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Abstract

This paper tackles the photometric stereo problem in the

presence of inaccurate lighting, obtained either by cali-

bration or by an uncalibrated photometric stereo method.

Based on a precise modeling of noise and outliers, a ro-

bust variational approach is introduced. It explicitly ac-

counts for self-shadows, and enforces robustness to cast-

shadows and specularities by resorting to redescending M-

estimators. The resulting non-convex model is solved by

means of a computationally efficient alternating reweighted

least-squares algorithm. Since it implicitly enforces inte-

grability, the new variational approach can refine both the

intensities and the directions of the lighting.

1. Introduction

Photometric stereo (PS) is the problem of inferring the

shape and, possibly, the reflectance of a surface, from a set

of m images taken from a still camera under varying light-

ing. Assuming Lambertian reflectance, the surface normal

and the albedo can be unambiguously determined in each

surface point when m = 3 [35], but considering m > 3 im-

ages makes possible their robust estimation in the presence

of noise, shadows and specularities (see Figure 1).

Yet, the accuracy of lighting calibration remains a bottle-

neck for robust methods: the effective intensities and direc-

tions of the lighting are never exactly equal to the calibrated

ones. Hence, a robust PS method which can automatically

refine some initial lighting estimate would be worthwile.

However, existing robust methods do not propose this fea-

ture, and existing uncalibrated methods lack robustness.

This contribution fills this gap, by introducing a robust

variational framework for the joint refinement of shape,

albedo and lighting, given an initial lighting estimate which

can be obtained by calibration or uncalibrated PS.

∗Yvain QUÉAU, Tao WU and Daniel CREMERS were supported by the

ERC Consolidator Grant “3D Reloaded”.

Ball Bear Cat Pot1 Reading

Figure 1. Top: five real-world PS datasets [31], containing self-

shadows (all), cast-shadows (all except Ball), specular spikes

(Ball and Reading), or broader specular lobes (Bear). Bot-

tom: 3D-models estimated by the proposed method, taking as ini-

tial lighting the calibration from [31]. Qualitatively similar results

are obtained using uncalibrated PS as initialization, see Figure 7.

1.1. Related Work

Robust Pointwise Photometric Stereo methods estimate

the normal and the albedo in each pixel. Assuming Lamber-

tian reflectance and neglecting self-shadows, PS can be for-

mulated in each pixel as an overdetermined system of linear

equations in the normal and the albedo [35]. The baseline

method solves this system in the least-squares sense, which

is fast, but justified only in the presence of Gaussian noise.

Yet, specularities can hardly be considered as Gaussian

noise. If they consist of wide lobes, they can be explic-

itly handled by non-Lambertian reflectance models [9, 16,

20, 30]. The present work rather considers specular spikes,

hence specularities are viewed as outliers to the Lambertian
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Baseline Low-rank preprocessing [36] Sparse Bayesian learning [17] L1-based differential ratios [20] Proposed

Figure 2. Results of three recent robust (calibrated) PS methods, without (left) or with (right) a thresholding strategy excluding the

graylevels below the median of the 10% lowest ones, on the Ball dataset with m = 10 or m = 96 (ratios cannot handle this case)

images. In each experiment, the top row shows the 3D-reconstruction, with angular error w.r.t. ground truth normals (red is > 10◦, blue is

0◦, and MAE is the mean), and the bottom row shows the estimated albedo (not provided by ratios). Existing methods require thresholding

to eliminate self-shadows (the proposed one explicitly handles them), remain unsatisfactory in the presence of specularities (the proposed

one is more robust to such phenomena), and require either many [17, 36] or few [20] images (the proposed one handles both cases).

model [17, 36]. Cast-shadows constitute another sort of out-

liers, and existing methods also treat self-shadows as out-

liers, althouth they can be locally modeled (Equation (1)).

If outliers can be detected, the baseline method can be

applied only to “inliers” [3, 33]. Yet, determining “inliers”

is not straightforward [7, 34, 37]. Most recent approaches

apply the baseline method to modified graylevels, in such a

way that they fit a rank-3 approximation [36], or use robust

estimators [17]. Yet, as shown in Figure 2, these methods

must be coupled with an ad-hoc shadow thresholding strat-

egy [30, 31], and are not very robust to specularities.

The normals estimated by pointwise methods eventu-

ally need to be integrated into a depth map [10]. Differ-

ential PS methods circumvent this issue by directly esti-

mating the depth map. Assuming Lambertian reflectance,

neglecting self-shadows and assuming m = 2 images, this

yields a system of m = 2 nonlinear PDEs which can be

linearized through image ratios [21]. It has recently been

shown how to handle m ≥ 3 RGB images [28] by varia-

tional methods, and how to ensure robustness by using L1

norm-based methods [20]. However, a naive implementa-

tion of the ratios procedure does not provide the albedo,

and only few images can be handled since a combinatorial

number of equations is obtained. Although these limitations

can be overcome by resorting to elaborate algorithmic pro-

cedures [32], it would be more natural to consider the non-

linearized system of PDEs. Yet, there exists no method to

solve it in a robust and practical manner: existing methods

are either restricted to least-squares [13], or require know-

ing the depth values on the boundary of the domain [27].

MAE = 5.04◦ MAE = 2.66◦ MAE = 1.40◦

UPS [25] Low-rank [36] + UPS [25] Proposed

Figure 3. Results of a state-of-the-art uncalibrated PS method on

the Ball dataset with m = 96 images. Robustness can be im-

proved by using low-rank approximation [36], yet the proposed

uncalibrated method yields even more accurate results.

All methods presented so far assume calibrated lighting:

uncalibrated PS (UPS) methods do not. They resort to ma-

trix factorization to estimate shape, albedo and lighting up

to a linear ambiguity [12], which is then reduced by enforc-

ing integrability [38]. Under perspective projection, this

yields a unique solution [24]. Under orthographic projec-

tion, there is a remaining (GBR) ambiguity [6] which even-

tually needs to be eliminated [1, 25]. The UPS framework

can also be extended to non-directional lighting [4, 26],

class-specific recovery of shape [39], and non-Lambertian

reflectances [19, 22]. Yet, since UPS methods rely on a se-

quence of operations, error propagation may happen. Pre-

processing the images by low-rank approximation [36] im-

proves robustness, but only partly (Figure 3).



1.2. Contributions

This paper introduces the following innovations:

1. An accurate photometric stereo model, which precises

the notions of ‘albedo”, “noise” and “outliers”, is in-

troduced in Section 2;

2. Depth, albedo and lighting are jointly estimated within

a variational framework relying on redescending M-

estimators, where self-shadows are handled by the

model but cast-shadows and specularities are viewed

as outliers, cf. Section 3;

3. An efficient alternating reweighted least-squares algo-

rithm is proposed in Section 4, in order to solve the

resulting non-convex variational problem.

These novelties altogether yield the first robust photometric

stereo method able to refine the directions and the intensities

of the lighting.

2. What are “noise” and “outliers” in PS?

It is shown in this section that, if the surface reflectance

is dominated by a Lambertian component, and consider-

ing m graylevel images Ii, i ∈ [1,m], obtained under

varying directional lighting represented by vectors si ∈
R

3, i ∈ [1,m], then the following nonlinear image for-

mation model must be considered:

Ii(p)=ρ(p)max
{

0, si·n(p)
}

+ εi(p), ∀i∈ [1,m], (1)

where: ρ(p) > 0 is the “albedo” and n(p) ∈ R
3 is the

surface normal in point x ∈ R
3 conjugate to pixel p ∈ R

2;

the max operator, which encodes self-shadows, is usually

neglected in order to linearize the model; and the random

variables εi(p) stand for noise and outliers. Besides, these

random variables are the sum of four components represent-

ing, respectively, noise and quantization, lens aberrations,

cast-shadows and specularities:

εi(p) = εiN(p) + εiA(p) + εiCS(p) + εiS(p) (2)

This result is proven in the following by describing in an

accurate manner the photometric phenomena which even-

tually yield to the formation of the image on the sensor.

If the sensor is not saturated, the graylevel Ii(p) in pixel

p is proportional to the sensor irradiance ei(p), with pro-

portionality coefficient γ (which is an intrinsic characteris-

tic of the camera) and up to noise and quantization, repre-

sented by a random variable εiN(p):

Ii(p) = γei(p) + εiN(p). (3)

If the camera is focused on a surface point x ∈ R
3 con-

jugate to pixel p, ei(p) is almost proportional to the lumi-

nance Li(x) of the surface in x in the viewing direction

characterized by the angle α(p) with the optical axis:

ei(p) = β cos4 α(p)Li(x) +
εiA(p)

γ
, (4)

where β depends on the aperture, the exposure, etc., the

cos4 α(p) factor darkens the image borders, and the random

variable
εiA(p)

γ
stands for lens aberrations (e.g., vignetting).

If the surface is illuminated by a parallel and uniform

light beam si ∈ R
3 (this vector is oriented towards the

light source and its norm is equal to the luminous flux den-

sity), Li(x) is proportional to the surface irradiance Ei(x),
and the proportionality coefficient is the bidirectional re-

flectance distribution function (BRDF):

Li(x) = BRDFi(x)Ei(x), (5)

knowing that:

Ei(x) = bi(x)max
{

0, si · n(x)
}

, (6)

where n(x) is the surface normal in x, the max operator

encodes self-shadows, and the binary random variable bi(x)
is worth 0 in the presence of cast-shadows, and 1 otherwise.

A surface is called Lambertian if its luminance Li(x)
is independent from the viewing direction. In this case:

BRDFi(x) = ρ(x)
π

, ∀i ∈ [1,m], where ρ(x) ∈ [0, 1] is the

albedo in point x. In this work, a more general dichromatic

BRDF model, accounting for an additive specular compo-

nent ρis(x), is assumed:

BRDFi(x) =
ρ(x) + ρis(x)

π
. (7)

Physics-based models can be used for ρis(x) [9], and em-

pirical models have been designed for computational fea-

sibility [16, 20, 30], but the proposed method rather fol-

lows [17, 36] and treats specularities as outliers.

In the following, the notations n(p), bi(p) and ρis(p) are

abusively used for n(x), bi(x) and ρis(x). The following

variable is also abusively referred to as “albedo”:

ρ(p) =
γ cos4 α(p)ρ(x)

π
. (8)

Following [8], it is also assumed that radiometric settings of

the camera (e.g., aperture and exposure) may vary between

the shots. In this case the proportionality coefficient β in (4)

must be denoted by βi, i ∈ [1,m], and it can be integrated

to the intensities of the lighting vectors:

si = βisi. (9)

Combining Eqs (3) to (9) yields the well-known

model (1), with the definition (2) of the random variables

εi(p), where:

εiCS(p) = ρ(p)max
{

0, si ·n(p)
} (

bi(p)− 1
)

, (10)

εiS(p) =
γ cos4α(p)ρis(p)max

{

0, si ·n(p)
}

bi(p)

π
. (11)



3. Proposed Variational Model

Solving the set of nonlinear equations (1) is difficult be-

cause of the nonlinearity induced by the max operator, and

because in (2), the third (cast-shadows) and fourth (spec-

ularities) components are impulsive phenomena (outliers).

Since the radiometric settings of the camera may vary be-

tween the shots, it is necessary to estimate the intensities of

the lighting vectors si [8]. The proposed approach goes fur-

ther and also refines their directions, in order to account for

the inaccuracy of calibration or the non-robustness of uncal-

ibrated PS methods, making the problem even more chal-

lenging since UPS is inherently ambiguous. To eliminate

the arising ambiguities, the differential PS formulation is

considered. This guarantees integrability, which is enough

to disambiguate UPS under perspective projection [24].

This section shows that the joint estimation of the

shape, the albedo and the lighting can be recast as the

following variational problem:

min
z:Ω→R
ρ̃:Ω→R

{si∈R
3}

i∈[1,m]

∫∫

p∈Ω

m
∑

i=1

Φ

(

ρ(p)

dz(p)
Ψ

(

si ·

[

J(p)⊤
[

∇z(p)
−1

]])

−Ii(p)

)

dp,

(12)

with z the depth map (assumed to be differentiable), Ω ⊂
R

2 the reconstruction domain, J a matrix field depending

on the camera’s intrinsic parameters (see Equation (17)),

dz(p) a nonlinear normalization term (see Equation (18)),

Φ the maximum-likelihood estimator for the distribution of

the random variables εi(p) defined in (2), and:

Ψ(x) = max {0, x} . (13)

To achieve this variational formulation, a 3D-frame

(Oxyz) is attached to the camera, where O is its optical

center, the z-axis is oriented towards the 3D-scene, and the

(xy)-plane is parallel to the image plane (uv), whose area

of interest (reconstruction domain) is denoted by Ω ⊂ R
2.

Assuming perspective projection, the surface is then repre-

sented as a mapping associating a point x(u, v) ∈ R
3 to

each pixel p = (u, v) ∈ Ω:

x(u, v) = z(u, v)K−1 [u, v, 1]
⊤
, (14)

with z the depth and K the (calibrated) intrinsics matrix:

K =





fu s u0

0 fv v0
0 0 1



 , (15)

with (fu, fv) the focal length scaled by the aspect ratio, s

the skew and (u0, v0) the camera’s principal point.

The surface normal at x(u, v) is the unit vector parallel

to ∂ux(u, v)× ∂vx(u, v), oriented towards the camera:

n : Ω → S
2 ⊂ R

3

(u, v) 7→n(u, v)=
1

dz̃(u, v)
J(u, v)⊤

[

∇z̃(u, v)
−1

]

, (16)

where the change of variable z̃ = log z is used (z > 0 by

construction), and where:

J(u, v) =





fu −s −(u− u0)
0 fv −(v − v0)
0 0 1



 , (17)

dz̃(u, v) =
∥

∥

∥
J(u, v)⊤

[

∇z̃(u, v)⊤,−1
]⊤
∥

∥

∥
. (18)

The change of variable z̃ = log z unifies orthographic

and perspective projections [10]: setting J(u, v) = K =
K−1 = I3 and z̃ = z yields the orthographic model. Hence,

the tilde notation is neglected in the following.

Using (1) and (16), the new differential PS model ap-

pears as the following system of PDEs in (ρ, z, {si}i∈[1,m]):

Ii(u, v)=
ρ(u, v)

dz(u, v)
max

{

0, si ·

[

J(u, v)⊤
[

∇z(u, v)
−1

]]}

+ εi(u, v), ∀(u, v) ∈ Ω, ∀i ∈ [1,m]. (19)

The variational problem (12) eventually arises by solving

the system of PDEs (19) in an approximate manner, intro-

ducing a robust estimator Φ chosen as the maximum likeli-

hood estimator for the distribution of the random variables

εi(u, v). Given the definition (2) of the random variables

εi(p), assuming their Gaussianity is not reasonable. Heavy-

tail distributions, assigning outliers (third and fourth com-

ponents in (2)) non-negligible probabilities of occurrence,

are better-suited.

Redescending M-estimators are a class of efficient

maximum likelihood estimators for such distributions,

such that Φ′(x) −→
|x|→∞

0. Examples include Geman-

McClure’s [11], Welsh’s [14] and Tukey’s [5] functions, as

well as least-powers and Cauchy’s estimator, respectively

defined as follows:

ΦGM(x) =
x2

λ2 + x2
, ΦW(x) = λ2

(

1− exp
{

−x2

λ2

})

,

ΦT(x) =











λ2

(

1−

(

1−
x2

λ2

)3
)

, |x| ≤ λ,

λ2, |x| > λ,

ΦLp(x) = |x|p, ΦC(x) = λ2 log

(

1 +
x2

λ2

)

,

(20)

where p should be set to a value within ]0, 1[ to ensure that

ΦLp is redescending (p is set to 0.7 in the experiments), and

λ > 0 is a tunable scale parameter. Following [15], λ is set

as follows:

λ = δ mediani,p

{∣

∣Ii(p)− mediani,p

{

Ii(p)
}∣

∣

}

, (21)

where δ is set to 0.4 for ΦGM and ΦW, 0.9 for ΦT, and 0.15
for ΦC (these values were found experimentally to be effec-

tive in all the experiments).



4. Numerical Resolution

The variational problem in (12) represents a highly

non-convex, nonlinear optimization problem. The non-

convexity arises not only from the denominator dz but also

from the non-convex M-estimator Φ and the coupling of ρ̃,

z and {si}i, while the nonlinearity is due to the denomina-

tor dz and to the composition of Φ and Ψ functions.

Existing differential PS methods have mostly focused on

the difficulties induced by the denominator dz . They ei-

ther eliminate it through image ratios [20, 21, 28] (such

approaches do not estimate the albedo and can handle

only a small number of images), or explicitly handle it

through variational calculus [27] (this approach requires us-

ing Dirichlet boundary conditions, hence it can hardly be

applied in real-world scenarii) or proximal methods [13]

(this approach does not have the previous restrictions, yet

it requires very expensive computations). In this work, the

nonlinear denominator dz is neither eliminated, nor explic-

itly handled: the nonlinearity is simply circumvented by es-

timating a “scaled albedo” ρ̃(u, v) instead of the actual one

ρ(u, v) (which can eventually be deduced from (22)):

ρ̃(u, v) =
ρ(u, v)

dz(u, v)
. (22)

The proposed numerical resolution for (12) adopts a

“discretize-then-optimize” approach i.e., replaces the Ω ⊂
R

2 → R functions z and ρ̃ by R
n vectors z and ρ̃ (where

n is the number of pixels inside Ω) and the gradient oper-

ator by forward differences, and then solves the following

discrete optimization problem:

min
z∈R

n

ρ̃∈R
n

{si∈R
3}i∈[1,m]

F (ρ̃, z, {si}i)=

n
∑

j=1

m
∑

i=1

Φ
(

(

r(ρ̃, z, si
)i

j

)

. (23)

Here the residual
(

r(ρ̃, z, si)
)i

j
is defined as follows,

∀i ∈ [1,m], ∀j ∈ [1, n]:

(

r(ρ̃, z, si)
)i

j
= ρ̃jΨ

(

(Az)ij − s̃i3,j
)

− Iij , (24)

where Iij is the observed graylevel at pixel j ∈ [1, n] in im-

age i ∈ [1,m], and A ∈ L(Rn;Rm×n) is the linear operator

such that:

(Az)ij = s̃i1,jdu,jz+ s̃i2,jdv,jz, (25)

with du,j and dv,j the j-th lines of the n× n matrices con-

taining the finite-difference stencils used for approximating

the operators ∂u and ∂v , and [s̃i1,j , s̃
i
2,j , s̃

i
3,j ]

⊤ the vector

field s̃i at pixel j defined by:

s̃i(u, v) = J(u, v)si. (26)

In the following, a tailored alternating reweighted

least-squares (ARLS) method for computing a stationary

point (often a local minimizer) of Problem (23) is presented.

Suggested by its name, ARLS handles the coupling be-

tween variables by using an alternating optimization strat-

egy, i.e. minimizes F over ρ̃, z and {si}i alternatively.

Given (ρ̃(k), z(k), {s
i,(k)
i }) at iteration k, this corresponds

to solving the first-order optimality conditions

∇ρ̃F (ρ̃, z(k), {si,(k)}i) = 0, (27)

∇zF (ρ̃(k+1), z, {si,(k)}i) = 0, (28)

∇siF (ρ̃(k+1), z(k+1), {si}i) = 0, ∀i ∈ [1,m], (29)

in an iteratively reweighted least-squares (IRLS) man-

ner [14]. More precisely, the reweighting is utilized on the

following quantities, ∀i ∈ [1,m], ∀j ∈ [1, n] :

(

w(ρ̃, z, {si}i)
)i

j
=

Φ′
(

(

r(ρ̃, z, {si}i)
)i

j

)

(r(ρ̃, z, {si}i))
i

j

, (30)

(

χ(z, si)
)i

j
=

{

0 if (Az)ij − s̃i3,j ≤ 0,
1 if (Az)ij − s̃i3,j > 0,

(31)

which brings (27)–(29) to the fully linearized systems as

follows:

m
∑

i=1

(

w(k)
)i

j

[

ρ̃j

(

Ψ(k)
)i

j
−Iij

]

(

Ψ(k)
)i

j
=0, ∀j ∈ [1,n], (32)

n
∑

j=1

m
∑

i=1

(

w̄(k)
)i

j

[

ρ̃
(k+1)
j

(

χ̄(k)
)i

j

(

(

A(k)z
)i

j
−s̃

i,(k)
3,j

)

−Iij

]

ρ̃
(k+1)
j A

i,(k)
j,l

(

χ̄(k)
)i

j
=0, ∀l ∈ [1, n], (33)

(

n
∑

j=1

(

w̃(k)
)i

j

(

χ̃(k)
)i

j

2(

ρ̃
(k+1)
j

)2[

n(k+1)
]

j

[

n(k+1)
]⊤

j

)

si

=

n
∑

j=1

(

w̃(k)
)i

j

(

χ̃(k)
)i

j
ρ̃
(k+1)
j Iij

[

n(k+1)
]

j
, ∀i ∈ [1,m]. (34)

Here
[

n(k+1)
]

j
∈ R

3 is the linear part (i.e., not normal-

ized by the dz denominator) of the normal vector at pixel

j, computed from z(k+1) according to (16). The weight
(

w(k)
)i

j
=
(

w(ρ̃(k), z(k), {si,(k)}i)
)i

j
is obtained by (30)

using the values of the albedo, the depth and the lighting

at iterations k,
(

w̄(k)
)i

j
is its update using the new albedo

value, and
(

w̃(k)
)i

j
uses the new albedo and depth values.

Similar conventions are adopted for χ and Ψ.

It is worth emphasizing that the solution of each lin-

ear system above can be interpreted as the solution of a

reweighted least-squares problem. For instance, the solu-

tion z(k+1) obtained by (33) solves the reweighted least-



squares problem

min
z∈Rn

n
∑

j=1

m
∑

i=1

(

w̄(k)
)i

j

[

ρ̃
(k+1)
j

(

χ̃(k)
)i

j

(

(

A(k)z

)i

j
−s̃

i,(k)
3,j

)

−Iij

]2

, (35)

and thus approximates the solution of the nonlinear least-

square problem:

min
z∈Rn

n
∑

j=1

m
∑

i=1

(

w̄(k)
)i

j

∣

∣

∣
(r(ρ̃(k+1), z, {s

i,(k)
i }))ij

∣

∣

∣

2

, (36)

which arises when only the w-term is reweighted.

The linear systems (32) and (34) admit closed-form so-

lutions. In our numerical experiments, the sparse (most of

the terms in the A-matrix are null: the summation over j

in (33) is actually limited to the neighbors of pixel l) linear

system (33) arising from the least-squares problem (35) was

solved using preconditioned conjugate gradient [18].

5. Experimental Validation

ARLS iterates approximate resolutions of the optimal-

ity conditions (27), (28) and (29) until convergence. The

convergence analysis could be conducted in a similar man-

ner as in [29]. In this section we rather validate the prac-

tical performances of the algorithm. To select a stopping

criterion, we consider in Figure 4 the Pot1 dataset with

m = 48 images, and using the estimator ΦC. Based on

this experiment, we choose as stopping criterion a thresh-

old on the relative difference between the values of the en-

ergy F (ρ̃, z, {si}i∈[1,m]) at two successive iterations: this

threshold is set hereafter to 10−4 (blue line in Figure 4).

Yet, given the non-convexity of the problem, choosing an

appropriate initialization is important. If calibrated light-

ing is available, the baseline method is a good candidate for

shape and albedo initialization. Otherwise, the UPS method

from [25] is recommended in [31], and it also provides an

initial lighting estimate. In both cases, the weights are ini-

tialized using their definition (30).

The proposed linearization strategies are then evaluated

in Figure 5 (without lighting refininement for fair compar-

ison with [13]). The estimation of a “scaled” albedo con-

taining the nonlinear denominator (Equation (22)) is com-

pared to a recent approach estimating the “actual” albedo

while explicitly handling the nonlinearity [13]. As can be

seen in the first graph in Figure 5, which considers the Cat

dataset with m = 5 images under the same assumptions

as in [13] (Φ = ΦL2 , orthographic projection, Ψ(x) = x),

the proposed strategy dramatically reduces the cost of each

iteration. The second graph in Figure 5, which considers

the Ball dataset with m = 5 images, shows the efficiency

of the reweighting for linearizing the self-shadows operator.

Each reweighted iteration decreases almost as much the en-

ergy as its non-linearized counterpart, yet it is a lot faster to

compute.
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Figure 4. Evolution of the energy F (k) =
F (ρ̃(k), z(k), {si,(k)}i∈[1,m]), of the mean angular error

w.r.t. ground truth normals and of the relative difference between

two successive energy values, as functions of the iteration num-

ber k. Since the problem is non-convex, the effect of initialization

is significant: choosing the (calibrated) baseline method or an

uncalibrated PS method ([25] in this experiment) yields different

energy values, and a lower final energy does not necessarily mean

a more accurate shape.
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Figure 5. Evaluation of the proposed linearization strategies (the

graphs show the energy value attained after the first five iterations,

and the time required to complete these iterations). Left: evalua-

tion of the elimination of the nonlinearity (18) by estimation of a

scaled albedo (22), in comparison with a recent method handling

explicitly this nonlinearity by a proximal algorithm. Right: evalu-

ation of the linearization of the self-shadows operator yielding the

linear least-squares problem (35) instead of the nonlinear least-

squares one (36), which requires resorting to a baseline nonlinear

least-squares solver such as Matlab’s “lsqnonlin”. These experi-

ments show the efficiency of the proposed linearization strategies.

The full approach (with lighting refinement) is now eval-

uated against state-of-the-art robust calibrated methods and

uncalibrated ones, on the five sets of images shown in Fig-

ure 1. For fair comparison between pointwise PS methods

(which provide normals, but not depth) and differential ones

(which provide depth, but not normals), the normals esti-

mated by pointwise methods were integrated into a depth

map (using perspective camera, least-squares and the same



Ball Bear Cat Pot1 Reading

Mean (◦) Median (◦) CPU (s) Mean (◦) Median (◦) CPU (s) Mean (◦) Median (◦) CPU (s) Mean (◦) Median (◦) CPU (s) Mean (◦) Median (◦) CPU (s)
Baseline 4.15 2.55 0.03 8.58 6.44 0.04 9.57 7.33 0.03 9.62 7.08 0.03 21.05 15.77 0.03
LR [36] 2.49 2.50 106.43 6.85 5.38 207.49 8.68 6.91 203.19 8.29 6.36 247.15 16.64 12.80 167.12

SBL [17] 2.88 2.75 625.34 7.46 6.17 1106.17 8.82 7.05 959.66 8.71 6.76 1224.33 19.27 13.96 573.92

Ratios [20]1 2.40 2.51 610.61 6.09 4.90 749.87 7.16 5.95 1099.89 7.95 5.98 1042.72 15.32 8.53 1912.94
LR [36] + [13] 2.22 2.31 2693.30 6.60 5.25 2535.96 7.18 6.06 17252.50 7.99 6.08 12962.26 16.80 12.36 4387.12

ΦGM 1.09 0.88 67.16 6.05 4.54 105.44 6.78 5.18 319.32 8.02 5.63 236.43 13.35 7.40 239.74
ΦW 1.18 0.99 64.74 6.34 4.83 104.51 6.73 5.07 373.07 8.06 5.66 240.76 13.92 7.59 284.80
ΦT 1.72 1.59 18.98 6.21 4.77 62.01 7.03 5.38 62.40 8.19 5.96 82.87 14.71 8.78 30.13
ΦLp 1.48 1.30 69.39 6.09 4.61 93.10 6.77 5.37 294.35 7.89 5.48 261.55 15.37 9.89 88.02
ΦC 0.95 0.76 81.07 5.95 4.47 114.08 6.78 5.28 336.63 7.98 5.54 265.46 13.01 7.33 184.10

Table 1. Quantitative results obtained on the five datasets presented in Figure 1, using m = 96 images and the calibration provided in [31]

as initial lighting estimate (the runtime, the mean and median angular errors between the estimated normals and the ground truth ones are

shown). The proposed approach (with lighting refinement) outperforms state-of-the-art robust calibrated methods in terms of accuracy, and

is often faster. The 3D-models (3D-reconstruction and estimated albedo) corresponding to Φ = ΦC are shown in Figure 1.

Camera Estimator Self-shadows Lighting refinement Mean (◦) Median (◦) CPU (s)
Orthographic ΦL2 Ψ(x) = x No 22.69 16.75 1.05
Perspective ΦL2 Ψ(x) = x No 22.49 16.46 1.15
Perspective ΦC Ψ(x) = x No 13.71 7.90 13.28
Perspective ΦC Ψ(x) = max{0, x} No 13.69 7.68 14.23
Perspective ΦC Ψ(x) = max{0, x} Yes 13.51 7.47 28.71

Table 2. 3D-reconstruction error and computation time (Reading dataset with m = 20 images, using the calibrated lighting as initial

estimate), for different combinations of the new features introduced in the proposed method. Using robust estimation is key for accuracy,

but all the other features also contribute to improving the results.

finite-differences as in the proposed method), and then re-

computed by finite-differences. On the other hand, normals

were approximated from the depth maps provided by dif-

ferential methods by finite-differences. Computation times

were evaluated using Matlab codes and a Xeon processor of

3.50 GHz with 32 GB of RAM.

First, the proposed approach is considered while using

the calibration provided in [31] as inital lighting estimate,

and compared with three recent robust calibrated PS meth-

ods: low-rank approximation [36] (LR), sparse Bayesian

learning [17] (SBL), and L1-based differential ratios [20].

For completeness, the results of the recent differential ap-

proach [13] are also shown in Table 1: since this method is

not robust, it is coupled with the LR method. Figure 2 shows

that the proposed method is the first one which provides ac-

curate results with both many (m = 96) or few (m = 10)

images, and without resorting to any ad-hoc outlier rejec-

tion method based on thresholding. Since pointwise meth-

ods require many images, the quantitative evaluation over

the whole dataset is then performed with m = 96 images,

see Table 1 (thresholding was used for competing meth-

ods). Existing differential methods systematically outper-

form pointwise ones, but the proposed method is even more

accurate, and significantly faster. In comparison with [20],

the proposed method also provides the albedo (which is

eliminated using ratios) and handles an arbitrary large num-

ber m of images (32 GB of memory was not enough to ap-

ply the differential ratios method with m > 20). Among

the robust M-estimators defined in Equation (20), ΦC is

1For evaluating the differential ratios approach [20], we used only m =

20 images, which is the maximum number of images we could handle with

32 GB of memory.

the one attaining maximum breakdown point [23], hence it

should be the most robust. This is confirmed by the experi-

ments, although if speed is an issue then Tukey’s estimator

ΦT could be considered.

Table 2 shows the respective influence of each new fea-

ture introduced in this work. Comparing the third row of

Table 2 with Table 1 shows the superiority of redescend-

ing M-estimators over existing robust estimators, as we al-

ready overcome the state-of-the-art with five times less im-

ages. The forth row proves that self-shadows should be

explicitly handled instead of being treated as outliers, and

the last row shows that a non-negligible improvement can

be expected by refining both the intensities and the direc-

tions of the lighting, to account for inaccurate calibration.

An additional experiment, combining all these features on

the Gourd dataset from [2], is conducted in Figure 6, and

shows that reasonable results can be expected with as few

as m = 10 images.

Eventually, Table 3 evaluates the ability of the proposed

method to improve UPS results. Two recent UPS meth-

ods are compared using m = 96 images: the minimum

entropy (ME) approach [1] and the diffuse maxima (DM)

method [25]. By applying the proposed method as a post-

processing to the DM method, the state-of-the-art robust

UPS strategy consisting in coupling UPS with low-rank pre-

processing [36] is significantly outperformed (the running

times of the proposed method and of this strategy are com-

parable). Using uncalibrated PS as initial estimate yields

less accurate results than using calibration (compare Ta-

bles 1 and 3), yet their results appear qualitatively similar

(compare Figures 1 and 7): the proposed approach repre-

sents an important step towards reliable uncalibrated PS.



m = 3 m = 10 m = 20 m = 100

Figure 6. Results on the Gourd dataset from [2] (the left image shows one of the input images), while increasing the number of images

and using the calibrated lighting as initial estimate. The reconstructed shape is much distorded using m = 3 images (robustness cannot be

enforced), yet reasonable results are obtained with as few as m = 10 images.

Figure 7. 3D-models estimated by the proposed uncalibrated PS method (using Φ = ΦC and the DM method [25] as initialization), which

are very similar to those obtained using the calibrated lighting as initial estimate (see Figure 1).

Ball Bear Cat Pot1 Reading

ME [1] 6.56 15.29 19.85 16.49 82.37

DM [25] 5.04 9.20 10.62 10.27 24.49

LR [36] + DM [25] 2.66 7.69 8.89 8.94 42.23

Proposed 1.40 6.66 7.59 8.46 20.16

Table 3. Mean angular error (in degrees) attained by two (non-robust) uncalibrated methods [1, 25], by [25] applied to images preprocessed

by low-rank approximation [36], and by the proposed uncalibrated PS approach, using the lighting estimated by the DM method [25] as

initial guess for our method (Φ = ΦC). Refining the lighting by using the proposed approach yields a significant improvement in the

accuracy of the 3D-reconstruction. The 3D-models estimated by this method are shown in Figure 7.

6. Conclusion

A new variational approach to robust photometric stereo

has been introduced. It explicitly handles self-shadows,

and relies on redescending M-estimators for handling cast-

shadows and specularities. Put together, these novelties re-

move the need for tedious manual identification of shadows

or highlights, and yield a fully automatic robust PS method.

It has also been shown that the nonlinearities of the re-

sulting variational model can be handled without resorting

to linearization by ratios or to computationally expensive

methods, by estimating a scaled albedo and appropriately

reweighting the nonlinear factors appearing in the optimal-

ity conditions.

Eventually, the proposed approach is the first robust PS

method which can refine both the intensities and the direc-

tions of the lighting. This important step towards reducing

the importance of calibration is achieved by implicitly en-

forcing integrability through a differential approach.

Differential methods for solving uncalibrated (or inaccu-

rately calibrated) PS had not been explored so far because

PDE-based methods have not become a standard in PS yet.

This is probably due to the computational complexity of

previous methods. The proposed method, which is much

more efficient, could open the door to renewed research in

PS: not only the framework introduced in this paper yields

the most accurate robust PS method presented so far, but it

is also highly flexible. Hence, it may be used in future re-

search as basis for other challenging PS problems e.g., PS

with physics-based specular reflectance models. Indeed, we

treated specularities as outliers to the Lambertian model, but

specular reflections (and cast-shadows) also provide clues

for estimating the shape: they should thus ultimately be

considered in the PS model.
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[20] R. Mecca, Y. Quéau, F. Logothetis, and R. Cipolla. A Single

Lobe Photometric Stereo Approach for Heterogeneous Ma-

terial. SIAM Journal on Imaging Sciences, 2016. 1, 2, 3, 5,

7
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