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Abstract

Image segmentation with one shape prior is an important problem in computer vision. Most algorithms not only share a similar
energy definition, but also follow a similar optimization strategy. Therefore, they all suffer from the same drawbacks in practice
such as slow convergence and difficult-to-tune parameters. In this paper, by reformulating the energy cost function, we establish
an important connection between shape-prior based image segmentation with intensity-based image registration. This connection
enables us to combine advanced shape and intensity modeling techniques from segmentation society with efficient optimization
techniques from registration society. Compare with the traditional regularization-based approach, our framework is more systematic
and more efficient, able to converge in a matter of seconds. We also show that user interaction (such as strokes and bounding boxes)
can easily be incorporated into our algorithm if desired. Through challenging image segmentation experiments, we demonstrate the
improved performance of our algorithm compared to other proposed approaches.
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1. Introduction

Energy minimization is widely considered to be an effi-
cient approach to the image segmentation problem. However,
intensity-based data energy terms alone are typically inadequate,
and therefore regularization terms are very important in order to
obtain the desired result. Typical regularization terms are based
on length and curvature, which tend to be weak and sometimes
cannot describe the underlying segmentation problem. In many
applications, we may have a priori knowledge about the shape
of the object we are looking for, and incorporating such shape
prior knowledge into the segmentation problem can drastically
improve the segmentation performance. Here we focus on the
case when a single shape prior template is available, an area of
recent research interest [4, 11, 13, 26, 19, 29].

Most regularization-based algorithms for segmentation with
a single shape prior follow a similar strategy, and they gener-
ally suffer from similar drawbacks when applied in practice(see
Section 2). In this paper, we reformulate the regularization-
based single-shape-prior segmentation problem and develop a
template-based approach to produce a segmentation. The con-
tributions of our new template-based reformulation are:

1. To the best of our knowledge, we are the first to connect
single shape-prior based image segmentation to intensity-
based image registration, by optimizing only over the
transformation space of the shape template.

2. We show the intensity model used in our work can take
more general forms. For example, it can be either pre-
defined or estimated from the user input, such as strokes
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or bounding box. It can also be refined iteratively from
the intermediate segmentation result.

3. We propose an efficient and systematic approach to op-
timize the energy function. Our approach first rapidly
computes the optimal global similarity transformation with
an efficient frequency-domain algorithm. If desired, we
can further refine the segmentation by locally deform the
shape template to minimize the cost function. With our
current unoptimized C++ code, our algorithm converges
within a few seconds on an ordinary computer. In con-
trast, iterative regularization-based methods are typically
much slower.

This paper is organized as follows. In Section 2, we review
representative regularization-based approaches for the problem,
and show how they can all be formulated in the same frame-
work. We then point out the unavoidable drawbacks of this
framework that motivate us to rethink the underlying formula-
tion. In Section 3, we describe our new template-based formu-
lation along with its advantages over the standard regularization-
based formulation. We also make the connection between this
new formulation with the intensity-based image registration prob-
lem. Due to this new formulation, we are able to design an ex-
tremely efficient and powerful approach described in Section 4.
Section 5 discusses different kinds of intensity models that can
be incorporated into our framework. We then show the experi-
mental results in Section 6 and conclude in Section 7.

2. Regularization-based formulations

For the problem of image segmentation with one shape prior,
most previous work defines an energy function in the following
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way:
E(C,T ) = Edata(C, I)+λ ·D(C,T (Cre f )) (1)

where I is an input image I : Ω→R, C is a shape representation,
T is a shape transformation and D is a shape distance measure.
The most common shape representations C used in the liter-
ature include parametric shape representations: [0, l(C)]→ R
[16, 26], signed distance functions (SDFs) φ : Ω→R [6, 10, 4],
binary characteristic functions u : Ω→ {0,1} [11, 13], or very
recent work on relaxed characteristic functions u : Ω→ [0,1]
[19, 29]. Typical transformations T discussed in the shape-prior
segmentation is limited to parametric global transformation, in-
clude rigid, similarity or more general projective transforma-
tions [21]. Various shape distance measures D have been pro-
posed; Cremers et al. [8] gives a quick review of different shape
distance measures when the shape is represented as a SDF. As
for the data term Edata, most approaches use a region-based
Maximum Likelihood (ML) model [31] or a boundary-based
gradient model [3]. It is also possible to combine these two
models together.

When the shape is represented parametrically, as in [16, 26],
there are many shape descriptors that are invariant to certain ge-
ometric transformations T . For example, curvature (either inte-
gral or differential) is an invariant shape measure with respect
to rigid transformations [16], and tangent angle is an invari-
ant shape measure with respect to translations [26]. However,
the shape distances D based on these shape descriptors are not
usually invariant to these geometric transformations, since cor-
respondence between the shapes affects these distances. There-
fore, instead of optimizing over the geometric transformations
T , a shape correspondence or a diffeomorphism m : [0, l(C)]→
[0, l(Cre f )] is optimized instead where l(·) is the Euclidean length.

These different approaches not only share similar energy
functions, but also follow similar optimization strategies. The
typical optimization strategy employed is the following alter-
nating procedure:

1. Fix T and update C. This becomes a standard image seg-
mentation problem and common optimization methods
include level-set-based gradient descent [6, 10, 4, 16, 5],
discrete graph cuts [11, 13] or the recent convex con-
tinuous cut method [19, 29]. The drawback of level-set
gradient-based methods include numerical issues, slow
convergence and local optimality at convergence. Dis-
crete and continuous cut methods are both more efficient
and more powerful, so that a global optimum can be re-
covered. However, only a specific class of energies can
be optimized.

2. Fix C and update T . This is typically solved by gradient-
based optimization methods such as gradient descent on
the parameters of the transformation.

3. Go to Step 1 and iterate until convergence.

An exceptional approach that differs from this framework
was proposed by Schoenemann and Cremers [26], which solves
both steps together. They showed that a global optimum can be
obtained when the transformation is restricted to translation and

the shape is represented parametrically. Rotation can be incor-
porated in an exhaustive search manner. However, the com-
putational complexity is extremely high even in the 2D rigid
transformation case, which makes the approach quite difficult
to be applied to more general similarity transformations and 3D
applications.

Due to the local optimality of the second step, the overall
energy minimization cannot guarantee global optimality. Also,
the alternating strategy of optimizing rigid pose and shape can
be slow to converge. Other than the inherent local optimal-
ity and slow convergence issues, we observe in practice that
the regularization-based framework often needs careful tuning
(e.g., gradient descent step size, order of parameter update),
which makes the approach difficult to be applied in a general
setting. This is also pointed out by other researchers [8, 10].

These shortcomings limit the usage of shape-prior-based
segmentation approaches in some applications such as medi-
cal imaging, where there is an urgent need to get fast, robust,
automatic, and ideally optimal solutions. To better illustrate
these shortcomings, Figure 1 illustrates segmentation results of
leaf and ultrasound cardiac test images using the recently pro-
posed method of continuous cuts combined with gradient de-
scent on Lie Groups [19], with a large λ . The algorithm con-
verges to a local optimum in approximately 30 seconds with
100 iterations in both cases. In contrast, our method is able to
converge to a near-global optimum in as little as 3 seconds as
illustrated in Section 6. Since these drawbacks are inherent in
the regularization-based formulation, the main objective of our
work is to reformulate the energy function (1) in order to avoid
these drawbacks.

(a) (b) (c)

Figure 1: Segmentation results for two test images with the method proposed in
[19], with a large λ . (a) Input image. (b) Initial position of shape template (in
red) overlaid on the original image. (c) The segmentation result (in green). User
strokes are incorporated similarly to our method, as discussed in Section 5.1.
This figure is best viewed in color.

We note that there is also much work on image segmenta-
tion with multiple shape priors [27, 8]. The typical approach
is to first build a shape distribution model from training shapes
and then fit this model to the image to estimate the segmenta-
tion. We do not intend to compare these two problems in this
work since they each have their own application area. However,
we believe that the problem of segmentation with one shape
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prior is related to the segmentation with multiple shape priors.
For example, by assuming that the underlying distribution of the
training shapes is a Gaussian distribution, the single shape prior
studied in our work can be obtained from the training shapes as
the mean shape [6, 23]. We also show a preliminary example
of a straightforward (though not very efficient) extension of our
algorithm to the case of multiple shape priors in Section 6.

3. The template-based formulation

In this paper, we choose the binary characteristic partition
u : Ω → {0,1} as the shape representation for its simplicity.
The transformation imposed on the shape template is denoted
as T . The exact form of the transformation (similarity, rigid or
deformable) will be discussed later in Section 4. We follow the
typical framework of using a Maximum Likelihood model as
the data energy term:

Edata(u) =−
∫

Ω

logPin ·u dx−
∫

Ω

logPout · (1−u) dx

=
∫

Ω

(logPout − logPin) ·u dx+ constant

=
∫

Ω

Q ·u dx+ constant (2)

where Pin(x) and Pout(x) are the probabilities that pixel x be-
longs to the object and the background respectively. The exact
form of Pin(x) and Pout(x) can be very general, as we discuss
later in Section 5. The log-likelihood map Q(x) describes our
confidence that a certain pixel belongs to the object or to the
background. The lower Q(x) is, the more likely pixel x be-
longs to the object, and vice versa. A standard approach is to
use parametric distribution, i.e., Pin(x) =P(x|θin) and Pout(x) =
P(x|θout) where θin and θout denote the parameters of the inten-
sity distributions, such as Gaussian and Laplace distribution.
For example, when both Pin and Pout are Gaussian distributions
with mean intensities Min and Mout and the same variance, then

Q(x) = log

(
e
−(I(x)−MIn)

2

2σ2

)
− log

(
e
−(I(x)−MOut )

2

2σ2

)
= (I(x)−Mout)

2− (I(x)−Min)
2 (3)

Instead of composing this data term with a λ -balanced reg-
ularization term as in (1), the reference shape ure f serves as a
template in our formulation. That is, we implicitly constrain
that u = T (ure f ). Therefore, we end up with the following en-
ergy function:

E(u) = Edata(T (ure f )) =
∫

Ω

Q ·ure f (T (x)) dx (4)

The image segmentation problem thus corresponds to min-
imizing (4) only over the geometric transformation parameters
T . This template-based formulation seems at first sight to be a
trivial improvement; however, it offers many advantages com-
pared with the traditional regularization-based formulation (1).
One obvious advantage is that there is no balance parameter λ ,

which is also equivalent to setting λ to infinity1. One might
argue that by setting λ to infinity is too restrictive since it will
over emphasize the shape regularization term. However, as we
will discuss in Section 4, by allowing the transformation space
to include deformable transformation, this limitation is largely
avoided. A more important implication of this framework is
that it shows clearly the connection between shape-prior based
image segmentation and intensity-based image registration as
we will discuss next.

3.1. Connection to the registration problem
This template-based reformulation of image segmentation

with one shape prior is clearly related to image registration.
That is, the segmentation problem is equivalent to registering
the binary shape template ure f and the image log-likelihood
map Q when the registration metric is standard correlation. The
image registration problem has been heavily studied, and many
algorithms have been proposed so far. We refer the readers to
the survey [32] for a complete review.

Registration methods based on features such as SIFT [15, 1]
are very successful in many applications when distinctive fea-
tures of the same object in different scenes can be detected.
However, it is not straightforward to apply these techniques
in segmentation problems. Fig. 2 illustrates the SIFT features
([15]) detected on an ultrasound cardiac test image and a clean
shape template. Due to the cluttered background and noise,
the SIFT algorithm fails to match any of the features between
them. Furthermore, feature-based registration methods do not
provide any optimality guarantee regarding the estimated trans-
formation.

(a) (b) (c)

Figure 2: The SIFT features (b) of the image (a) and the shape template (c).
The SIFT algorithm fails to match any of the features between them.

Another major category of registration is intensity-based
registration. To efficiently optimize (4), most intensity-based
registration algorithms tend to apply various forms of gradient-
based strategies (e.g., gradient-descent or Levenberg-Marquardt)
to a cost metric. This is a powerful approach when the trans-
formation is non-rigid or deformable, as we discuss later in
Section 4.3. However, when the transformation is limited to
the global similarity transform, the registration cost function is
non-convex with respect to the similarity transformation param-
eters (translation, rotation and scaling). Therefore, it is difficult
to efficiently locate the optimum solution with gradient-based
local optimization techniques. Fig. 3 illustrates an attempt to

1To the best of our knowledge, this case has not been studied before.
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segment an image based on registering the log-likelihood map
to the binary shape template with the correlation metric un-
der similarity transform. Using gradient descent optimization
with a multi-resolution framework (3 levels), the algorithm con-
verges to a local optimum in approximately 15 seconds. In con-
trast, our method is able to achieve a near-global optimum in 3
seconds (see Section 6).

(a) (b) (c)

Figure 3: The segmentation result of the leaf image with multi-resolution gradi-
ent descent method. (b) Shape template. (c) The segmentation result in green.

A less popular registration method is frequency-domain ap-
proaches, or template matching [20, 30, 14]. Although it has
certain drawbacks when applied to the image registration appli-
cation [32], it is an ideal approach to our similarity transforma-
tion estimation step as we will discuss next. However, our seg-
mentation framework differs from standard frequency-domain
registration approaches in several aspects.

1. Standard correlation metric has many disadvantages in
image registration application. For example, it is not
invariant to changes in image intensities such as those
caused by changing lighting conditions across the im-
age sequence. Therefore, normalized cross-correlation is
typically used in the template matching [14]. However,
in our application, correlation is the correct registration
metric, derived directly from the Maximum Likelihood
model (2).

2. While in typical registration application, two images are
considered to be roughly in the same intensity range, in
our segmentation application, this is no longer true. The
shape template image is binary image u : Ω → {0,1},
while the log-likelihood map Q ranges from −∞ to ∞.
The different intensity range makes some algorithms, such
as Fourier-Mellin transfrorm [20], not directly applicable
to our segmentation problem.

4. Efficient optimization

Inspired by frequency-domain image registration approaches
[20, 30], we will first develop an efficient algorithm to search
for the globally optimum solution when the only transforma-
tion T is a translation vector t. We then discuss how to incor-
porate the rotation angle r and scaling factor s. We also show
how deformable registration techniques can also be applied to
our segmentation framework, which greatly reduces the depen-
dence on an accurate reference shape model. We assume all
the transformation parameters (t, r and s) are bounded, i.e.,
t ∈ [−N,N]× [−N,N], r ∈ [−π,π] and s ∈ [0,N] by assuming
that I is an N×N image.

4.1. Translation only

Let’s first consider the simplest case where the transforma-
tion is a translation t. Then the discretized energy model (4)
can be simply written as:

E(t) = ∑
x

Q(x) ·ure f (x− t) (5)

and the segmentation problem is stated as finding the best trans-
lation vector t such that the inner product of the shifted u and
the log-likelihood map Q is the maximum. As we mentioned,
a gradient-based method will give a local optimum. Since t is
bounded, exhaustive search will guarantee the global optimum;
the question is how to make it efficient.

Since the correlation metric used in (5) has a dual in the
Fourier domain, we can apply an extremely efficient search
method based on the Fast Fourier Transform (FFT) [7], inspired
by frequency-domain image registration approaches [20]. From
the basic facts of signal processing, the Fourier shift theorem
shows that (5) can also be written as:

E(t) = F−1(FQ ·F ∗
ure f

) (6)

where F , F−1 and F ∗ denote the Fourier transform, the in-
verse Fourier transform and the complex conjugate of the Fourier
transform respectively.

We note that the Fourier shift theorem requires a circular
shift instead of the linear shift commonly encountered in reg-
istration. Since the shape template u consists of a flat back-
ground, and the ground truth object sits within the image do-
main with all detail situated away from the edges, a linear shift
will be equivalent to a circular shift, and the above derivation
will hold exactly.

The benefit of converting from the spatial domain to the
frequency domain is obvious. The computational complexity
of the exhaustive evaluation drops from O(N4) in the spatial
domain to O(N2 logN) in the frequency domain, thanks to the
efficient FFT [7]. The reduced complexity makes the algorithm
extremely fast, requiring only a fraction of a second (including
both FFT and finding the extrema) on a 1000x1000 image to
obtain the global optimum. One possible further speed up is to
use a coarse-to-fine search strategy, where a coarse translation
space is first evaluated and the shape template is positioned to
the best location. This can be accomplished by subsampling
both the shape template and the likelihood map and apply the
Fourier shift theorem as in (6). Then a finer search strategy is
applied around the current shape template position. We observe
in practice that this corase-to-fine strategy is slightly faster.

Fig. 4 illustrates one experiment with Fig. 4a showing the
noisy image I that we want to segment. The log-likelihood
map Q is obtained from I with a two-phase parametric Gaus-
sian model with mean intensities 0 and 255 and the same vari-
ance as in 3. Fig. 4b shows the shape prior template u, which is
translated from the ground truth. Fig. 4c shows the correspond-
ing E(t) where the white spot clearly indicates the global mini-
mum. The optimal segmentation result is illustrated in Fig. 4d.
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(a) (b)

(c) (d)

Figure 4: Segmentation result with translation only. (a) The input image I. (b)
The prior shape template ure f . (c) The corresponding energy map E(t). (d) The
final segmentation result in green. This figure is best viewed in color.

4.2. Rotation and scaling

The FFT-based algorithm can guarantee the global optimum
of (4) when only translation is considered. However, it is not
straightforward to extend this method to include rotation and
scaling. We first discuss when the translation is known and
the only transformation considered is a rotation and uniform
scaling. Inspired by the work of image registration using the
log-polar transform [30], we develop a similar algorithm ap-
propriate for our image segmentation purpose.

Consider the log-polar coordinate system (a,b), where a de-
notes log radial distance from the center and b denotes angle.
We assume that the center is pixel (0,0). Therefore, any point
(x,y) in Cartesian space can be represented in log-polar coordi-
nates:

a = log
√

x2 + y2, b = tan−1 y
x

(7)

It is easy to show that isotropic scaling (sx,sy) in the Carte-
sian space transforms to a linear shift of the a axis by logs in the
log-polar space. Similarly, the rotation (xcosr+ysinr,−xsinr+
ycosr) in the Cartesian space transforms to a circular shift of
the b axis by r in the log-polar space. Therefore, the rotation
and scaling transformations map to simple translations in the
log-polar space and we can employ a similar FFT-based tech-
nique to recover the scale s and rotation r. Due to the linear
shift of the scale in the log-polar space, the Fourier shift theo-
rem will not hold exactly. In such cases, a window filter func-
tion (like a Hamming window) along the a axis should be em-
ployed before the Fourier transform to reduce edge effects, and
this may reduce the accuracy of the scale estimation to be near-
optimal.2 This implies that when the center of the transforma-
tion is fixed, the rotation and scale parameters can be optimized
near-globally.

Fig. 5 illustrates the segmentation result when only rotation
and scaling are considered. We also show the log-polar im-
age of the log-likelihood map Q and the shape template ure f in

2However, we did not observe this frequently in our experiments.

Fig. 5c,d. The complexity for recovering scaling and rotation is
the same as the translation-only case, which is O(N2 logN), if
the log-polar image is also N×N.

(a) (b)100 200 300 400 500 600100200300400500600 −6−4−20246x 104 100 200 300 400 500 600100200300400500600 050100150200250
(c) (d)

Figure 5: Segmentation result with rotation and scaling only. (a) The image I
and the shape template in red. (b) The segmentation result in green. (c) The
log-polar image of Q. (d) The log-polar image of u. This figure is best viewed
in color.

4.3. Deformable transformation
So far the transformation is restricted to the global similar-

ity transformation where the final segmentation result is simply
the translated, rotated and the scaled version of the shape refer-
ence template. Although fast and efficient, it is clearly limited
in practice, where the target segmentation typically has certain
degree of deformable transformation compared to the reference
shape. Fortunately, by reformulating our segmentation problem
we are able to apply deformable registration techniques to our
segmentation application.

The nature of the local deformation of the shape can vary
significantly, therefore difficult to describe via global parametrized
transformations. Instead, we have chosen an free-form defor-
mation (FFD) model, based on B-Splines, to deform the shape
template by manipulating the underlying mesh of control points.
The cubic B-splines function is used in this paper, since it has
a local support and guarantees C1 continuity at control points
and C2 continuity everywhere else. The registration is solved
by minimizing the correlation metric (4), with respect to the
control lattice deformation, and the rest sample points are in-
terpolated from the control points using cubic B-splines. We
briefly outline the main components in our algorithm, and refer
the interested readers to many excellent work on FFD registra-
tion, such as [24, 17].

The control points of the underlying mesh domain X ×Y
over the original shape template domain N×N is defined as,

P = (Px
m,n,P

y
m,n);

(
m,n) ∈ [1,X ]× [1,Y ],(x,y) ∈ [1,N]× [1,N]

thus the deformed position of any pixel x = (x,y) is defined by
a tensor product of cubic B-splines:

T (x,P) =
3

∑
k=0

3

∑
l=0

Bk(u)Bl(v)Pi+k, j+l (8)
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where i = b x
X c−1, j = b y

Y c−1, u = x
X −b

x
X c, v = y

Y −b
y
Y c.

Pi+k, j+l are the coordinates of the sixteen controls points in
the neighborhood of pixel x where (k, l) ∈ [0,3]× [0,3], and
Bk(u) represents the kth basis function of cubic B-Splines:

B0(u) =
(1−u)3

6

B1(u) =
(3u3−6u2 +4)

6

B2(u) =
(−3u3 +3u2 +3u+1)

6

B3(u) =
u3

6
(9)

The control points P are the parameters of the B-spline FFD
and the resolution of the control points mesh determines the de-
gree of the deformable deformation. A fine resolution of the
mesh enables the modeling of highly local nonrigid deforma-
tions, but with the cost of higher computational complexity. To
find the optimal transformation, we iteratively minimize the fol-
lowing cost function (4) with respect to the control points P:

E(P) =
∫

Ω

Q ·ure f (T (x,P)) dx

where T (x,P) is defined in (8). The iterative algorithm can then
be summarized in Algorithm 1. To update the control points,
we use the limited-memory Broyden, Fletcher, Goldfarb and
Shanno (LBFGS) algorithm, and the control point mesh grid
spacing is 8×8.

Algorithm 1 Deformable transformation estimation
Input: Shape prior template and the Image I.
Pre-computation: Compute the log-likelihood Q from I.
Initialize the control points P
while Not converged do

1. Calculate the gradient vector, ∇E = ∂E(P)
∂P

2. Update control points P
end while
B-spline interpolation to generate deformed shape template.

(a) (b) (c)

Figure 6: Deformable transformation estimation. (a) The input image I and the
prior shape template in red. (b) The intermediate segmentation result after 20
iterations. (c) The converged segmentation result. This figure is best viewed in
color.

Fig. 6 illustrates one deformable transformation estimation
example. The input shape template in red is overlaid with the
given image in Fig. 6a. The green shape in Fig. 6b is the in-
termediate result in the iterative update process. The final con-
verged segmentation result is illustrated in Fig. 6c. The whole

process takes 50 iterations, around 20 seconds to converge, which
is slower than global similarity transformation estimation.

4.4. The full transformation estimation algorithm
In real-world applications, it is important to consider a full

transformation space including both similarity transformation
(t,r,s) and deformable transformation. Joint optimizing all of
them is intractable. Instead, we believe that before applying a
higher-order transformation such as deformation, the accurate
and efficient estimation of the simpler similarity transformation
is critical. It serves as both a near-optimal solution and an ac-
curate and fast initialization for further deformation estimation.
This issue is similar to the challenge of appropriately separating
transformation and deformation parameters.

Therefore, in the full algorithm, we first alternately update
the translation t and the transformation pair (s, r), as described
in Algorithm 2. When the similarity transformation estimation
converges to the optimal (t,r,s), we apply the deformation es-
timation as discussed in Secton 4.3. The input shape template
ure f is also the initial shape estimate u0.

Algorithm 2 Shape prior image segmentation algorithm
Input:Shape prior template u0 and the image I.
Pre-computation:Compute the log-likelihood Q from I.
while Not converged do

1.Compute translation t from ui and Q. (Section 4.1)
2.Update ui with t to uit
3.Compute s and r from uit and Q. (Section 4.2).
4.Update uit with s and r to ui+1

end while
Deformable transformation estimation. (Section 4.3).

(a) (b) (c)

(d) (e) (f)

Figure 7: Full similarity transformation result. (a) Initialization u0. (b) u0t . (c)
u1. (d) u1t . (e) u2. (f) u3 (final result). This figure is best viewed in color.

Fig. 7 illustrates an experiment of the full similarity trans-
formation estimation without deformation estimation. Fig. 7b-c
show the results after the translation and rotation/scaling esti-
mation in the first iteration. Fig. 7d-e show the results after
the translation and rotation/scaling estimation in the second it-
eration. Finally, Fig. 7f shows the result after the third itera-
tion, which obtains the global optimum. The whole segmenta-
tion (with image size 640x480) takes 3 seconds on an ordinary
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computer, and further speed-up is likely by optimizing our C++
code. Zoom-in results show the accuracy our algorithm can
achieve.

By neglecting the window-filtering effect, each individual
update of t and (r,s) can obtain the global optimum. However,
the overall similarity transformation estimation can not guaran-
tee global optimum for all four parameters. For example, Fig. 8
shows one such experiment. A noise-corrupted image with two
scissors (one big and one small) is provided in Fig. 8a. Due
to the unnormalized ML energy model of Eq. 4, it is easy to
check that the energy of the big scissor segmentation of Fig. 8c
is higher than the energy of the small scissor segmentation of
Fig. 8b. However, given the initial shape template in Fig. 8a,
our algorithm can only converge to the local optimal result in
Fig. 8b, while Fig. 8c illustrates the true global optimum.

(a) (b) (c)

Figure 8: Locally optimal result. (a) I and u. (b) The segmentation result, a
local optimum. (c) The global optimum.

It is straightforward to show that although global optimal-
ity is not guaranteed, our similarity transformation estimation
leads to the concept of “partial optimality”, introduced in [28,
12]. The partial optimum (x∗,y∗) of a function f (x,y) is defined
with respect to its whole x-section and y-section at (x∗,y∗),
while a local optimum is defined with respect to only a small
neighborhood at (x∗,y∗). Wendell and Hurter [28] showed that
a partial optimum solution is “almost always” a local optimal
solution, but not vice versa. However, rare counter-examples
do exist and we refer the reader to [28] for a detailed discus-
sion. Although we can not conclude theoretically that partial
optimality is a stronger condition than local optimality due to
these counter-examples, we observe in practice that partial op-
timum has a better chance of achieving global optimum. We
could also incorporate multi-start [12] into our approach. This
simply amounts to running the algorithm with different initial-
izations, since it has higher chances of obtaining a global opti-
mum result as illustrated in Fig. 10a–b. This practical perfor-
mance is very desirable in our algorithm since the output of the
similarity transformation estimation is used as the input for the
final deformation refinement. Therefore, the better the similar-
ity estimation is, the better the final deformation estimation will
be.

Fig. 9 illustrates a complete experiment where similarity
transformation and deformable transformation are both consid-
ered, as in Algorithm 2. Fig. 9a shows the input image and
the initial reference shape template. Fig. 9b shows the con-
verged result of the similarity transformation estimation after 4
iterations. It also serves as the input to the deformable trans-
formation estimation process, where the final result is shown in
Fig. 9c.

(a) (b) (c)

Figure 9: Full transformation result. (a) Initialization u0. (b) Converged re-
sult of the similarity estimation. (c)Final segmentation result after deformation
estimation. This figure is best viewed in color.

We note here that the Fourier spectrum itself is translation
invariant and its conversion to the log-polar domain maps the
rotation and scaling to simple translation. Therefore, a non-
iterative algorithm can be designed to first estimate the rotation
and scaling using the corresponding spectrum of the original
images after proper filtering to remove edge effects as discussed
in Section 4.2. Then translation is estimated with another FFT
after the original images are compensated with the estimated
rotation and scaling factors. This framework is very popular in
the image registration literature and is known as the Fourier-
Mellin transfrorm [20]. However, it is not directly applicable
to our image segmentation problem. As we mentioned in Sec-
tion 3.1, in image registration applications, the intensity dis-
tributions of two images are similar to each other; therefore
their corresponding spectra are also similar. However, in our
segmentation application, with one binary 0-1 image (shape
template) and another float image ranging from −∞ to ∞, the
Fourier spectra are drastically different, which makes the phase-
correlation method in the spectral domain not applicable.

5. Intensity modeling

Up to this point, the log-likelihood map Q was simply es-
timated as the standard two-phase Gaussian model given in (3)
and fixed during the iteration. However, the intensity model of
the foreground Pin(x), background Pout(x) and hence the log-
likelihood map Q(x) can take many other general forms.

(a) (b) (c)

Figure 10: (a)-(b) Two initializations (in red) and segmentation results (in
green) of Fig. 8a. Global optimality is achieved in both cases. (c) User pro-
vided background stroke (in yellow) and global optimum result. This figure is
best viewed in color.

5.1. Interactive segmentation

Interactive image segmentation is very popular and useful
as demonstrated recently [2, 22]. User-provided strokes and
bounding box not only serve as interactive hard constraints that
the segmentation is required to satisfy, but also provided a method
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to estimate the intensity distributions of both the object and the
background.

Assume that O and B denote the subset of pixels a priori
known to be a part of “object” and “background” in the image,
which can be obtained from user input. Naturally, the subsets
satisfy O∩B = /0. In the case of bounding box, the region out-
side the bounding box is defined to be the background region
B, and O = /0. The log-likelihood map Q can then be defined
as:

Q(x) =


R1, if x ∈ B
R2, if x ∈O
log(P(x|“bkg”))− log(P(x|“obj”)) if x 6∈O∪B

where R1 = 1+maxx6∈O∪B Q(x), R2 = −1−minx6∈O∪B Q(x) .
P(x|“bkg”) and P(x|“obj”) are histograms of the pixels x in O
and B respectively. If either O or B is empty, then standard
Gaussian model can be used. Setting Q(x) to be large posi-
tive and negative values for pixels in O and B acts like a hard
constraint where the final segmentation must satisfy. This can
effectively prune some partial optimum solutions as illustrated
in Fig. 10c. Without the user-provided background stroke (in
yellow), the segmentation is trapped into the partial optimum
(Fig. 8b).

5.2. Gaussian Mixture Model
Aside from simple parametric and non-parametric distribu-

tions, we can also incorporate more complex intensity mod-
els such as the Gaussian Mixture Model (GMM) [22] into our
framework. Each GMM, one for the foreground and one for the
background, is defined to be a full-covariance Gaussian mixture
with K components each, K = 5 in our experiment, totaling 2K
components. The probability density of each intensity value x
is contributed by all K components kin,kout ∈ 1, ...K, from ei-
ther the background or the foreground model. Therefore, the
intensity model can be described as:

Pin(x) = ∑
kin

πin(kin)P(x|θin(kin))

Pout(x) = ∑
kout

πout(kout)P(x|θout(kout))

where πin(k) and πout(k) are the kth foreground and background
component weights respectively. Similarly, θin(k) and θout(k)
are the mean and the covariance matrix of the kth foreground
and background component.

In Algorithm 2, intensity models are pre-computed before
the estimation of transformation parameters and are fixed dur-
ing the iteration. If the intensity model is not accurate, then
the segmentation result will be sub-optimal. Also they are not
able to model complex intensity distributions, such as Fig. 11.
With GMM, the intensity modeling works iteratively. This has
the advantage of allowing automatic refinement of the inten-
sity model, as newly labeled foreground and background pixels
from ure f (T (x)) are used to refine the GMM parameters. The
algorithm of shape prior image segmentation with GMM is il-
lustrated in Algorithm 3. Notice that we add an extra step of
intensity model update in the iterative similarity estimation.

Algorithm 3 Shape prior image segmentation with GMM
Input:Shape prior template u0 and the image I.
Initialization: Compute initial GMM parameters and Q.
while Not converged do

1.Compute translation t from ui and Q. (Section 4.1)
2.Update ui with t to uit
3.Compute s and r from uit and Q. (Section 4.2).
4.Update uit with s and r to ui+1
5.Update the GMM paramters and Q.

end while
Deformable transformation estimation. (Section 4.3).

(a) (b) (c)

Figure 11: Shape-prior segmentation with GMM (a) Image with the reference
shape in red. (b) The segmentation result after similarity transformation. (c)
The segmentation result after deformable transformation. This figure is best
viewed in color.

Given the initial shape template, we create K components
of the GMM for both the foreground and background. A stan-
dard approach is to use Expectation-Maximization (EM) algo-
rithm, which softly assigns probabilities for each component to
a given intensity observation. However, as observed by other re-
searchers also [22], this involves significant computation com-
plexity with negligible practical benefit. Instead, we divide both
foreground and background regions into K pixel clusters, where
one Gaussian component is generated from each pixel cluster.
The key problem is to find well separated and low-variance
clusters. Inspired by Ruzon and Tomasi [25], we use the color
quantization technique proposed by Orchard and Bouman [18]
which generates tight and well-separated clusters. This tech-
nique uses the eigenvector of the color variance to determine
how to split the clusters. For a detailed discussion, we refer the
readers to the original article [25, 18].

As we iteratively update of the similarity transform, the
intermediate segmentation result will change. To update the
GMM, a naive way is to rebuild the GMM from scratch with
the same technique we described above. However, this is very
computationally expensive. Instead, we follow the EM type up-
date, where each pixel in the new segmentation is assigned to
one of K component, by evaluating its likelihood of belonging
to each component with old GMM. Then for a given compo-
nent k, say, the foreground label, the subset of foreground pixels
F(k) = {xn : kn = k} is collected and the new GMM parameters
are recomputed from it. Note that the weight component π(k)
is defined as π(k) = |F(k)|

∑k |F(k)| , where | · | denotes the size of a set.
If desired, user input such as strokes and bounding box can also
be incorporated by setting Q(x) to large positive or negative
values depending on whether x belongs to the a priori known
foreground or background region.
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(a) Occluded scissor: 3 seconds, Iter=3 (b) Leaf from [19]: 3 seconds, Iter=4 (c) Leaf from [19]: 2 seconds, Iter=3

(d) Scissor with cluttered background: 5 seconds, Iter=5 (e) CT Liver: 4 seconds, Iter=4

(f) MRI prostate: 1 second, Iter=2 (g) Ultrasound cardiac: 2 seconds, Iter=3

Figure 12: Experimental results for similarity estimation only. This figure is best viewed in color.

Fig. 11 illustrates one segmentation example of using GMM
as the intensity model. Fig. 11a shows the input image along
with the reference shape template. Fig. 11b shows the segmen-
tation result after similarity transformation estimation. Fig. 11c
illustrates the final segmentation result after deformation esti-
mation. Notice that the stem is correctly recovered due to the
deformable registration step.

6. Experiments

In this section, we apply our segmentation algorithm to var-
ious applications. For all the experiments, the red shape tem-
plate indicates the prior shape template (also initial shape tem-
plate) and the green shape template indicates the segmentation
result. User provided foreground and background strokes (if
any) are illustrated in blue and yellow respectively. User pro-
vided bounding box is shown in magenta.

Fig. 12 shows the segmentation result with Gaussian and
simple histogram intensity models. If user strokes are provided,
the log-likelihood map Q is estimated from the strokes, other-
wise, it is estimated from the user-provided (Min, Mout ) for a
two-phase model as in (3). Deformable registration is not ap-
plied to these experiments. We also show the segmentation time
and the number of similarity estimation iterations in the subcap-
tions.

As we can see, the performance of our algorithm on these
challenging image segmentation problems is very satisfactory,
obtaining the near-global optimum result in a matter of a few
seconds. In contrast, regularization-based methods are typi-
cally much slower and less optimal as illustrated in Fig. 1. To
further compare with other approaches, we implemented the

standard level-set based shape-prior image segmentation algo-
rithms [4, 10] along with the recently proposed continuous-cuts
method [19]. We compared the three methods on the same leaf
image (taken from [19]) in Fig. 13, with carefully tuned param-
eters. The reference shape template is the same as Fig. 12b,
and the initialization for the level-set evolution is illustrated as
the red circle in Fig. 13ab. The number of iterations for each
experiment is set to 100, where each iteration has an alternat-
ing step of updating shape and pose. For level-set algorithm
[4, 10], narrow-band approach is used to speed-up the compu-
tation. Fast marching is also used to periodically reinitialize the
signed distance function. All three algorithms are trapped into
the local optimum, while our algorithm successfully converges
to the near global optimal solution in a few seconds (Fig. 12b).

(a) (b) (c)

Figure 13: Comparison segmentation result with three techniques. (a) [4]. (b)
[10]. (c) [19].

Fig. 14 shows the real-world challenging segmentation re-
sults [? ] using full transformation (both similarity and de-
formable) with GMM as the intensity mode. User input such
as strokes and bounding box can be incorporated in the same
manner as described in Section 5.2. Fig. 14a shows the original
image with user input if any. Fig. 14b shows the reference shape
template. Fig. 14c shows the segmentation result after similar-
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(a) (b) (c) (d)

Figure 14: Segmentation results of full transformation estimation with GMM as intensity model. (a) Image with user input. (b) Reference shape template. (c)
Segmentation result after similarity transformation. (d) Final segmentation result. This figure is best viewed in color.

(a) (b) (c) (d) (e) (f)

Figure 15: Walking data experimental results. (a)–(c) 3 representative shape templates, (d)-(f) The optimum segmentation results.

ity transformation estimation. This intermediate segmentation
result is near-optimal with respect to similarity transformation.
This optimality guarantee greatly reduces the chance that de-
formable estimation being trapped into local optimum. Fig. 14d
shows the final segmentation result.

We also tested our algorithm on publicly available data pro-
vided by the authors of [9]. In this experiment, we take 3 rep-
resentative shape silhouettes from the training database, and 3
representative images from the test database. For each test im-
age, we run our algorithm (two-phase model) with all 3 shapes
and pick the result with the highest objective function value.
The result is illustrated in Fig. 15. This is a straightforward
preliniminary application of our model to the problem of image
segmentation with multiple shape priors. Loosely speaking, it
is an exhaustive search in a coarsely discretized shape space.

7. Conclusion

By reformulating the problem of image segmentation with
one shape prior into a template-based framework, we designed
a highly efficient segmentation framework. The preliminary ex-
perimental results indicate the satisfactory performance of our
algorithm. In the future, we plan to investigate a more compli-
cated segmentation algorithm for multiple shape templates. We
are also extending our current framework to affine and projec-
tive transformation. In addition, we are also planning to apply
our algorithm to challenging 3D medical segmentation applica-
tions, where many current methods fail to provide a fast, good
solution.
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