
Fully-automated Analysis of Muscle Fiber
Images with Combined Region and Edge Based

Active Contours ?

Thomas Brox1, Yoo-Jin Kim2, Joachim Weickert3, and Wolfgang Feiden2

1 Computer Vision and Pattern Recognition Group,
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Abstract. This paper presents a new approach to automated muscle
fiber analysis based on segmenting myofibers with combined region and
edge based active contours. It provides reliable and fully-automated
processing, thus, enabling time-saving batch processing of the entire
biopsy sample stemming from routinely HE-stained cryostat sections.
The method combines color, texture, and edge cues in a level set based
active contour model succeeded by a refinement with morphological fil-
ters. False-positive segmentations as compared to former methods are
minimized. A quantitative comparison between manual and automated
analysis of muscle fibers images did not reveal any significant differences.
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1 Introduction

The size and shape of muscle fibers is an important cue to diagnose neuromus-
cular diseases, since it has been shown that morphometric data can discern very
early changes in the distribution pattern of fiber size in muscle biopsy samples
[7]. While fiber size estimation by simple inspection, as yet performed in routine
diagnostics, is inaccurate and subjective, accurate measurements by means of
manual segmentation of fibers is time-consuming and tedious, particularly since
a few hundreds of fibers per specimen have to be analyzed in order to obtain sta-
tistical significance. This brings up the need for an automated analysis routine
of muscle fiber images.
Despite this need for an automated process, until today, only few segmentation
methods dedicated to this task have been presented [8,4,6,11]. The reported
methods are mostly based on border shape enhancement routines, followed by
application of user-defined or histogram based thresholds, and interactive manual
editing. Due to inaccurate delineation of fibers as well as the need of special
histochemical stains and partially extensive user interaction, the usability of
these methods in practice is limited.
? We gratefully acknowledge partial funding by the DFG.



For a fully-automated yet reliable automated analysis, a solid and accurate sepa-
ration of single myofibers from the remaining parts in the image (i.e., connective
tissue, nuclear clumps, and blood vessels) is essential. To succeed in this task,
the presented method makes use of recent advances in level set based segmenta-
tion, where classical edge based active contours [9,3,10] are extended by region
based cues, such as the color and texture. Region based active contour models
that partition the image into two classes have been introduced in [5,12]. In the
present application, the two classes are the class of the myofibers and the class
of the background.
This extension allows for exploiting three sources of information to separate the
classes: color, texture, and edges. They are combined in a sound and transparent
way by means of a cost functional. The separating contour is thereby modelled
by an implicit level set function that allows for topological changes and can,
hence, handle the area of myofibers as one class, though the separate fibers are
not connected. The functional and its minimization are detailed in Section 3.
With the single fibers at hand, a multitude of morphometric parameters can
be assessed for all detected fibers in a single pass. The whole method works
without any user interaction and with a fixed set of parameters. Despite this full
automation, the empirical evaluation in Section 4 shows a high reliability of the
method. Section 5 concludes the paper by discussing the impact of this outcome.

2 Muscle Sample Preparation and Image Acquisition

Biopsy samples were trimmed, mounted, and frozen in isopentane-cooled liquid
nitrogen, before storage at −70◦C. Transverse sections (10µm) were cut with a
cryotome at −20◦C and attached to slides by thawing. After keeping the slides
at room temperature for at least 30 min., the sections were stained with hema-
toxylin and eosin.
Microscopic images were then taken in artifact-free areas in muscle cross sec-
tions with a 20× objective (Nikon Eclipse E600 microscope, Nikon DN100 CCD-
camera) and stored as 640× 480 pixel (571× 428µm) RGB color images.

3 Segmentation of Myofibers

Given the fiber image I : Ω → R3, the decisive task is to determine the outline
of the myofibers. To this end, we suggest a level set based active contour model
that combines multiple cues to separate the fibers from the remaining parts of
the image.
In level set based segmentation methods, the contour is represented by the zero-
level line of a so-called embedding function Φ : Ω → R. This implicit representa-
tion of the contour has several advantages, among others that parts of the two
regions need not necessarily be connected and may split and merge. Since the
region of the muscle fibers itself consists of numerous connected components,
this flexibility in the topology of the regions is an important property of the
method.



The active contour model is described by a cost functional, in which undesirable
properties of a possible solution are penalized by high costs:

E(Φ) = −
∫

Ω

(
H(Φ) log p1 + (1−H(Φ)) log p2︸ ︷︷ ︸

region based

− ν g(|∇I|2)|∇H(Φ)|︸ ︷︷ ︸
edge based

)
dx. (1)

The region based part is a probabilistic model, that maximizes the total a-
posteriori probability of pixels assigned to the best of two regions. The member-
ship of a pixel to one of the regions is determined by the sought level set function
Φ evaluated by means of the step function H, which is smoothed in order to en-
sure differentiability [5]. The regions are modelled by the probability densities p1

and p2 that are estimated within the two regions, respectively. For the density
estimation we employ the Parzen method that comes down to smoothed region
histograms; see [1]. The region based part exploits that all fibers have a similar
color that can generally be distinguished from the color of the intermyofibrillar
connective tissue. Since color alone may not always be sufficient to distinguish
the two regions, it is supported by texture information represented by the fea-
ture space provided in [2]. It captures the fact that the muscle fibers are mainly
homogeneous without much textural variations, whereas the endomysial connec-
tive tissue contains collagenous fibers, blood vessels, fibrocytes, and other cellular
components. The joint densities p1 and p2 are approximated as the product of
the densities of the single feature channels.
The second part of (1) represents the classical geodesic active contour model
that seeks a contour of minimal weighted length. A decreasing function g(s2) =
1/
√

s2 + 1 of the image gradient magnitude s2 =
∑3

k=1 |∇Ik|2 serves as weight-
ing function in order to reduce the cost of the contour length in the presence
of edges. This part of the model exploits the fact that the muscle fibers are of-
ten separated from the connective tissue by more or less strong edges. Hence, it
supplements a third cue for the partitioning besides the color and texture infor-
mation. Moreover, the penalty on the contour length avoids single noise pixels
or small artifacts to be separated from the surrounding region. The relative
influence of the edge based term is determined by the parameter ν = 2.
Starting from an initial partitioning obtained by a histogram based thresholding,
a minimum of (1) is obtained by steepest descent. This yields the update

Φk+1 = Φk +
τ

ν
H ′(Φk)

(
log

p1

p2
+ νdiv

(
g(|∇I|2) ∇Φk

|∇Φk|

))
(2)

with iteration index k, time step size τ = 0.5, and H ′ being the derivative of
H with respect to its argument. In each iteration, also the densities p1 and p2

are updated. After 200 iterations one obtains the sought contour separating the
muscle fibers from the connective tissue; see Fig. 1b.
Although the active contour model yields accurate boundaries in large parts
of the image, some myofibers may not be completely separated. In order to
refine the result, it is merged with the outcome of an edge detector, binarized by
automated thresholding, and enhanced by filters from mathematical morphology
[13]. The final result of this postprocessing is shown in Fig. 1c.



Fig. 1. (a) Original input RGB image of a dystrophic muscle biopsy sample. (b) Re-
sulting segmentation with the active contour model. Non-fiber structures are removed.
(c) Final result: each analyzed fiber is outlined and numbered. Fibers touching the
image boundaries are not considered.

4 Experiments

A total of 30 digital images containing 679 fibers on five human muscle specimens
were segmented. Parameters were kept fixed for all images to ensure a fully
automated processing. The segmentation results were evaluated independently
by two neuropathologists yielding a misclassification rate of only 2%.
Additionally, the accuracy of the morphometric analysis was assessed by com-
parison between human and machine measurements in 10 out of the 30 digital
images containing a total of 191 fibers on five human muscle specimens. Three
experts manually traced fiber outlines with a computer mouse using the ”free-
hand” ROI selection tool. Calculation of cross sectional area, perimeter, circu-
larity, and Feret diameter were then analyzed automatically by the computer for
each outlined fiber. The manually collected data were compared to the machine
measurement of the same images. For each fiber, the three human measurements
and the results obtained by the automated system were averaged. This was used
as standard of comparison. The mean error was defined as the mean of devia-
tions from the standard of comparison assessed for each fiber. The results shown
in Tab. 1 do not reveal any significant differences between human and machine
analysis.

human 1 human 2 human 3 machine

fiber area 5707µm2 5639µm2 5617µm2 5625µm2

7.6% 7% 6.7% 7%

perimeter 292.5µm 301.1µm 301.1µm 302.7µm
5.6% 4.1% 4.3% 4%

circularity 0.74 0.70 0.69 0.68
6.1% 9.7% 9.4% 10.5%

diameter 111.3µm 111.4µm 110.9µm 111µm
3.7% 4.1% 3.5% 3.6%

Table 1. Average morphometrical values and mean error from standard of comparison
as assessed for 191 fibers obtained manually by three investigators and by machine.



5 Discussion

The experiments show that, despite the full automation, the method works very
reliably with a mixed set of muscle specimen. This is in contrast to previous
techniques that either yield many inaccurate segmentations, or need a significant
amount of manual user interaction. The robustness of the presented approach
can be explained by the sound combination of three types of information. This
ensures that in case of one cue not being available, or reliable, the others can
promote the solution. Moreover, the method is easy to use, and it neither re-
quires special knowledge in image processing nor special histochemical stains.
As a consequence, the method satisfies all premises for being valuable in high-
content image analysis of muscle samples for research purposes as well as in
clinical diagnostics. Since the method enables full automation, convenient batch
processing of the entire biopsy sample may be possible and selection bias can be
avoided.
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