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Abstract— We propose a real-time, direct monocular SLAM
method for omnidirectional or wide field-of-view fisheye cam-
eras. Both tracking (direct image alignment) and mapping
(pixel-wise distance filtering) are directly formulated for the
unified omnidirectional model, which can model central imaging
devices with a field of view above 180 ◦. This is in contrast to
existing direct mono-SLAM approaches like DTAM or LSD-
SLAM, which operate on rectified images, in practice limiting
the field of view to around 130 ◦ diagonally. Not only does this
allows to observe – and reconstruct – a larger portion of the
surrounding environment, but it also makes the system more
robust to degenerate (rotation-only) movement. The two main
contribution are (1) the formulation of direct image alignment
for the unified omnidirectional model, and (2) a fast yet accurate
approach to incremental stereo directly on distorted images. We
evaluated our framework on real-world sequences taken with a
185 ◦ fisheye lens, and compare it to a rectified and a piecewise
rectified approach.

I. INTRODUCTION

Visual Odometry (VO) and Simultaneous Localization and
Mapping (SLAM) are becoming increasingly important for
robotics and mobile vision applications, as they only require
optical cameras – which are cheap, light and versatile, and
hence can easily be put into commodity hardware. A lot of
research has been focused around these topics throughout the
last decade, with a particular focus on real-time systems –
which can be used for autonomous control for example of
UAVs [1], [2].

Most existing approaches are based on keypoints: Once
keypoints are extracted, the images are abstracted to a col-
lection of point-observations, which are then used to compute
geometrical information. This can be done in a filtering
framework [3], [4], [5], or in a keyframe-based non-linear
optimization framework [6], [7], [8]. This has the advantage
that a large part of the required workload only is done once
on keypoint extraction, such that remaining computational
resources can be spent on enforcing geometric consistency,
and outliers can be removed in a straight-forward way.

More recently, so-called direct approaches have gained
in popularity: instead of abstracting the images to point-
observations, the idea is to compute dense [9], or semi-
dense [10] depth maps in an incremental fashion, and track
the camera using direct image alignment. This has the
advantage that much more information can be used, in
particular information contained in edges or densely textured

*The research leading to these results was supported by the BMBF within
the Software Campus (NanoVis) No. 01IS12057

1David Caruso is with the Ecole polytechnique, Palaiseau, France
david.caruso@polytechnique.edu

2Jakob Engel and Daniel Cremers are with the Technical University
Munich engelj@in.tum.de, cremers@tum.de

Fig. 1. Top: 3D reconstruction obtained in real-time with our approach,
using a 185 ◦ fisheye lens. Bottom: Map of the trajectory and set of example
keyframes, with associated color-coded inverse distance maps.

surfaces. Further, the generated map contains substantially
more information about the environment, which can be used
for obstacle-avoidance and path-planning.

What all these methods have in common is that they rely
on a sufficiently informative environment. In many practical
cases however, this can be a very restrictive assumption:
For example indoors where there are many untextured white
walls, or in the presence of moving objects, large parts of the
camera image can become uninformative for SLAM. This is
especially true if the used camera only has a small field of
view (FoV). On the other hand, the wider the field of view,
the more likely that some part of the visible scene is well-
suited for SLAM.

Nevertheless, most visual SLAM or VO systems are
restrained to using a classical pinhole camera model. Often,



this is combined with a radial distortion model (such as
the ATAN model used in PTAM). All these models can not
directly be used for omnidirectional cameras (with FoV of
more than 180 ◦). This is especially true for direct methods,
which typically operate on rectified images – limiting the
field of view to no more than 130 ◦.

In this paper, we propose an extension of LSD-SLAM [10]
to a generic omnidirectional camera model. The resulting
method is capable of handling all types of central projection
systems such as fisheye and catadioptric cameras. We eval-
uate it on images captured with a fisheye lens covering a
FoV of 185 ◦. We show that especially for trajectories which
contain aggressive camera rotations, it outperforms methods
based on a pinhole-projection model.

A. Related Work

There is a range of related work regarding omnidirectional
vision, in particular for robot and ground-vehicle localiza-
tion. For instance [11] uses a catadioptric system to estimates
the ego-motion of a vehicle, using direct photometric error
minimization for rotation estimation – it is however restricted
to planar motion. In [12], RANSAC point association for
SIFT features is used for estimating translation and rotation,
on a rig of 5 rectified cameras. Again, the system is restricted
to planar motion. In [13] a multicamera rig is used to build
a topological map based on appearance. In [14] an EKF-
based SLAM system is adapted for omnidirectional cameras.
In [15], the advantage of using omnidirectional cameras in
this context is shown. The work of Meilland et. al. [16] is
somewhat closer to ours, as it performs dense registration
against multiple frames from a database of spherical images.
They are augmented with distance information from an
external sensor or stereo-vision. However, the system is
based on a priori learned database of georeferenced images
and does not perform online SLAM.

B. Contribution and Outline

In this paper we explore the use of omnidirectional and
fisheye cameras for direct, large-scale visual SLAM. We pro-
pose two different camera model choices, which we integrate
into the recently appeared LSD-SLAM [10] framework, and
evaluate the resulting algorithm on real-world and simulated
data. More precisely, the main contribution of this paper is
two-fold: (1) We give a direct image alignment formulation
operating on an omnidirectional camera model. (2) We derive
an efficient and accurate approach to perform stereo directly
on omnidirectional images, both for the piecewise rectifica-
tion approach and natively on the Unified Omnidirectional
Model. We intend to make the used datasets including
ground-truth publicly available.

The paper is organized as follows: In Chapter II, we
introduce a camera model as general projection function,
and describe the three parametrized models considered in
this paper: The Pinhole Model, an Array of Pinhole Model,
and the Unified Omnidirectional Model. In Chapter III, we
describe our omnidirectional direct SLAM method. We start
by reviewing the LSD-SLAM pipe-line as introduced in [10].

Fig. 2. Camera Models : The same image, warped to fit the three projection
models considered in this paper. Both the Unified model and the piecewise
rectified model can cover the full 185 ◦ field-of-view. For the pinhole model,
the image was cropped to a horizontal field of view of 120 ◦, which still
causes significant stretching of the image around the border.

We then detail how the two major steps that depend on the
camera model – probabilistic, semi-dense depth estimation
and direct image alignment – are adapted to operate in real-
time on images from omni-directional cameras. In Chap-
ter IV, we evaluate the accuracy, robustness and runtime for
the three different models on a both simulated and real-world
data. Finally, in Chapter V, we summarize the results and line
out future work.

II. CAMERA MODELS
In this chapter, we will lay out the three different

parametric projection functions π considered in the paper:
In Sec. II-A, we briefly review the well-known Pinhole
Model and discuss its limitations. We then extend it to a
more general Array of Pinhole Model allowing to cover the
full viewing sphere in Sec. II-B. In Sec. II-C, we introduce
the Unified Omnidirectional Model, which allows to model
360-vision in closed-form.

Notation. We use bold, capital letters R to denote
matrices, and bold, lower-case letters x for vectors.
u = [u, v]T ∈ Ω ⊂ R2 will generally denote pixel
coordinates, where Ω denotes the image domain.
x = [x, y, z]T ∈ R3 will be used for 3D point coordinates.

In the most general case, a camera model is a function
π : R3 → Ω, which defines the mapping between 3D points
x in the camera frame, and pixels u in the image. For lenses
with negligible diameter, a common assumption is the single
viewpoint assumption, i.e., that all light-rays pass through a
single point in space – the origin of the camera frame C.
Hence, the projected position of the point only depends on
the direction of x. We will use π−1 : Ω × R+ → R3 for
the function mapping pixels back to 3D, using their inverse
distance d = ‖x‖−1.

Note that the single viewpoint assumption allows trans-
forming images from any camera model to any other, for
the domain of visible points they have in common – this
is generally referred to as image rectification, and is a
frequently done preprocessing step, transforming the image
to follow a more simple model e.g. by removing radial
distortion. Given two projection functions π1, π2 and an
image I1 : Ω1 → R taken with a camera π1, we can compute
the respective image I2 : Ω2 → R following projection π2 as

I2(u, v) = I1(π1(π−12 (u, v, 1))). (1)



Fig. 3. Pinhole Model. A 3D point is directly projected onto the image
plane through C.

This warping however introduces interpolation artifacts and
can degrade the image quality, especially in areas where the
angular resolution changes significantly.

A. Pinhole Model

The pinhole camera model is the most used camera model.
The image is obtained by projecting each point onto a plane
located at z = 1, followed by an affine mapping

πp(x) :=

[
fx 0
0 fy

] [
x/z
y/z

]
+

[
cx
cy

]
, (2)

where fx, fy are the focal lengths, and cx, cy is the principal
point. It is schematically shown in Fig. 3.

This model is often used as the linearity of the projection
function (in homogeneous coordinates) – and the fact that
straight lines in 3D are projected to straight lines in the image
– make it the most simple model choice to use. It however
has the major drawback that it cannot model a wide field of
view: The angular resolution increases drastically towards
the borders of the image, leading to a distorted image – an
example is shown on the right in Fig. 2.

In order to make this model compatible to small radial
distortions, a non-linear radial distortion function – often
approximated polynomially – can be applied to the projected
pixel coordinates.

B. Array of Pinhole Camera

A straight-forward approach to extending the field of view
is to use a camera model consisting of an array of several
pinhole cameras, which have the same principal point but dif-
ferent orientations. The projection function πmp(x) : R3 →
∪iΩi is then given by piecewise rotation followed by pinhole
projection, i.e.,

πmp(x) := πpi(x)
(Ri(x)x) (3)

where i(x) : R3 → [1, k] segments the 3D space into k sub-
spaces. While in general the segmentation and orientation of
the associated cameras can be chosen arbitrarily, we choose
to split R3 into six equally sized quadrants, forming a cube-
shaped image plane as seen on Fig. 4 This has the advantage
that i(x) can be computed from binary comparisons on x, y
and z, while the Ri correspond to orthogonal rotations.

While this model has a number of desirable properties –
it is piecewise linear in homogeneous coordinates, simple
to compute and offers reasonably homogeneous angular
resolution – it does not fit natural lenses. In order to use
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Fig. 4. Piecewise Pinhole Model. A 3D point is projected through the
center of the camera on one of the image planes depending on the subspace
it lies in, effectively forming a cube-shaped image plane. X1 and X2 are
projected to different images Ω1 and Ω2.

it, incoming images have to be rectified in a preprocessing
step. Further, the piecewise nature of the model causes
discontinuities in the image space Ω = ∪iΩi, complicating
its use in practice.

C. Central Omnidirectionnal Camera: Unified Model

A number of different projection functions has been
proposed in the literature for modeling and calibrating
catadioptric and dioptric omnidirectional cameras. Desirable
properties of such a function include (1) its capability to
accurately describe a wide range of actual physical imaging
devices, (2) the ease of parameter calibration and (3) the
existence of a closed-form expression for the unprojection
function π−1. As this paper targets real-time direct SLAM,
an additional criterion is the computational cost of projecting
and unprojecting points, as well as the cost of evaluating the
corresponding derivatives.

Accurate results were obtained by moving all non-
linearities into a radially symmetric function, and identifying
the first coefficients of its Taylor expansion [17]. While
this approach can model every camera that fits the single
viewpoint assumption, it lacks a closed-form unprojection
function – and approximating it is computationally costly.

Instead, we use the model originally proposed in [18] for
central catadioptric systems and extended in [19], [20] for a
wider range of physical devices including fisheye cameras.
The central idea behind this model is to concatenate two
successive projections as depicted on Fig. 5. The first one
projects the point from the world onto a camera-centered
unit sphere. The second one is an ordinary pinhole projection
trough a center shifted along the z axis by −ξ. This model
is described by a total of five parameters, fx, fy , cx, cy and
ξ. The projection of a point is computed as

πu(x) =


fx

x

z + ‖x‖ξ

fy
y

z + ‖x‖ξ

+

[
cx
cy

]
, (4)

where ‖x‖ is the euclidean norm of x. The corresponding
unprojection function can be computed in closed form, and
is given by

πu
−1(u, d)=

1

d

ξ+
√

1+(1−ξ2) (û2+v̂2)

û2+v̂2+1

ûv̂
1

−
00
ξ

 ,

(5)
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Fig. 5. Unified Model. A 3D point is first projected on the unit sphere,
and then the image plane via a secondary, shifted camera center Cs.

where [
û
v̂

]
=

[
(u− cx)/fx
(v − cy)/fy

]
. (6)

One major advantage of this model is the availability of an
easy-to-compute projection and unprojection function and its
derivatives. Note that for ξ = 0 it reduces to the pinhole
model. In order to improve the generality of the model, we
combine it with a small radial-tangential distortion to correct
lens imperfections – similar to the pinhole case, images are
warped once in the beginning, to perfectly fit this model.

III. DIRECT OMNIDIRECTIONAL SLAM
In this Chapter, we describe our omnidirectional, large-

scale direct SLAM system, which is based on LSD-SLAM
[10]. First, in Sec. III-A we review the LSD-SLAM pipeline
adapted to omnidirectional cameras. We extend the direct
image registration of LSD-SLAM to omnidirectionnal cam-
era in Sec. III-B. In Sec. III-D, we show how – in this
framework – stereo can be done efficiently on the unified
(1) and piecewise rectified (2) model.
Notation. D : Ωd → R+ will denote the inverse distance
map of the current keyframe.With a slight abuse of notation,
elements of se(3) / sim(3) will directly be represented as
vector µ, and we use exp and log to associate an element of
the lie algebra to the corresponding element of the lie group.
We then define the composition operator ◦ as

µ1 ◦ µ2 := log (exp(µ1) · exp(µ2)) . (7)

As a shorthand, we use Rµ and tµ to denote the correspond-
ing rotation matrix and translation vector of a transformation.

A. Method Overview
Our method continuously builds and maintains a pose-

graph of keyframes. Each keyframe contains a probabilistic
semi-dense inverse distance map, which maintains a Gaus-
sian probability distribution over the inverse distance for all
pixels which have sufficient intensity gradient. It is estimated
over time by filtering over a large number of small-baseline
stereo comparisons. In turn, new camera poses – as well as
loop-closure constraints – are computed using direct image
alignment. Note that in contrast to [10], we use the inverse
distance d = ‖x‖−1 instead of depth, such that we can model
points behind the camera. An overview is shown in Fig. 6.

Fig. 6. Overview over the LSD-SLAM pipeline for omnidirectional
Cameras. Tracking and depth estimation inherently depend on the camera
model used, their omnidirectional versions and are detailed in Sec. III-B
and III-D receptively.

1) SE(3) Tracking: When a new camera frame is captured,
its rigid-body pose relative to the closest keyframe is tracked
using direct image alignment, which will be described in
Sec. III-B.

2) Probabilistic Distance Map Estimation: Keyframes are
selected at regular intervals, based on the moved distance to
the previous keyframe (relative to its mean inverse distance),
as well as the relative overlap. For each keyframe, an
inverse distance map is initialized by propagating the inverse
distance map from its immediate predecessor. Subsequently,
it is updated – and extended to new regions – by incorpo-
rating information obtained from many small-baseline stereo
comparisons. This step will be described in more detail in
Sec. III-D.

3) Scale-Drift Aware Pose-Graph Optimization: In the
background, we continuously perform pose graph optimiza-
tion between all keyframes, and attempt to find new con-
straints between keyframes which are likely to overlap.
Constraints are expressed as similarity transforms to account
for scale-drift – for more details see [10].

4) Initialization: The system is initialized with a random
depth map with mean one and a large covariance – this
generally converges to a good estimate, as long as the camera
motion within the first few seconds is not degenerate.

B. Omnidirectional Direct Image Alignment on SE(3)

Every new frame Inew is first tracked relative to the closest
keyframe IKf with associated inverse distance map DKf by
direct minimization of the photometric error, defined as

Eframe(µ) :=
∑

u∈Ωd

ρ

(
rIu(µ)

σrIu(µ)

)
, (8)

where ρ denotes the robust Huber norm, and

rIu(µ) = IKf(u)− Inew (π(ω(µ,u))) (9)

ω(µ,u) = Rµπ
−1(u, DKf(u)) + tµ. (10)

The function ω unprojects a point, and transforms it by µ. As
in [10], the residuals are normalized with their propagated
inverse distance variance.



This weighted least-squares problem is then minimized
in a coarse-to-fine scheme using the iteratively re-weighted
Levenberg-Marquardt algorithm in a left-compositional for-
mulation: In each iteration, we solve for a left-multiplied
increment

δµ(k) =
(
JTWJ + λdiag(JTWJ)

)−1
JTWr, (11)

where r = [rIu1
. . . rIun ]T is the stacked residual vector and

W a diagonal matrix containing the weights. J is the n× 6
Jacobian of the stacked residual vector evaluated at µ(k):

J =
∂r(ε ◦ µ(k))

∂ε
(12)

which is then left-multiplied on the current estimate

µ(k+1) = δµ(k) ◦ µ(k). (13)

Using the chain rule, each 1× 6 row Ju of the Jacobian can
be decomposed into three parts

Jfwd
u = −JInew

∣∣
π
Jπ
∣∣
ω
Jω
∣∣
µ
, (14)

where
• Jω

∣∣
µ(k)

is a 3 × 6 Jacobian, denoting the left-
compositional derivative of the transformed point, eval-
uated at µ = µ(k)

Jω
∣∣
µ

=
∂ω(ε ◦ µ,u)

∂ε
. (15)

• Jπ
∣∣
ω

is the 2× 3 Jacobian of the projection function π
evaluated at ω = ω(µ(k),u).

• JInew

∣∣
π

is the 1×2 intensity gradient of the new image,
evaluated at point π = π(ω(µ(k),u)).

Notice how the evaluation point of each of these Jacobians
depends on µ(k), hence everything has to be re-evaluated
in each iteration. In practice, the computational cost is the
dominated by this evaluation – which is especially true in
our case, as for the unified model the projection, and hence
its derivative Jπ

∣∣
ω

is much more complex.
To avoid this, we use an inverse compositional formulation

– a trick that is well known in the literature [21]: In each
iteration, instead of applying the increment to the points in
the reference frame, its inverse is applied to the points in the
keyframe. That is, instead of linearizing

IKf(u)− Inew(π(ω(ε ◦ µ(k),u))), (16)

with respect to ε, we linearize

IKf(π(ω(ε,u)))− Inew(π(ω(µ(k),u))). (17)

The Jacobian now becomes

Jbkwd
u = JIKf

∣∣
π
Jπ
∣∣
ω
Jω
∣∣
0
, (18)

with ω = ω(0,u) and π = π(ω(0,u)). It is thus independent
of µ(k). This allows us to precompute it once per pyramid
level, saving much of the required computations. Note that
we still have to re-evaluate the outer product JTWJ on
each iteration, as the weight matrix changes. The inverse of

the resulting update is then right-multiplied onto the current
estimate, i.e.,

µ(k+1) = µ(k) ◦ (−δµ(k)). (19)

Note that for the forward compositional as well as the in-
verse compositional formulation, both projection and unpro-
jection appear in the error function – motivating the choice of
a camera model for which both can be expressed in closed-
form. This is in contrast to classical Bundle Adjustment,
where only the projection function – but not its inverse –
appears in the error function.
C. Omnidirectional Direct Image Alignment on Sim(3)

In monocular SLAM, the absolute scale is not observable
and drifts over time – which has to be taken into account
when finding loop-closures. As in [10], we use Sim(3)
image alignment between keyframes, to estimate not only
their relative pose, but also the scale difference between
their inverse distance maps. This is done by introducing
an additional error term – the geometric error – which
penalizes differences in inverse distance. The energy function
for aligning (IK1, DK1) and (IK2, DK2) thus becomes

EKf(µ) :=
∑

u∈Ωd

[
ρ

(
rIu(µ)

σrIu(µ)

)
+ ρ

(
rDu (µ)

σrDu (µ)

)]
, (20)

where µ ∈ sim(3), and

rIu(µ) = IK1(u)− IK2 (π(ωs(µ,u))) (21)

rDu (µ) = ‖ωs(µ,u)‖−1 −DK2 (π(ωs(µ.u))) . (22)

Note that we now optimize over relative scale as well, and
hence have to apply a similarity warp, defined as

ωs(µ,u) = sµRµπ
−1(u, DK1(u)) + tµ, (23)

where sµ is the scaling factor of µ. Note that in contrast
to [10], this residual now penalizes differences in inverse
distance. Again, we apply statistical normalization based on
the propagated variances as in [10]. For tracking Sim(3)-
constraints, we use a forward-compositional formulation.As
in [10], the approximated Hessian (JTWJ)−1 of the last
iteration can be interpreted as covariance on a left-multiplied
increment on µ, and is used in the subsequent pose-graph
optimization.

D. Semi-Dense Depth Map Estimation

Once a frame is registered to a keyframe, stereo matching
is performed to refine the keyframe distance map DKf.
As matching cost we use the sum of squared differences
(SSD) over five equidistant pixels along the epipolar line.
If a prior exists, the epipolar search is constrained to the
interval [d− 2σd, d+ 2σd]. This greatly improves efficiency
and minimizes the probability of finding an incorrect match,
as in practice only very short line segments have to be
searched. Subsequently, we refine the found match to sub-
pixel precision.

Similar to [22], each new measurement is fused into the
existing depth map. Measurement variances σ2

m are obtained
using the geometric and photometric error, as derived in [22].



Fig. 7. Non-Rectified Stereo Matching: We efficiently browse the epipolar
curve in the image uL using a parametric equation. It is obtained by
projecting the line connecting pmax and pmin on the unit sphere around
the camera center.

Finally, we smooth the inverse distance map, and remove
outliers.

1) Non-Rectified Stereo: When performing stereo on the
unified model, epipolar lines are not straight lines, but curves.
More precisely, Geyer et al. showed that these epipolar
curves are conics [18], as they are the pinhole-projection of a
geodesic on the unit sphere, as visualized in Fig. 7. We here
present a general method to incrementally and efficiently
compute points along the epipolar curve, at a constant step-
size of 1 px: While this is trivial for straight lines, it is not
straight-forward for the general case of epipolar curves.

We first define the two points pmax,pmin ∈ R3 on the unit
sphere around the projective center Cref, which correspond to
the maximum and minimum inverse distance of the search
interval dmax,dmin:

pmax := πs(Rπ
−1
u (u, dmax) + t) (24)

pmin := πs(Rπ
−1
u (u, dmin) + t). (25)

Here, πs projects a point onto the unit sphere, π−1u is the
unprojection function of the unified model (5), and u is the
pixel in IKf we are trying to match. We then express the
straight line between these points as

pL(α) = αpmax + (1− α)pmin, (26)

for α ∈ [0, 1]. This also gives a parametric expression for
the epipolar curve in Iref as

uL(α) := πu(pL(α)). (27)

Note that we apply the full unified projection function, which
first projects a point pL onto the geodesic, and then into the
image. This is visualized in Fig. 7.

Starting at uL(0), we then browse the epipolar curve
by incrementing α. A step-size of 1 pixel is enforced by
using a first-order Taylor expansion of uL, and choosing the
increment in α as

δα =
∥∥JuL

∣∣
α

∥∥−1, (28)

which we re-evaluate for each increment. Note that this
method is independent of the shape of the epipolar curve,
and hence can be used for any central camera model.

Fig. 8. Piecewise rectification: Example of fisheye camera rectification.
The borders are still significantly distorted compared to the original image,
as it is clearly visible on the checker-board, which leads to interpolation
artifacts or blur.

Nevertheless, it is much more expensive than browsing a
straight line, as each point is projected individually. In LSD-
SLAM however, the search interval is always small, as either
a good prior is available, or the pixel has just been initialized
and hence the baseline is small.

2) Pre-Rectified Stereo: For a large disparity search range,
the above method can become very costly since it requires
re-evaluation of the projection function for each point. Thus,
the valid question arises whether piecewise rectification
of the input image as described in Sec.II-B, followed by
straight-forward line-browsing would be faster. For this we
determined suitable values for the focal lengths fx and fy of
each pinhole camera individually, minimizing the change in
angular resolution at each point in the image. An example
is shown in Fig. 8: Still, some distortion is clearly visible,
note for example how the checker-board shape is altered.
Further, we extend the visible field of each rectified image
by 20 pixels images, which is not displayed in the figure. We
then perform line-stereo the same way as is done in [22]. In
Sec. IV we will compare these two approaches regarding
accuracy and efficiency.

IV. RESULTS

We evaluate our algorithm regarding accuracy and com-
putational requirements on both synthetic and real data.

A. Hardware Setup

For real data experiment, we use a global-shutter usb3
camera equipped with a 185 ◦ FoV fisheye lens. The ξ
parameter for this system has been estimated to 2.06 by off-
line calibration, using the Kalibr toolbox [23]. Images are
cropped and scaled to a 480×480 region centered around the
principal point. We recorded a number of trajectories with
rapid, handheld motion, including quick rotation – Figure 9
shows some example images from the longest sequence. We
also show two of the sequences (T2 and T5) in the attached
video. For ground truth acquisition, we use a motion capture
system which covers an area of approximately 7×12 m
– as some trajectories leave this area, we only compute
errors on the part for which ground truth data is available.
The synthetic data was generated using Gazebo simulator,
modified to have as extra output the synchronized pose,
185 ◦ images, and distance ground truth. The movement
is slower on this dataset and mimics that of a quadrotor.



Fig. 9. Reconstruction of T5 sequence. Top: Color-coded inverse distance
maps. Note how we can obtain geometry for the full 185 ◦ field of view.
Bottom: Final point cloud. This corresponds to the right plot in Fig. 10

For comparison with a pinhole model, we also synthesize a
sequence of rectified images, artificially cropping the field
of view to 100 ◦ horizontally and vertically. We make the
dataset including ground truth publicly available online.1

B. Evaluated Parameters

We evaluate the effect of three different parameters:
• Camera Model: We use either the unified omnidirec-

tional model (Uni, Sec. III-D.1), or a piecewise rectified
model (Multi, Sec. III-D.2). As baseline, we use the
cropped & rectified video with a pinhole model (Pin).

• Input Resolution: We use either an input resolution of
480×480 (Full) or 240×240 (Half ).

• Resolution Used for Tracking: We choose to stop the
coarse to fine approach in tracking either at the input
image (level 0 of the image pyramid) or at the first
octave of it (level 1), allowing to speed-up tracking
significantly, while maintaining most of the accuracy.

For comparison we also run the recently presented ORB-
SLAM [24] on the rectified dataset (Orb). All the experi-
ments were conducted on a Intel i7 laptop CPU.

C. Accuracy Comparison

We evaluate the accuracy of our method in terms of the
translational root mean square error (RMSE) of the final
position of all keyframes, after 7DoF alignment with the
ground-truth. Due to the hard real-time constraint and the
multi-threaded nature of the evaluated algorithms, the results
are non-deterministic. In fact, small changes may cause
different frames to be selected as keyframes, which in turn
can greatly affect the outcome of the overall algorithm – in

1https://vision.in.tum.de/omni-lsdslam
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Fig. 10. Horizontal position for T2, T3 and T5. The red line shows the
result of Uni-Full-0, the green line that of Pin-Full-0, and the blue dotted
line the ground truth where available. For T2 and T3, the pinhole version
is lost for a large portion of the trajectory, as they include fast rotations
which cannot be tracked well with the cropped field of view. See Tab. II,
and Fig. 9 for an example pointcloud.

TABLE I
MEAN TIMING RESULTS (MS PER FRAME)

480×480 240×240 160×160

Mul Uni Pin Mul Uni Pin Mul Uni Pin

Mapping 31 28 20 11 8 7 - - -
Tracking 24 24 17 10 10 6 3 3 2.2

particular for sequences containing rapid motion and strong
camera rotation, both ORB-SLAM as well as LSD-SLAM
behave very non-deterministic, and occasionally fail entirely.
We therefore average the RMSE of the best 3 runs out of 5, in
order to reduce the impact of occasional total tracking failure.
The results are shown in Tab. II and some representative
plots are shown in Fig. 10. Also see the attached video. If an
algorithm is in a lost state for more than half of the sequence,
we mark this run as failed. If more than two out of the 5
runs fail, we report it in the table.

Two things can be observed: First, results obtained with
the omnidirectional camera clearly outperform the pinhole
model. This shows that our algorithm can benefit from
additional information in the image due to an increased field
of view – in some cases very significant difference is not
surprising: a wider field a view increases greatly the duration
during which 3D points are visible.

The other observation is also little surprising: A higher
resolution gives consistently better results than a lower
resolution, although the difference is surprisingly small.
Interestingly, both half resolution omnidirectional methods
often outperform the full resolution pinhole model. It shows
that, at least in challenging scenes, large field of view can be
more important than a high image resolution, even if it leads
to lower angular resolution. A more thorough evaluation of
the effect of image resolution, steering the trade-off between
accuracy and computational cost for direct SLAM can be
found in [25]. An example of a 3D reconstruction of the
synthetic scene using half and full resolution is shown in
Fig. 11.

D. Timing Measurement

Table I shows the measured average time taken by tracking
and mapping, measured on the same dataset used for the
accuracy evaluation. These results show that our distorted
stereo matching algorithm is slightly more efficient than



TABLE II
ABSOLUTE RMSE IN METERS

T1 T2 T3 T4 T5 S1 S2
Mul-Full-0 0.0489 0.0650 0.0454 0.0418 0.0501 0.0201 0.0394
Mul-Full-1 0.0480 0.0693 0.0471 0.0475 0.0564 0.0365 0.0744
Mul-Half-0 0.0721 0.0963 0.0545 0.0541 0.0842 0.0206 0.0422
Mul-Half-1 0.0717 0.0967 0.0646 0.0918 0.1142 0.0319 0.1010

Uni-Full-0 0.0524 0.0500 0.0457 0.0448 0.0355 0.0298 0.0418
Uni-Full-1 0.0499 0.0627 0.0490 0.0509 0.0519 0.0420 0.0681
Uni-Half-0 0.0654 0.0718 0.0563 0.0581 0.0665 0.0359 0.0491
Uni-Half-1 0.0744 0.0829 0.0588 0.0714 0.1163 0.0400 0.0635

Pin-Full-0 0.0639 0.0799 Failed Failed 0.2829 0.0439 0.6354
Pin-Full-1 0.0657 0.0833 0.0662 1.6509 0.5095 0.0788 0.5901
Pin-Half-0 Failed Failed 0.2946 0.0719 1.2703 0.1157 2.4272
Pin-Half-1 0.8727 Failed 0.1089 0.0879 2.2642 0.1570 Failed

Orb-Full 0.1276 0.6967 0.4873 0.5238 0.1379 - -
Orb-Half 0.7791 Failed 2.3810 1.1385 0.6004 - -

the multi-rectified version. This is due to the rectification
required beforehand, and the fact that almost always, the
browsed epipolar segments do not exceed a couple of pixels
in length. Real time is easily achieved since each frame can
be tracked at least 40 Hz, and mapped at more than 30 Hz
for a 480×480 image.

V. CONCLUSION

We proposed a large-scale, direct monocular SLAM sys-
tem for omnidirectional cameras. Based on two different
omnidirectional camera models, our system allows to use
a wide range of classical dioptric or catadioptric imaging
systems, including ones with a field of view exceeding
180 ◦. The contribution of this paper is two-fold: (1) we
explicitly formulate a camera model independent image
registration algorithm for tracking and (2) derived a generic,
accurate, and efficient way to perform stereo directly on the
unified omnidirectional camera model, based on a parametric
equation of the epipolar curves. We integrated these ideas
into the LSD-SLAM framework and evaluated its real-time
performance on a number of videos captured by a 185 ◦

fisheye camera. We measure both an improvement of the
accuracy of the localization and of its robustness to strong
rotational movement compared to a standard camera. We also
observe that even at relatively low resolutions (240×240), the
localization accuracy surpasses the accuracy obtained when
using a pinhole model, with a cropped field of view.
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