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Abstract

Given the raising interest in light-field technology and
the increasing availability of professional devices, a feasi-
ble and accurate calibration method is paramount to un-
leash practical applications. In this paper we propose to
embrace a fully non-parametric model for the imaging and
we show that it can be properly calibrated with little effort
using a dense active target. This process produces a dense
set of independent rays that cannot be directly used to pro-
duce a conventional image. However, they are an ideal tool
for 3D reconstruction tasks, since they are highly redun-
dant, very accurate and they cover a wide range of different
baselines. The feasibility and convenience of the process
and the accuracy of the obtained calibration are compre-
hensively evaluated through several experiments.

1. Introduction

Due to their recent availability as off-the-shelf commer-
cial devices, light-field cameras have attracted increasing
attention from both scientific and industrial operators.

Traditional cameras are designed to capture the amount
of light radiation directed toward an image plane. The cap-
tured rays can converge to a common projection point (as
for the pinhole model), could go through a common axis
(as for the models including radial distortion), or can follow
any other distribution, even ditching any parametric model.
However, regardless of the camera model, the mechanics
remains basically projective, and the result of the imaging
process is a 2D image. Light-field cameras pursue a dif-
ferent goal: to capture the full plenoptic function generated
by each observed material point [1], which include the in-
tensity of the light radiating from each point along all the
directions over the sphere. Of course, this goal is not practi-

Figure 1. A real-word light-field camera is no more than a tightly
packed array of very small (distorted) pinhole cameras sharing the
same imaging sensor.

cally achievable by any physical sensor, due to the technical
and theoretical problem involved. In practice, most, if not
all, the light-field devices ever built are made up of an ar-
ray (explicit or implicit) of traditional cameras, each one
contributing to capture a portion of the plenoptic function.
An example can be seen in Figure 1, where we show a de-
tail of the composite image captured by a Lytro light-field
camera [22]. The number, type and arrangement of such
cameras, as well as their calibration, has been a very active
topic in recent research. One of the main hurdles in plenop-
tic photography derives from the composite imaging forma-
tion process which limits the ability to exploit the well con-
solidated stack of calibration methods that are available for
traditional cameras. While several efforts have been done to
propose practical approaches, most of them still rely on the
quasi-pinhole behaviour of the single microlens involved in
the capturing process. This results in several drawbacks,
ranging from the difficulties in feature detection, due to the
reduced size of each microlens, to the need to adopt a model
with a relatively small number of parameters.



1.1. Related Work

Light-field cameras have been recently popularized
thanks to the recent introduction of commercial devices
such as Lytro and Raytrix models. The idea of capturing the
plenoptic function, however, has been investigated by the
scientific community for at least a couple of decades, start-
ing with the seminal works by Adelson and Wang [1] and
exploring several alternative designs, including the adop-
tion of aligned pairs of attenuation masks through the whole
light path [33] or just before the camera sensor [30], the
introduction of hemispherical mirrors within the imaging
path [25], a time multiplexed multiple exposure schema
wich allows to exploit the full sensor resolution [20] and
the use of a simple but quite effective arrays of traditional
cameras [32]. Such interest in light-field imaging devices
is well justified by its numerous applications, ranging from
depth map estimation [9, 13, 4] to super resolution [5, 31],
refocusing after shooting [22] and creation of virtual points
of view [19, 18].

Since most light-field devices are explained by a multi-
pinhole model, most calibration methods proposed in recent
literature exploit this fact and the related projective geome-
try properties. Such extension, however, is hardly straight-
forward. In fact, the narrow field of view and distribution of
micro-lens make it difficult to get a full view of the calibra-
tion target and to obtain a resolution high enough for feature
localization. Each method proposes a different solution to
solve these limitations.

One of the most recent approaches, proposed by Bok et
al. [6], where the difficulties in finding chessboard corners
have been overcome by resorting to adopt the linear features
resulting from the interface of white and black squares.
Such features are indeed more abundant, since the prob-
ability of a linear object to be fully captured by a single
micro-lens is much higher that the chance to properly ob-
serve a corner center and its surroundings. Differently, Cho
et al. [10] introduce a method to calibrate micro-lens cen-
ters by searching for local maxima in the frequency domain
over white images, that is images of uniform white targets.
Further, they also suggest an interpolation method to recon-
struct subaperture images, i.e., images obtained by pixels
capturing rays that converge to a single point, that is pin-
hole subimages of the captured light-field. Dansereau et
al. [11] introduced a 15-parameters overall camera model
(including a 5 parameter distortion), leading to a lower di-
mensionality with respect to modeling individual pinhole
cameras. They also propose a rectification method that can
be adopted for multiview stereo. Other methods include
one proposed by Johannsen et al. [17], also using a 15-
parameters model, calibrated using a small pattern of regu-
lar dots, and the work by Vaish et al. [29], which can be used
to calibrate large arrays of discrete camera devices whose
projection centers lie on the same plane.

It should be noted that virtually all the calibration meth-
ods to be found in the recent literature are designed to be
used mainly to enhance the production of sub-aperture im-
ages. For this reason they are basically only concerned with
the reconstruction of the imaging process. This paper takes
a radically different path, focussing on the recovery of the
geometry of generalized sensor rays in order to exploit them
for accurate 3D surface triangulation.

1.2. Contribution

This paper makes two main contributions, that we feel to
be important to the light-field community.

First, we analyze the use of a calibration method that es-
capes the need to adopt a parametric model by exploiting
dense correspondences generated using phase coding tech-
nique [3]. While dense calibration has been already used in
literature, this is the first time that it is attempted with light-
field cameras and its correct behaviour is not granteed. In
fact both the initialization hurdles and the sparsity of the
micro-lenses pixel could hinder the process, leading to un-
satisfactory results. To this end, we perform an in-depth
study of the different aspect of calibration under various
conditions.

The second contribution is related to the recovery of 3D
shapes. This is a common application of light-field cameras,
especially using multiway-stereo algorithms.Unfortunately,
most triangulation methods are based on epipolar geometry
constraints, that can only be exploited if pinhole cameras
are availabe. To this end, we propose a triangulation step
suitable for any camera model and we use it to compare our
method with the recent state-of-the-art.

2. Light-Field Calibration
All the calibration methods for a light-field camera must

deal with a common hurdle: Each micro-lens, being pin-
hole, could be calibrated independently using standard
target-based methods, ranging from the basic approach pro-
posed by Tsai [28], to more advance model that could ac-
count for the high distortion that micro-lenses usually ex-
hibit [16, 12]. However, these approaches would incur in
the disadvantage that the recovery of the target pose could
be very ill-posed when performed on the basis of a single

(a) (b) (c) (d)

Figure 2. A chessboard pattern captured by a Lytro lightfield cam-
era respectively at minimum and maximum zoom level.
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Figure 3. The non-parametric imaging model adopted in this paper
(see text for details).

micro-lens image. In fact, each micro-lens only counts few
pixels spanning a large view angle, resulting in poor angu-
lar resolution of each micro-lens in isolation. Furthermore,
most approaches adopt image space techniques to localize
target features, thus the limited span of each micro-lens im-
age would severely reduce the number of recoverable corre-
spondences and their accuracy. This problem can be better
understood by looking at Figure 2, where the images of a
chessboard acquired by a commercial Lytro lightfield cam-
era are shown. In Subfigure 2(a) and 2(b) we show an over-
all frame and a detail of the image created on the CCD when
the zoom of the main lens is set to the minimum value. The
overall frame (about 3000 pixels wide) appears similar to
what would be obtained using a standard projective camera.
However, by looking at the detail of each microlens (about
10 pixels wide), it can be observed that most of them capture
a fully black or fully white field and just a few see a chess-
board corner. Under these conditions, classical calibration
methods that need to relate target points to observed fea-
tures are useless, hence the need for specialized technique.
The behaviour is even more extreme within Subfigure 2(d)
and 2(c), where we display images of the same chessboard
obtained with the maximum zoom level of the main lens.
Here, the overall frame lost any connection to a projective
transform and the images produced by the microlens are so
wide that they extend beyond the span of a single check.
The solution we are proposing is to refrain to use any global
parametric model and to independently assess the character-
ization of every single imaging ray that insists on the cam-
era sensor. To this end, we apply a dense target localization
method which works in the time rather than the space do-
main, thus escaping the aforementioned hindrances. Such
dense correspondences, in turn, enable the adoption of a
parameter-free optimization for non-central cameras.

2.1. The Parameter-Free Camera Model

Following [3], we adopt a non-parametric camera model
where each ray is modeled as an independent line within a
common reference frame. Such reference frame is not di-

rectly related to the physical sensor. In fact, according to
this model, image coordinates can be considered just labels
for the imaging rays, which are not related to them by means
of any analytic function (see Figure 3). More formally, in-
dex i ∈ {1..n} ranges over all the n pixels of the camera
sensor (in no particular order). The ray associated to pixel i
can be written as ~ri = (~di, ~pi), where ~di, ~pi ∈ IR represent
direction and position of the ray respectively. These vec-

tors satisfy ||~di|| = 1 (normalized direction) and ~di
T
~pi = 0

(orthogonal position vector). Any point ~x in the ray ~ri sat-
isfies the parametric equation ~x = ~dit+ ~pi for some t ∈ IR.
Lacking any explicit structural relation between rays, this
model counts 4 degrees of freedom for each pixel, resulting
in several millions unknowns.

A solution space this large needs an exceptional num-
ber of observations, and this can only be obtained using a
dense coding strategy, which assigns to each image pixel
(i.e. to each ray) a pair of coordinates on the calibration
target. There are several ways to do this, in this paper we
follow [3] adopting a flat monitor as the target [14, 24] and
using a multi period phase shift coding [21] in order to ob-
tain dense target coordinates on a Lytro camera sensor. The
coding has been performed both horizontally and vertically.
In Figure 4 an example of such dense coding can be seen.
We used a scale of red and green values to show the re-
covered horizontal and vertical coordinates of the monitor
overlayed to a white light imaging of the scene (resulting in
a color blending). The code appears to be smooth, but of
course this is an effect due to detail level of the figure, in
practice the image presents the same repetition effects that
can be seen in Figure 2 and that will be discussed in detail in
the next section. The dense correspondences acquired over
several poses of the target can be used to feed the iterative
optimization method presented in [3] obtaining the charac-
terization of each ray that has been correctly codified within
a large enough number of different poses. Such method,
however, has been designed to work on quasi-pinhole cam-
eras and there is no guarantee that it works with a plenoptic
camera. Neither it is obvious that the dense coding would
work well with the considered imaging process, especially
for the higher camera zoom levels shown in Subfigures 2(d)
and 2(c).

Figure 4. Dense calibration requires the user to acquire a sequence
of horizontal and vertical patterns from a standard monitor.



Figure 5. Behaviour of the dense coding method applied to a Lytro lightfield camera at different zoom levels (see text for details).

In the next two sections we will study in detail the per-
formance of the dense coding and of independent rays cali-
bration when applied to a lightfield camera.

2.2. Dense Target Acquisition

All our experiments have been performed using a
first generation Lytro plenoptic camera, equipped with a
3280x3280 pixels sensor. Throughout all the tests we used
two zoom levels for the main lens, which we will refer to
as minzoom, corresponding to the 1.0 level on the camera,
and maxzoom corresponding to the 5.5 level (the reader can
refer to Figure 2 to get an idea about what results can be
obtained at such zoom levels).

Horizontal and vertical coding of the target has been per-
formed using multi period phase shift on a 21 inches mon-
itor place at about 1 meter from the camera, with period
lengths respectively 11, 13 and 17 monitor pixels and cap-
turing 15 samples for each period (see [21] for details).

In Figure 5 we show the acquired codes within a small
portion of the imaging sensor measuring about 50x50 pixels
respectively for minzoon (upper row) and maxzoom (lower
row) (note that the code has been normalized from 0 to 1 for
better visualization). The first column shows the coding er-
ror according to [21], a lower value means a more accurate
target position recovery, a value of 1 means that no recov-
ery has been possible for that particular pixel. At minzoom
level the coding error is low and isotropic, this is due to the
low distortion of the microlens images and to the overall
quasi-pinhole behaviour of the camera. Note that, although
it may be counterintuitive, at minzoom even the usually dis-
regarded space between microlens is correctly coded, thus
recovering the intersection between the associated ray and
the target.

This allows to effectively calibrate the full sensor, in-
cluding inter-lens pixels. In the next section we will show
that the resulting calibration exhibits a good accuracy. This
is in strong contrast with standard parametric light-field
camera calibration methods, which, even when capable of
capturing features between microlens, would still be unable
describe the behaviour of those rays with their models.

Conversely, at maxzoom the coding error is lower around
the centers of the microlens and increases a bit when mov-
ing toward the edges. Note that outside the microlenses, the
code is not recovered. This is not due to measuring errors,
but rather to the low signals that reaches the sensor as a re-
sult of the strong vignetting (which can be observer also on
Subimage 2(c)). In the two central columns of Figure 5
we show respectively the recovered horizontal and verti-
cal codes. Both are dense and quite smooth, however the

Figure 6. Distribution of points with similar code over the imaging
plane.



Figure 7. Evolution of the RMS error of rays during the optimization and number of culled outliers (see text for details).

maxzoom setting clearly result in micro images that cover
a wider area of the target and include several repetitions of
the same code. This property, obviously, is very useful if
the data is to be used for surface reconstruction, since mul-
tiple and well separated observations of the same point will
result (in principle) in a more accurate triangulation. The
code distribution is even more apparent in the last column
of the figure, where a slice of the coding has been plotted
(corresponding to the black horizontal line on the third col-
umn of the figure).

The different distribution of codes can be understood
very well also by looking at Figure 6. In the first row we
overlay to a coded image obtained at minzoom the pixels
with a code less than one code unit far from a given pair
of coordinates, showing two level of details. In the second
row we plot the same information over a coded image ob-
tained at maxzoom setting. It can be seen that a minimum
zoom level a point can be observed at most by one or two
microlenses, while at the maximum level the same code is
repeated over ad over throughout a large number of differ-
ent microlenses spanning a (relatively) large portion of the
imaging sensor.

To this end we can affirm that, while lower zoom lev-
els can be used for tasks such as refocusing of subaperture
images creation, higher zoom levels are best suited for sur-
face reconstruction tasks, where the larger disparity of the
captured light rays results in a more accurate and robust
triangulation. Specifically, in such cases accuracy would
be granted by the wider angle between rays used for trian-
gulation and robustness can be achieved out of their large
number. In Sections 3.1 and 3.2 we will substantiate these
statements.

2.3. Rays Optimization

In order to apply the ray optimization procedure pre-
sented in [3] we first need an initial estimation for the poses
of the target and for the rays. We solved this problem by cre-
ating a quite rww sub-aperture image obtained by grouping
all the microlens centers. With a very coarse approxima-
tion, such image can be considered as if it were produced
by a pinhole camera, to this end we can get an initial esti-
mate using the standard calibration procedure made avail-
able by OpenCV [7]. The optimization procedure has been
performed using a total of 10 target poses. Since the non-
parametric model does not provide an image plane, the ray
optimization does not proceed by minimizing some repro-
jection error, as its common with standard calibration meth-
ods. Instead, [3] minimizes, with respect to ray and poses
parameters, the sum of the squared distances between the
3D coordinates of a target point and the ray that observed it.
Since our code advances of one unit for each monitor pixel,
the RMS error is a metric measure in the Euclidean spaces
expressed in units of pixels, that in our case, corresponds to
about 0.25mm.

In Figure 7 we show the trend of this RMS error with
respect to subsequent steps of the optimization process. As
for the previous section, the first row represents the min-
zoom and the second the maxzoom setup (note that both for
the plots and for the color-coded images the scales are dif-
ferent). In both cases the RMS error converges after just a
few iterations to a final value that is well below one moni-
tor pixel, representing in practice just a few hundredths of
millimeter. Such accuracy should be put in context, con-
sidering that during the calibration procedure the target is
placed about one meter far away from the camera. The col-



ored plots express the RMS error associated to each pixel of
the camera sensors. While with our model pixels are just in-
dexes, it is still interesting to see how the error is distributed
on the sensor, both at a global and microlens scale. Specif-
ically, we can observe that both zoom levels start with an
anisotropic error distribution (probably due to the incorrect
handling of the global distortion)and rapidly reach a lower
and better distributed RMS error. This is a well-known fea-
ture of parameter-free models, which are very well capable
at accomodating both local and global distortions.

Finally, the histograms of Figure 7 report the total num-
ber of ray outliers that have been culled after each iteration.
Such culling happens when a ray received a valid code, but
it cannot be correctly justified using the estimated poses,
that is when it cannot pass close enough to the target codes
it has observed. This can happen for a variety of reasons, in-
cluding occlusions (especially on the border of the monitor)
or wrong code recovery due to measurement errors. Note
that, even at convergence, the removed rays are in a magni-
tude order between 104 and 105, since the overall number
of pixel is in the order of 107 we can conclude that more
than 99% of sensor elements are correctly calibrated.

3. 3D Shape reconstruction
Generally speaking, the 3D position of an observed point

can be recovered by triangulation [15] if it is observed by
different points of view by means of an imaging process of
known geometry. To this end, three sub-problems must be
addressed:

1. the point must be identified for each point of view;
2. all the viewing direction must be recovered;
3. an intersection between them must be computed;

Sub-problem 1 can be solved in many different ways, rang-
ing from image-based correspondences to structured light
coding. Since the goal of this paper is not to introduce a
matching method, and we are interested in factoring out
most error sources that are not related to calibration. To
this end, we solve the point identification problem using the
same phase shift coding described in the previous section,
which we have shown to be feasible and robust. On the
other hand, with respect to subproblems 2 and 3 we intro-
duce two task specific solutions.

3.1. Rays interpolation

One reason that makes constrained camera models such
as [6] effective in practice is that exists a continuous map-
ping between any point (u, v) in the image plane and the
corresponding ray exiting the camera. Consequently, 3D
point triangulation can be solved by searching multiple oc-
currences of the same feature among the micro-lenses and
intersecting the corresponding rays originating from the
feature coordinates. In the case of phase-shift structured

light coding, the set of projected codes is known but is ex-
tremely unlikely that the camera probing rays would sample
exactly such codes. However, under the assumption of lo-
cally planar 3D surface, each feature location (u, v) can be
recovered by interpolating the observed codes in the image
plane.

Conversely, if we model our camera as a generic sparse
bundle of unconstrained probing rays, there is no trivial way
to recover the ray ~r` exiting the imaging device at any (pos-
sibly sub-pixel) image point p. Further, there is not even
a concept of image plane but just some existing calibrated
rays in space each one sampling an intensity value or, if
we use a structured-light system, a two-dimensional phase
code. In other words, the interpolation cannot be performed
on the image plane but on a set of already known rays whose
contribution in the estimation of ~r` depends on what those
rays are observing.

In the following Section we give a solution to the rays
interpolation problem. Then, in Section 3.2 we describe
in detail our proposed triangulation process for light-field
cameras.

3.1.1 Rays manifold interpolation function

Let Rd = {~ri} a set of n known camera rays, and ~w =
(w1, . . . , wn) ∈ Rn,

∑n
i=1 wi = 1 a convex combination

of weights.
We pose the ray interpolation problem in terms of rigid

motions blending. Let K ∈ SE(3),K(~ra) = ~rb be a the
rigid motion that transforms a ray ~ra into ~rb. A famous re-
sult by Chasles [8] states that any rigid transformation is in
fact a screw motion, i.e., a rotation around an axis placed
anywhere in the 3D space, and a translation along the direc-
tion of the axis. when applied to rays ~ra and ~rb, the screw
motion of all the points under a pure translation is limited
by the length of the translation, while the motion induced
by the rotation in unbounded. For this reason, we chose
the rigid motion aligning ~ra to ~rb of minimal rotation as in-
terpolant Kab of the two rays. It is straightforward to see
that the best possible rotation angle is the one between the
two vectors ~da and ~db (i.e. acos(~dTa ~db)) that rotates the first
ray around the axis given by ~da × ~db. When the rotation
angle and axis is chosen, the optimal translation is the one
moving ~ra according to a vector T orthogonal to ~d′a = ~db
whose length is equal of the distance between the two rays.
In other terms, the best translation is the vector that con-
nects the two nearest points ~s1 and ~s2 lying on ~r1 and ~r2
respectively. To summarize, given two rays ~ra and ~rb, we
choose the interpolant Kab as:

1. The rotation RK around the axis ~da × ~db with angle
acos(~dTa ~db)

2. The translation TK = ~s2 − ~s1



Given a set of interpolants mapping rays to rays, the
problem of ray interpolaion can be cast as one of averag-
ing in the manifold of rigid transformations SE(3). This is
the path taken by Dual-quaternion Iterative Blending (DIB)
that interpolates roto-translations in terms of a screw mo-
tion represented in terms of dual quaternion[26] and can be
interpreted as computing a manifold averaging in SE(3) en-
dowed with the screw motion metric. More formally, DIB
takes a set of rigid motions Ki with i = 1, . . . , n, and a set
of weights wi and finds the unique motion K∗ that satisfies

n∑
i=1

wi log
(
KiK

∗−1
)
= 0 , (1)

where log is the logarithm map of the group SE(3). This
interpolation approach exhibits many useful properties such
being constant speed, shortest path and coordinate system
independent. Adopting this approach, given a set of rays
{~r1, . . . , ~rn}, we initailize the interpolated ray ~r` = (~d`, ~p`)
as their weighted linear combination followed by a repro-
jection on the rays manifold:

~d` =

∑n
i=1 wi

~di

||
∑n

i=1 wi
~di||

(2)

~p` =

∑n
i=1 wi~pi

||
∑n

i=1 wi
~di||
− ~d`

(
~dT`

∑n
i=1 wi~pi

||
∑n

i=1 wi
~di||

)
(3)

Then, we compute the rigid transformations K`,i as the
screw motion between ~r` and each ~ri according to the pro-
cedure stated before. Once computed, all the K`,i are aver-
aged via DIB with the weights ~w to obtain Kavg . Finally,
Kavg is applied to ~r` to obtain a better estimate, and the
procedure is repeated until convergence.

3.1.2 Interpolation weights estimation

In the structured light case, we base the weights estimation
for the set of rays Rd in terms of the codes c1 . . . cn ∈ R2

observed by each ~r1 . . . ~rn.
In this work, we cast the weight estimation as a regular-

ized baricentric interpolation. Following [23] we adopted
inverse squared distance weight, but add a regularization
factor λ. Specifically, let D be the n × n diagonal matrix
whose diagonal entries dii, i = 1 . . . n are the squared dis-
tances between each observed code ci and co. Then, the
weight vector w =

(
w1 . . . wn

)T
can be estimated as:

min
w

1

2
wT (D+ λI)−1w

subject to Cw = co,

1Tw = 1

(4)

where C =

 | |
c1 . . . cn
| |

.

Problem 4 can be solved as a generalized least squared
problem, yelding:

w = AC∗
(
C∗AC∗T

)−1
co∗ (5)

where A = (D+ λI)−1, C∗ =
(
C
1T

)
and co∗ =

(
co
1

)
.

3.2. Ray Selection and Triangulation

Since we are dealing with light-field cameras, we ex-
pect each known projected code co being visible in many
different micro-lenses (see Fig. 6). Therefore, we start by
searching in the acquired coded image all the pixel locations
u1 . . .um whose codes c(u1) . . . c(um) are closer than a
threshold dstc to the projector code co. Due to their pinhole
nature, we expect each ui to lie in a different micro-lens.

At this point, for each ui our aim is to create a new ray
~rui that would have observed the code co from the same
micro-lens where ui lies. Therefore, we look at the adjacent
8 neighbour pixels for valid codes and rays to be used as
interpolation data. Then the ray is interpolated as explained
above.

Once all the virtual rays Rt = {~ru1 . . . ~run} are col-
lected, a robust least-square estimation is used to triangu-
late the 3D point Pco associated to the projected code co.
Specifically, we adopt a RANSAC scheme to select a sub-
set Rti ⊆ Rt producing a point Pco whose squared distance
between each ray in Rti is less than a threshold dsts.

3.3. Quantitative Analysis and Comparisons

To assess the accuracy of the 3D surface reconstruction
(and hence of the calibration) we need to define some proper
error measure with respect to a ground truth. Here we opt to
use the same monitor that has been used for the calibration
by creating a set of additional shots and by triangulating its
surface. This approach has the advantage of producing a
planar surface that can be easily fitted allowing to compute
the displacement error between the plane model and each
triangulated point.

We tested a total of four setups at the maxzoom level
(which is best suited for reconstruction for the reasons de-
scribed in previous sections). The first one adopted the full
method described in this Section. Subsequently, we dis-
abled respectively the RANSAC selection and the ray inter-
polation, to study their role in the overall accuracy.

Finally, we adopted the calibration method proposed in
[6], which has been introduced very recently and can be
considered among the state-of-the art for parametric light-
field calibration. This latter setup has been obtained using
the software made available by the authors to calibrate the
camera and, subsequently, by producing single rays ri ac-
cording to the imaging model presented in the original pa-



Figure 8. 3D reconstructions of the target plane using respectively our full method, disabling the RANSAC selection, disabling the inter-
polation and, finally, using the parametric calibration obtained with [6].

per. This way the obtained rays can be used directly within
our pipeline. Note also that we applied both RANSAC and
interpolation to these rays, in order to make the results com-
parable with the best results obtained with our method.

In Figure 8 we show the surfaces obtained from different
points of view. We also show the distribution of the fitting
errors for each method (note that the horizontal scales are
different). The first two columns show the results obtained
with our method with and without the RANSAC selection.
The error distribution is quite similar, in fact just a few mis-
placed points appear when the consensus between ray is not
enforced. This is somewhat expected since outlier culling
has already been performed during calibration and we think
that these inaccurate points result from coding errors that
happened during the reconstruction shot. Conversely, ray
interpolation is key to an accurate reconstruction. In fact,
since a microlens covers a wide angle, we expect to observe
quite large jumps in the codes between pixels (and rays),
thus making the observation of exactly the same code (or
a code near enough) from the different camera pixels very
unlikely.

Finally, the triangulation obtained using the rays cali-
brated with [6] has a performance that is very similar to
the one obtained without interpolation (even if, in this case,
we are indeed interpolating the rays before triangulation).
Moreover, a bit of global bending can be seen, probably due
to a non perfect compensation of the distortion of the main
lens. It should be noted that, while [6] is not really meant
for 3D reconstruction, but only for image synthesis, it is

still one of the most relevant and recent calibration methods
against which to compare.

4. Conclusions and Future Work

With this paper we studied the feasibility of the non-
parametric calibration of light-field cameras using phase
shift-based dense target coding and independent rays op-
timization. Despite the non conventional imaging process
that characterizes plenoptic cameras, both target coding and
rays calibration work well, to the extent that the complete
camera sensor can be calibrated for moderated zoom levels.
Additionally, we proposed specially crafted techniques for
interpolating, selecting and triangulating the several views
of the same material point that occurs in different microlens.
The combination of such techniques with the high accuracy
of the calibrated ray model enables the effective adoption
of the light-field camera for 3D applications [2, 27] which
could be unfeasible using parametric models. Such claims
have been validated by comparing the surface reconstructed
using the same correspondences respectively with our cal-
ibration and the one obtained using a state-of-the-art para-
metric method. Finally, this paper is focused on exploit-
ing light-field cameras for 3D reconstruction, thus no ef-
fort is made to define a suitable (virtual) imaging plane to
produce synthetic images for refocusing or subaperture syn-
thesis purposes. This, however, is not an inherent limitation
resulting from the adopted model and, indeed, the definition
of an optimal imaging plane could be an interesting venue
for further research.
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de deux corps semblables entr’eux et placés d’une manière
quelconque dans l’espace; et sur le déplacement fini ou in-
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