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Abstract. We consider a task of tracing out target figures hidden in
teeming figure pictures come to known as Wimmelbild(er). Wimmelbild
is a popular genre of visual puzzles; a timeless classic for children, artists
and cognitive scientists. Particularly suited to the considered task, we
propose a diffuse representation which serves as a heuristic approxima-
tion mimicking curvature coding distance images. Curvature coding dis-
tance images received increased attention in recent years. Typically, they
are computed as solutions to variants of Poisson PDE. The proposed ap-
proximation is based on erosion of the white space (background) followed
by isotropic averaging, hence, does not require solving a PDE.

Keywords: Poisson PDE and its variants; level sets; non-linear diffusion;
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1 Introduction

Level set methods have been successfully applied to knowledge based segmenta-
tion; bringing in an ability to deal with physically corrupted incomplete data.
Most typically, shape knowledge is coded via signed distance transform, embed-
ding the 1 − D shape boundary as the zero-level set of a function defined on
a connected bounded open subset of <2 [9, 8]. It is also possible to replace the
sharp interface model in level set based segmentation methods with diffuse ones
[12, 10], decaying exponentially and coding curvature.

In recent years, there is a growing interest in exponentially decaying curvature
coding distance images with examples including [1, 5, 2, 11, 12].

The idea is to replace a point set S denoting possibly incomplete object
boundaries with a smooth function ν : R → < where R ⊂ <2 is an open
connected bounded set s.t. R ⊃ S. The function ν is the solution of

∇ · (∇ν)− α2ν = 0 (1)

subject to boundary conditions:
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where ∂R denotes the boundary of R and ∂ην the derivative of ν in the normal
direction to ∂R. Interestingly, from [12],

ν(x, y) ≈ 1
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(3)

where curv(x, y) is the curvature of the level curve passing through the point
(x, y) at (x, y). Eq. (3) indicates a reciprocal relationship between the level curve
curvature and the gradient of ν. That is, unlike the usual distance transform, ν is
an implicit coder of the curvature, a valuable geometric feature, without explicit
estimation of higher order derivatives. (One of the original goals in proposing ν
was to bridge low level and high level vision [11, 12]).

In this paper, in the setting of a specific task, namely tracing out target
figures hidden in teeming figure pictures, we present a much simplistic way of
obtaining an analogous (curvature dependent) behavior in a band around S. Our
computation does not require the computation of the entire ν function on the
entire domain R by solving a PDE.

Preliminary experiments are highly encouraging and indicate the potential
of the approach.

2 The problem setting

Wimmelbild is a popular genre of visual puzzles. It means teeming figure picture.
Abundant masses of small figures are brought together in complex arrangements
to make one scene in a Wimmelbild, to be used for a figure hunt game (Fig. 1).

Fig. 1. An elephant in a zoo. A sample wimmelbild (left) and an elephant figure
(right) to hunt for in the Zoo Wimmelbild.



Figure-hunt games have been a timeless classic for children, artists and cogni-
tive scientists. As early as 1926 Kurt Gottschald experimented with intentionally
designed hidden figures – simple drawings where simple shapes such as polygons
are embedded within more complex organizations– to study the influence of ex-
perience on perception and the extent to which wholes influence the perception
of parts [4].

There are of course colorful versions of these genre of visual puzzles. Interest-
ingly, sketch-like black and white versions of teeming figure pictures pose even
a bigger challenge than their colored counterparts:

Firstly, during a hunt for the elephant, suppose we somehow landed on the
correct location in the picture yet hypothesized a wrong scale, say a smaller scale,
such that the hypothesized elephant fits inside the white space (background)
surrounded by the figural loci of the actual elephant, yielding a matching cost of
zero; providing, therefore, no clue as to whether we are in the right neighborhood,
on a white space, or on a region containing a figure which has no common
elements with the elephant. Whereas each point on a dense picture (be it color
or gray) is informative, information in sketch-like binary pictures is concentrated
on loci of lower dimension, i.e., curves denoting figural loci.

Secondly, as a consequence of lower dimensionality of the figural loci, final
pictures could get extremely complicated. Observe that it is impossible to trace
out the hidden clover in Fig. 2 using Gestalt parsing rules. The final picture is
not simply a superposition of figures. Indeed, figures are first added, but then
thresholded.

Therefore, the task can not be simply cast as locating a subpicture within a
whole picture.

Fig. 2. Can you trace out the hidden clover?



Related Work To the best of our knowledge, Wimmelbild(er) has not been
studied within the variational and PDE methods community before. Saarbruecken
group recently presented an inpainting based steganography application [7]. The
nature of their problem hence their solution strategy, however, are quite differ-
ent. Their goal is to hide a secret image by embedding it into arbitrary cover
images. Both the secret and the cover are dense images and recovery of the se-
cret is possible only via a password. Therefore, ordinary observer can not detect
whether an image contains a secret or not. In reconstructing frescos, Fornasier
et.al. [3] addressed the problem of locating small fragments within a whole;
for each small piece of plaster that still showed an element of the design of the
fresco, they were able to find where it belonged. Such approaches can not be
used due to non-additive and non-linear nature of the binary drawings that we
consider (such as Fig. 2). Curvature coding distance fields are becoming more
and more commonplace. Theoretical investigations can be found in [12, 1, 5, 2],
among others. They have been used to address a variety of shape related prob-
lems, including skeleton computation and knowledge based segmentation as well
as other vision problems.

3 Our Approach

The key idea is to propagate information restricted to figural loci to neighboring
areas so that it becomes possible to know whether a location is close or far away
from the desired locations.

We start by uniformly eroding the white space, or equivalently, dilating the
figure. Hence, the drawings (both the wimmelbild and the target figure) become
thicker. Then, we diffuse by computing a local isotropic average. It is sufficient to
compute the local average only for the points falling on the thickened figural loci
or in a slightly wider band surrounding it. This transforms the sketch-like binary
drawing to a gray-tone picture which may be referred as a diffuse drawing. This
diffuse drawing is an approximation to a curvature coding distance image.

The rightmost column in Fig. 3 depicts the outcome of the described proce-
dure. The leftmost column is the original drawing and the fourth column from
the left is the thickened drawing. If the averaging and the dilation radii are
identical, the highest value is attained on the figural loci; from thereof values
decrease as a function of distance in the normal direction. Thus, diffusion pro-
duces iso-intensity contours, each following the figural loci from a fixed distance.
The lower the intensity, the further away the iso-intensity curve from the figural
loci. The two columns in the middle (second and third from the left) depict the
results of two different local isotropic averaging applied to the original thin draw-
ing. There, one can not observe the distance-coding behaviour, i.e., the initial
thickening is a crucial step.

What makes the iso-intensity contours of our diffuse drawings further inter-
esting is that they implicitly code curvature: Let us select two locations on the
white space of the drawing such that the nearest figural point to the first loca-
tion has a high curvature, while on the contrary, the nearest figural point to the



Fig. 3. Mimicking curvature coding distance via erosion of the white space (di-
lation of the figural loci) followed by averaging.

second location is on a flat part. Let us make sure, however, that their distances
to their respective nearest figure points are equal. That is each of the points
have the same normal distance to the drawing. For example, let us consider the
two locations marked by the intersection points of the two crosses in Fig. 4.

Note that even though the normal distances from each location to the figural
loci are identical, the distances in the tangential directions are not.

In the tangential direction, indeed, the first location (marked by the cross on
the upper right in Fig. 4) is closer to the figural loci, causing the average value at
that location to be higher compared to the average value at the second location
(marked by the cross on the lower left in Fig. 4) . Consequently, the level curve
passing through the second location will not pass through the first location but
through a location further down in the direction of inward normal.

	
  

Fig. 4. Two locations of identical normal distance to the figural loci are marked
by the two crosses. In the tangential direction, however, the location of which
nearest figural point has a higher curvature is closer to figural loci.



As a result, within a band surrounding the figural loci, our diffuse drawing
(obtained by dilation followed by isotropic diffusion) mimics a curvature coding
distance field similar to the ν, the solution of a damped Poisson PDE [12]. In
Fig. 5, we compare our diffuse drawing to a usual distance image (i.e. Eikonal
PDE with constant right hand side) restricted to a band surrounding the figural
loci. Whereas the effects of discretization noise remains (even amplified) in the
usual distance image, the iso-intensity contours in our diffuse model smoothly
follow the boundary.

Fig. 5. Curvature coding distance image obtained by thickening + isotropic
averaging (left) versus the usual distance image (right).

We avoid solving Poisson PDE or variants for two reasons. Firstly, our ap-
proximation is both easier and faster to compute. But more importantly, a Pois-
son based distance field, being the steady state solution to a biased diffusion
equation, ∂ν

∂τ = ∇ · (∇ν) − α2ν, is too much influenced by long-range interac-
tions among opposing boundaries. This may be detrimental if several figural loci
overlap as in Fig. 2.

Once the drawings (both the wimmelbild and the target figure to be hunted
for) are converted to diffused forms, the best match is formulated as finding the
deformation parameters (e.g. scale, location and orientation) that yield the best
match. The matching cost is measured as the sum of the gray value differences
between the wimmelbild and the target figure. Of course, the sum is taken over
those locations that fall within the band surrounding the figural loci within
which the diffuse field has been constructed. Moreover, the cost is normalized
by dividing it to the number of locations contributed to its computation.



In Fig. 6, the cost calculation is illustrated. Observe how matching cost be-
comes informative when raw binary figures are replaced with diffuse ones.

Once the matching cost is defined, the optimizing parameters are determined
via a probabilistic algorithm which returns multiple solutions. The importance
of using such an algorithm is discussed in [6]. We use genetic algorithms based
optimization which is readily available in Matlab environment. It minimizes an
energy functional by varying its input variables. It is called via the comment:

[variables, energy] = ga(fitnessfcn, nvars, [], [], [], [], lb, ub, [], IntCon);

fitnessfcn = @energyfunctional, pattern, shape, diffusingparam;

The output includes the determined value of the vector of variables for rotation,
scaling and translation as well as the value of the corresponding minimal energy.
As input it requires a fitnessfcn. This has to be a functional which takes the
variables as the first input. Its single output has to be the value of the cor-
responding energy. Furthermore, the parameters nvars (number of variables),
lb (lower bound for variables), ub (upper bound for variables) and IntCon (an
interval containing the indices of variables that should be integers) have to be
specified.

Each call to ga returns the best fit obtained after a certain number of trials.
Due to randomization, multiple calls to ga generate multiple hypotheses. We
depict all the generated hypotheses after an ordering based on the matching
cost.

4 Experimental Results

In this section, we will present our experiments with the two wimmelbilder:

– hunt for the elephant in the Zoo Wimmelbild;
– hunt for the clover in a heap of overlapping contours.

Prior to that, however, we test our approach on simpler drawings of repeated
patterns: Mandalas. One purpose of these supporting illustrations is to examine
the robustness of the method to scale and pose variations. The second purpose
is to observe whether the genetic algorithm returns correct fits more often than
the wrong ones.

First, to observe the robustness with respect to scale, we consider a compo-
sition of circles of varying size. One of the circles (shown in blue color on the left
column of Fig. 7) is selected as the target figure. On the right column, we depict
all the circles detected after several runs of the genetic algorithm. Observe that
the method can handle scale variations.

Second, to observe the robustness with respect to pose, we consider a simple
Mandala pattern (Fig. 8). The two subfigures extracted from it (on the right)
are to be used as targets. We expect to find 8 instances of the butterfly target
and 4 instances of the second target.

The results are depicted in the left column of Fig. 9. The top row depicts the
results for the butterfly target and the second row for the second target. The



Fig. 6. Illustration of cost calculation. When raw binary drawings are used (top),
it is hard to tell how well the target figure is located. Observe how matching
cost becomes informative when raw binary figures are replaced with diffuse ones
(bottom).

ga is invoked around 100 times and all of the 100 results are displayed. Each
outcome of the ga is tone-coded based on the matching cost. Lighter the tone,
lower the matching cost hence better the fit. The correct fits are found regardless



of their pose. Moreover, the matching cost is significantly lower for the correct
fits. This indicates the robustness of the representation to pose changes.

Third, we have tested whether the good fits (those of lower matching cost)
are obtained more often than the bad fits. This is important as the algorithm
is not a deterministic one. We have performed independent ga runs, each run
producing several hypotheses. We have then computed the average of the batches
of independent runs. As the results shown in the right column compellingly
demonstrate, ga has a tendency to return good fits more often than the bad
ones.

Fig. 7. Circles of varying scale.

Fig. 8. A Mandala pattern and two subfigures extracted from it.

Finally, we present our two figure hunt experiments. The results of the ele-
phant hunt is given in Fig. 10. On the left, multiple hypotheses produced by ga



Fig. 9. (Left) several hypotheses returned by the genetic algorithm. Gray-tones
reflect the matching cost. The lighter the tone, the better the fit.

are tone-mapped. The correct hypothesis is significantly lighter than all the oth-
ers. On the right, the best match is shown in red, whereas the others in shades
of green.

Fig. 11 depicts the results of the clover hunt. The generated hypotheses are
depicted on the top left. The hypothesis with the lowest matching cost is depicted
on the top right. The best hypothesis is traced with red marker on the original
drawing (bottom left), and the original drawing is repeated (bottom right) as a
convenience to the reader.

5 Summary and Conclusion

We have addressed the task of tracing out target figures in sketch-like binary
teeming figure pictures. Particularly suited to the task, we propose a simple
heuristic for generating diffuse drawings that imitate curvature coding distance
images which are typically computed as solutions to elliptic PDEs. Our work
extends the applications of diffusion based ideas to an interesting problem.



Fig. 10. Hunt for the elephant.

Fig. 11. Hunt for the clover.
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