles. Our previous work [6] reveals that the optimization
of the translational part of the mounting offsets leads to a
lower accuracy compared to usual terrestrial measurements.
As further stated in [18], at least one GCP is needed for the

TABLE I. CALIBRATION RESULTS FROM THE CHECKERBOARD
METHOD AND THE PRESENTED APPROACH

ψB θB φB fx fy ox oy
[◦] [◦] [◦] [pel] [pel] [pel] [pel]

checker 0.0 0.0 0.0 3334.68 3343.5 1744.32 1238.06
flight 1 0.846 0.215 -0.072 3342.89 3334.88 1730.6 1227.9
flight 2 0.816 0.205 -0.068 3343.4 3335.44 1724.04 1231.19
flight 3 0.795 0.205 -0.074 3343.73 3335.95 1725.39 1230.74
flight 4 0.805 0.193 -0.078 3346.28 3338.36 1730.62 1234.04

Fig. 8. Visualization of the camera poses and 3D points introduced as vertices
in our graph optimization.

estimation of the vertical lever-arm and all other mounting
and internal camera parameters can be decoupled from each
other. Due to these observations, we fixed the lever-arm to the
terrestrial measurements in our optimization.

The resulting calibration parameters show a hight stability
for different flights and differs from the initial checkerboard
calibration (Table I). This holds especially for the distortion
parameters, that we omitted here for the sake of readability.
The differences between the optimized boresight angles ψB,
θB and φB are very close to the stated accuracy of the INS.
Small variations for the intrinsic camera parameters occur
most likely due to different climate conditions during flight
execution. To evaluate the accuracy of the achieved results
we performed a least-square forward intersection for the pixel
observations of five GCP. The image coordinates of these

Fig. 9. We used five ground control points to verify the accuracy of our
approach. These were placed at dominant image corners to allow easy manual
measurement of their image coordinates (orange circles).



TABLE II. MEAN EUCLIDIAN DISTANCE BETWEEN FIVE GROUND
CONTROL POINTS AND THE FORWARD INTERSECTION FOR THE INITIAL

AND THE OPTIMIZED CALIBRATION (LEFT) AS WELL AS THE CALIBRATION
FROM FLIGHT 1 FOR ALL FLIGHTS (RIGHT)

init. opt. gain
[m] [m] [factor]

flight 1 3.17 0.53 5.98
flight 2 2.94 0.47 6.26
flight 3 2.02 0.37 5.46
flight 4 4.45 0.44 10.11

opt. opt. flight 1 gain
[m] [m] [factor]

flight 1 0.53 0.53 1.0
flight 2 0.47 0.55 0.85
flight 3 0.37 0.66 0.56
flight 4 0.44 0.58 0.76

points were measured manually (Fig. 9) and used to perform
a forward intersection with the initial and optimized camera
poses. This leads to 3D coordinates, which were compared to
values measured with a mobile GPS-receiver. The latter stated
a horizontal accuracy of about 30 cm and a vertical accuracy of
about 50 cm. Our results from the forward intersection are in
the same range, which shows the performance of our approach
(Table II). We assume that the larger initial error of flight
4 occurs due to the range from 300 to 800 meters for the
altitude, which was smaller for the other flights. Nevertheless,
the results using the optimized calibration parameters for flight
4 are in the same range as for the other flights. The generation
of the camera poses out of calibration results from flight 1 for
all flights leads to a slightly decreasing performance (Table II).
Given an altitude of 300 meters and above, the accuracies are
high and clearly outperform our terrestrial calibration.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a graph-based approach for
the system calibration of a sensor suite consisting of a fixed
mounted camera and an INS. We showed how to phrase the
optimization problem as a graph and estimated the mounting
offsets between the devices and the intrinsic camera parameters
with a graph optimization framework. Our evaluation points
out that a straightforward system calibration without the usage
of GCP leads to results which show high potential for cost-
saving in flight calibrations. It was shown that the calibration
results can be used for consecutive flights, but the highest
precision will be obtained by performing the INS-camera
calibration during the mission. Compared to our terrestrial
calibration, we achieved in our experiments an improvement of
roughly factor six, which can be even higher for other setups
due to larger angle misalignments between the devices.

Future work will investigate the proposed procedure in
more detail. Furthermore, we will perform experiments with
cost-efficient MEMS INS and evaluate if the approach is
also usable to perform the INS-camera calibration if no RTK
corrections are performed.
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