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Tactile Sensing for Mobile Manipulation
Sachin Chitta1 Jürgen Sturm2 Matthew Piccoli3 Wolfram Burgard2

Abstract—Tactile information is valuable in determining prop-
erties of objects that are inaccessible from visual perception. In
this work, we present a tactile perception strategy that allows
a mobile robot with tactile sensors in its gripper to measure a
generic set of tactile features while manipulating an object. We
propose a switching velocity-force controller that grasps an object
safely and reveals at the same time its deformation properties.
By gently rolling the object, the robot can extract additional
information about the contents of the object. As an application,
we show that a robot can use these features to distinguish the
internal state of bottles and cans — purely from tactile sensing
— from a small training set. The robot can distinguish open from
closed bottles and cans, and full ones from empty ones. We also
show how the high-frequency component in tactile information
can be used to detect movement inside a container, e.g., in order
to detect the presence of liquid. To prove that this is a hard
recognition problem, we also conducted a comparative study
with 17 human test subjects. The recognition rates of the human
subjects were comparable to that of the robot.

I. INTRODUCTION

Humans have a remarkable sense of touch that enables
them to explore their environment in the finest detail [1], [2].
Tactile feedback provides subtle cues about the environment
that cannot be obtained from any other perceptual sensors.
Tactile feedback allows us to localize objects in our hand,
determine their rigidity as well as other material properties,
and even their identity. Consider, for example, the task of
choosing fruit: the response of the fruit quickly lets us figure
out whether it is ripe. Another example is to clean a table
full of bottles: in order not to spill anything, knowing which
bottles contain liquid means knowing which ones need to be
manipulated with care.

Human skin contains a variety of touch-sensitive cells, that
signal the deformation of the skin to the brain. The human
hand is equipped with four different types of tactile afferents,
that respond to tactile stimuli at different frequencies and
temporal scales [2]. Neuro-physiological evidence exists that
suggests the specific form of the fingers including the finger-
nail enables the perception of oriented fingertip forces [3].

Tactile sensors provide robots with additional means of
sensing the objects they are manipulating. On the hardware
side, tactile sensors range from simple contact switches that
provide binary information about whether the robot is in con-
tact with the environment to more complex arrays of sensors
that provide pressure sensing at a resolution comparable to
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Fig. 1. Top left: A mobile manipulation robot grasping a bottle estimates
both object class as well as the state of the grasped object from its tactile
appearance. Top right: Comparative study on tactile performance with human
test subjects. Bottom: The robot estimates whether liquid is in the bottle by
rolling it. The robot extracts peaks of high-frequency using its touch-sensitive
fingertips.

human fingertips [4]–[9]. Force-torque sensors mounted on
the wrist of a robot are also often used to provide tactile
information about the environment, but are in general less
accurate than tactile sensing in the fingertips.

Various approaches have been proposed on tactile infor-
mation processing, but it has largely remained unclear what
information a robot can deduce reliably from tactile data and
how it can use this information to support object manipulation.
Therefore, our focus in this work has been to develop a set
of generic tactile features that can be easily extracted from
most tactile sensors, and that facilitate the usage of tactile
information. More specifically, we present a set of six generic
tactile features that describe the deformation properties of
objects being manipulated, like the object size, the compres-
sion ratio and compression velocity. These features can then
be used by standard machine learning techniques to learn
a classifier for recognizing different internal states. In our
concrete evaluation scenario, we apply our approach to the
problem of discriminating between various types of liquid
containers (water bottles, soda cans, or fruit juice bottles) and
their respective internal states (full, empty, open, or closed). A
robot can use this information both for low-level motor control
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and higher-level motion planning algorithms with the aim
to make object manipulation more robust. For example, the
robot can select an appropriate gripping force, manipulation
speed, or impose other constraints, in order to neither spill
liquid nor crush the bottle. We compare the results from
these experiments to human-study experiments, where human
subjects were asked to discriminate among the same set of
objects. The results of this study inspired us to consider an
additional tactile feature based on high-frequency components
in the tactile signals. In further experiments, we found that this
feature is particularly well suited for indicating the presence
of liquid in containers while the container is actuated.

A. Related Work

Several studies have shown that humans are very good at
modulating the applied grasp force in relation to the expected
load force [1], [10]. Even during dynamic motions such
as walking or running, humans always apply the minimum
force required to hold an object safely. These coordinative
constraints simplify the control by reducing several degrees-
of-freedom during the manipulation tasks. Tactile perception
hereby plays an essential role: In experiments with humans, it
was shown that the test subjects exerted much more gripping
force than actually was needed when their fingertips are anes-
thetized, even if visual feedback was available [11]. Recently,
McMahan et al. [12] have shown that high-bandwidth haptic
playback significantly improves the perceived realism of a
master-slave tele-operation system.

Dahiya et al. [4] provide both a good introduction on tactile
sensing in humans, and a detailed discussion of approaches
on the development of tactile sensors for robots. Recent
developments in sensor hardware include the work of Weiss et
al. [6] on resistive sensor cells, Ohumura et al [7] on a flexible
sensor skin, Ueda et al. [8] on vision-based tactile finger tip
sensors.

Bierbaum et al. [13] presented recently an approach for
tactile exploration of objects using a five-fingered hand based
on potential fields. Schneider et al. [14] used tactile sensing
for object recognition. They applied a variant of the bag-of-
features approach to the tactile images, and showed that the
robot could recognize a large set of different objects. The
authors also presented an exploration strategy that optimizes
the number of grasps based on the expected information gain.
Gorges et al. [15] recognized different objects based on tactile
and kinesthetic sensors using self-organizing maps (SOMs). In
their experiments, they found that additional passive degrees
of freedom between the robotic fingers and the tactile sensor
array improved the recognition rates significantly. Takamuku et
al. [16] use an anthropomorphic hand for recognizing objects.
In their experiments Takamuku et al. found that the recognition
rate improves significantly after repeatedly opening and closed
the hand around the object, until the object converges into a
discriminative position.

By using acoustic sensors only, Griffith et al. [17] used un-
supervised clustering for discriminating container objects from
non-containers, by the sound objects make by falling inside
or on top of other objects. However, recording sound without

background noises is difficult with a moving manipulator, and
in crowded environments. In contrast to that, tactile sensors
directly measure the interaction of the object with the robotic
gripper.

Prior work [18], [19] exists on estimating the friction coeffi-
cients such that slippage and crushing are avoided. Maeno [18]
gives a good overview over existing techniques and describes
how their system estimates these values from the tangential
forces while pushing a tactile sensor into a surface. Frank
et al. [20] use a force-torque sensor in combination with a
depth camera for estimating the deformation coefficients. Saal
et al. [21] estimate the dynamic parameters of objects using
tactile sensors. The robot optimizes the shaking behavior to
speed up the convergence.

Our approach differs from previous approaches as our aim
of estimation is different. The goal of our approach is to
extract a generic set of features from the tactile data that a
robot can use to estimate the internal state of grasped objects.
Although we have tested our features using the two-fingered
gripper on the PR2 robot (Figure 3), we believe that the
features can easily be adapted for use with other types of
grippers. Another contribution of this paper is that we provide
a human study in which we asked human subjects to perform
the same recognition tasks as the robot. The results of this
study illustrate the difficulty of the recognition task.

In addition, in contrast to our previous work [22], we present
in this paper a novel tactile feature based on the high-frequency
response of an object being manipulated. The high-frequency
response of human receptors has been shown to be relevant
in human grasping [2]. In particular, it has been shown to be
valuable during transitions of the grasping task, when a grasp
is achieved and for detection of slip during motion. We note
that exciting the internal contents of a container often elicits
a high-frequency response. We propose and show through
experiments that this high frequency response signal can be
measured and used as a feature to estimate the internal content
of objects being manipulated.

B. Structure of this paper

The remainder of this paper is divided into two parts.
In Section II, we present our first approach to estimating
the internal state of objects based on a set of six generic
features. We present our experimental results and compare
them with the performance of humans on the same task. In
Section III, we present our second approach based on high-
frequency components in the tactile signal. In a second set
of experiments, we show that these features can be used to
determine the presence of liquid in a container.

II. APPROACH I: GENERIC TACTILE FEATURES

Our first approach to internal state recognition requires
measuring a small set of features that represent internal object
properties. We will first describe the set of hardware and
sensing requirements to carry out this approach, present details
of the features and the machine learning approach and then
show experimental results that validate our approach. We will
also describe a switching controller that allows us to hold
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objects without crushing them. We will also present details of
a human study to compare the performance of the robot and
humans for the task of recognizing the state of a container
using only tactile feedback.

A. Requirements
We assume a mobile manipulator with a force-sensitive

gripper reports at each point in time its position p(t) ∈ R
and velocity ṗ(t) ∈ R sensed by motor encoders, and the
force f(t) ∈ R measured using fingertip sensors. Fingertip
sensors typically consist of an array of pressure elements (e.g.
Figure 3). In this section, we formulate our approach based
on these sensor observations only.

We also assume the existence of a controller that can apply
a required force profile. The aim here is that the controller
should not damage the objects but still should be able to grasp
the object firmly.

B. Feature extraction
In this work, we concentrate on internal state recognition

using two-fingered grasps. Such grasps involve pinching an
object between two fingers. In our implementation, a two-
fingered robotic gripper was used for the experiments (Fig-
ure 3) but our approach can be extended to multi-fingered
hands as well by using only two fingers to pinch grasp an
object. We will henceforth refer to a two-fingered grasp in
expanding on our approach while noting that it could be
extended to multi-fingered hands as well. Details of our partic-
ular implementation using a two-fingered gripper can be found
in a subsequent section (Section II-E) along with a description
of the particular hardware we used in our experiments.

In preliminary studies, we found that the position, velocity
and force profile for a prototypical grasp executed by two
fingers has a shape schematically depicted in Fig. 2. The
distance p(t) represents the distance between the two fingers.
It decreases until contact with the object is made. The object
may deform slightly but ultimately will result in a steady state
where the distance between two fingers stays constant. ṗ(t)
corresponds to the velocity of the fingers. The spike indicates
the onset of contact. f(t) represents the total force measured
at the fingertips using the tactile sensors. Before contact is
made, this value is zero. After the impact, the force reduces
again as the object gets deformed and the fingers decelerate.
After a while, the motion of the fingers stops and a steady
state is reached.

From these profiles, we identified two important points in
time: the moment the gripper makes first contact with the
object tfirst and the time tsteady after which the sensor values
have converged to a steady state. In practice, we require for
the first contact detection that both fingers are in contact with
the object, i.e., that the force measurement of both fingers is
above a certain threshold F . tsteady denotes the point in time
where the gripper comes to rest, i.e., its velocity drops below
a certain threshold V :

tfirst = arg min
t
|f(t)| > F (1)

tsteady = arg min
t>tfirst

|ṗ(t)| < V. (2)

Fig. 2. A schematic drawing of the force/position/velocity profile while
grasping an object.

At moment tfirst, we extract the first contact distance pfirst =
p(tfirst). This is the distance between the two fingertips when
contact with the object is first achieved. Note that this is a
measure of the uncompressed size of the object. The second
feature is the distance between the two fingertips after the
gripper has compressed the object fully. We label this the
steady state distance

psteady = p(tsteady). (3)

Note that this distance is a function of both the material and
geometric properties of the object and of the internal state of
the object, i.e. whether the object is open or closed and full
or empty.

Another useful feature is the time that it takes between
making contact with the object and coming to a rest, denoted
by

∆t = tsteady − tfirst. (4)

Additional features are defined using the force measured by
fingertip sensor array. Let ffirst represent the measured force
when both the fingertips first make contact with the object.
Let fsteady represent the measured force once the object has
stopped compressing. Two other useful features are the average
velocity ∆p/∆t of compression and the average rate of change
of the fingertip sensor force ∆f/∆t, which can be computed
from the features from above as follows:

∆p/∆t = (psteady − pfirst)/∆t (5)
∆f/∆t = (fsteady − ffirst)/∆t. (6)

The average velocity ∆p/∆t represents the rate at which
the object gets compressed and can differ based on the
material properties and the geometry of the object. Equiva-
lently, ∆f/∆t could be thought of as representing an average
compression ratio. For computing the measured force, we sum
over the measured forces of all cells in the tactile sensor array.

The six generic features summarized in Table I can be easily
extracted by most robots equipped with tactile sensors while
grasping an object. We do not claim that this list is complete,
but by using only this set of features, we were able to reliably
estimate the internal state of various containers as described
in Section II-E.

C. Training data

Using the tactile features defined above, we gathered data
for a large number of different objects. For each trial, we
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Feature Description
pfirst the first contact distance
psteady distance after which grasping is complete
fsteady force sensed after grasping has completed
∆t duration of the grasping
∆p/∆t average compression velocity
∆f/∆t average compression ratio

TABLE I
GENERIC SET OF FEATURES THAT CAN BE USED TO CLASSIFY AN OBJECT

BEING GRASPED.

obtained measurements for the 6-dimensional feature vector
a ∈ R6, i.e.,

a = (pfirst, psteady, fsteady,∆t,∆p/∆t,∆f/∆t)
T , (7)

and a label c ∈ C describing the object’s class and internal
state. As a result, we obtained a training database D containing
a sequence of attribute-class tuples (a, c).

D. Decision tree classifier

Subsequently, we have applied a C4.5 decision tree classifier
on our training data [23]. We have also tried other supervised
classifiers, like support vector machines and neural networks,
from which we obtained similar (or slightly worse) results.
The reason for this might be that all algorithms are able to
extract almost the same amount of data from the training
set. The advantage of decision trees over other classifiers is
that the learned concepts can intuitively be interpreted. The
C4.5 decision tree classifier [24] is an extension of the ID3
algorithm that can deal with continuous attributes.

Decision tree induction is an iterative process: it starts
by selecting an attribute that most effectively splits the data
according to their data classes. Typically, the information gain
(which is the reduction in entropy) is used as a measure for
selecting the split. The entropy H of a set D is defined as

H(D) = −
∑
c∈C

p(c) log p(c), (8)

where p(c) is the prior probability of target class c that can
be estimated from the training set, i.e.,

p(c) =
1

|D|
∑

(a,c)∈D

1. (9)

As all our attributes are continuous, a split s is defined by
a split value svalue for a particular split attribute sattr, i.e., the
training set D is divided into two subsets

D≤ := {(a, c)|asattr ≤ svalue, (a, c) ∈ D} (10)
D> := {(a, c)|asattr > svalue, (a, c) ∈ D} . (11)

From all possible splits, C4.5 now selects the one with the
highest information gain, i.e.,

s = arg max
s∈S

IG(D, s), (12)

where the information gain (IG) is defined as the reduction
in entropy of the resulting sets compared with the initial set:

IG(D, s) := H(D)−H(D|s), (13)

5 x 3 tactile sensor array
(inner surface of fingertip)

2 x 1 array
(side)

2 x 1 array
(top)

2 x 1 array
(side)

1 x 1 array
(back)

Fig. 3. Left: The PR2 gripper showing the tactile sensors and accelerometer
locations. Right: The PR2 has 5x3 tactile sensors on the inside of each finger,
2 sensors on the left, top and right side, and 1 sensor on the back, yielding a
total of 22 tactile sensors per finger.

where the conditional entropy H(D|s) is defined as

H(D|s) = H(D≤)p(≤) +H(D>)p(>). (14)

Each split s corresponds to a node of the decision tree with
two children. The same procedure is then repeated for the
resulting subsets D≤ and D>, until the leafs are homogeneous
with respect to the target class, i.e., the entropy in the dataset
of the leaf is zero.

Another important step after training is pruning, to avoid
overfitting to the training data. This is done by replacing
a whole subtree by a leaf node if the expected error rate
(computed on a test dataset hold out during training) in
the subtree is greater than in the single leaf. Due to space
constraints, we refer the interested reader to [23] for an
excellent introduction to decision tree learning and to [25]
for statistical pattern recognition in general.

E. Experiments

1) Hardware: The hardware used for the experiments in
this paper is part of the PR2 robot from Willow Garage. The
PR2 is a general-purpose mobile manipulation robot with two
arms. Each gripper (see Figure 3) has only a single degree of
freedom, actuated by a brushless DC motor with a planetary
gearbox and an encoder. The rotary motion of the motor is
converted into linear motion of the two fingertips of each
gripper. Thus, the PR2 gripper is essentially a parallel jaw
single degree of freedom gripper. We used the encoder values
for measuring p(t) and ṗ(t). The gripper can apply a maximum
force of 200 N but is software limited to 100 N. Note that this
is also approximately the amount of force that a human can
apply by pinching his/her forefinger and thumb together.

Each finger has a capacitive sensor consisting of 22 individ-
ual cells mounted on the fingertip. A 5×3 array is mounted on
the parallel gripping surface itself while 2 sensors are mounted
on the tip of the fingertip, 2 sensors on each side of the
fingertip and one on the back, see Figure 3. For this set of ex-
periments, the data from the inner surface of each fingertip was
fused into a single measurement fraw(t) by summing over all
sensor cells. The sensors are capacitive-based pressure sensors
and respond to normal pressure exerted on the fingertips. We
recorded a calibration curve g(fraw) = fcalibrated for the sensors
using a load cell. The calibration curve as depicted in Figure 5
was used as a lookup table. As a result, we obtain calibrated
values f(t) = g(fraw(t)) measured in Newtons. Measurements
from the tactile sensors on the grippers are obtained at 25 Hz
while proprioceptive joint data is measured at 1 KHz. All the
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Fig. 4. Some of the bottles and cans used for our experiments. From left to
right: Odwalla fruit juice bottle, water bottle, Naked fruit juice bottle, Coke
can.
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Fig. 5. Calibration data relating raw sensor values to forces calibrated using
a load cell.

joints on the robot can be torque controlled using a 1 KHz
soft realtime loop. An accelerometer in the gripper measures
accelerations in the frame of the gripper. The accelerometer
data is sampled at 3 KHz.

2) Controller: We explored different controllers for the
gripper to achieve the objective of grasping objects with-
out crushing them. A pure velocity controller cvelocity(ṗ(t), t)
makes the gripper approach an object slowly, but after it
contacts the object, it increases its force output in order to
establish a constant velocity ṗtarget, and thereby crushes the ob-
ject. Another option is to use a force controller cforce(f(t), t).
Such a controller can hold an object in the hand firmly, by
trying to apply a constant force ftarget. With a constant force
controller, the gripper continuously accelerates until contact
is achieved. This can lead to high velocities at impact. As an
example, see Figure 6, where the gripper was grasping a very
rigid object (here, a wooden block). The significant impact
force applied to the object on contact can easily damage rigid,
but delicate objects, like eggs. Of course, the applied constant
force could be reduced to deal with such cases. In practice,
however, if the commanded force is below the force required
to overcome static friction, the gripper does not move at all.

Driven by these considerations, we chose to create a switch-
ing controller: first, we close the gripper slowly around an
object using the velocity controller until it makes contact with
the object. Then, we switch seamlessly to the force controller
in order to close gently to measure the object’s deformability
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Fig. 6. Measured net fingertip force (N) for grasping a wooden block and
a rubber toy when using a pure force controller. The high impact forces can
destroy delicate, but rigid objects, like eggs.
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Fig. 7. Fingertip distance and fingertip force vs. time plots showing the
reduced impact forces using the hybrid controller. First contact happens at
about tfirst = 6 seconds followed quickly by a steady state at about tsteady
= 6.75 s where fingertip distance stays constant. The probing effort is set to
23 N. Note that the fingertip force does not spike above the desired probing
force on impact.

properties, i.e.,

cgrasping(t) =

{
cvelocity(ṗ(t), t) while f(t) = 0
cforce(f(t), t) thereafter. (15)

This hybrid controller has two parameters: both the initial
velocity ṗtarget and the probing force ftarget have influence on
the executed grasp.

The result of the hybrid velocity-force controller can be seen
in Figure 7. Here, a wooden block was grasped by the gripper
using the new controller. The peak force acting on the object
is significantly lower. Further, this controller was successful
in grasping eggs without crushing them. A movie showing the
comparison between an open-loop effort controller and the
closed-loop grasping controller is available online1.

3) Experimental setup: The acquisition of training samples
started with the gripper fully open. The containers were placed
one at a time between the gripper fingertips, i.e., we did not
deal with localizing the object prior to grasping via vision
nor moving the gripper towards the object. The gripper was
then closed using the hybrid force velocity controller described
earlier. Once the gripper came fully to rest, the controller
waited for a small interval of time before opening the gripper
fully. During each trial, the features described in Sec. II were
extracted and written to a file.

The container classes present in the training set are Odwalla
fruit juice bottles, Naked fruit juice bottles, soda cans and

1http://www.youtube.com/watch?v=fIsMCKOYFEY
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TABLE II
CONFUSION MATRIX FOR RECOGNIZING THE CLASS OF THE CONTAINER,

WITH fTARGET = 20 N. THE RECOGNITION RATE IS 93.9 %.

a b c d
58 1 0 1 a = Odwalla fruit juice bottles
8 40 0 0 b = Naked fruit juice bottles
0 0 41 3 c = Softdrink cans
0 0 1 76 d = Water bottles

plastic water bottles, see Figure 4. The internal states of these
containers are: closed and full, open and full, open and empty,
and closed and empty (except for the soda cans, which cannot
be closed again after having been opened). We collected data
for each of the internal states for each container class using our
switching controller. We carried out a total of 66 trials with
12 Odwalla fruit juice bottles in 4 different internal states,
80 trials with 16 water bottles in 4 different internal states,
42 trials with 12 cans with 3 different internal states, and
41 trials with 10 Naked fruit juice bottles with 4 different
internal states. We used different instances of each container
class in collecting the data to account for variations within a
container class. We also rotated the containers between taking
measurements to account for variations in surface properties
of individual containers. All this data was collected with the
probing force set at 20 N. We also collected a subsequent
dataset just for the Odwalla fruit juice bottles using three
different probing forces of 17, 20 and 23 N. This involved
conducting 24 trials for each internal state for a total of 96
trials for the 4 internal states for each probing force.

To test our classifier we used ten-fold cross validation for
each experiment. First, we divided the stratified dataset into
10 parts. Then we learned the classifier on 9 parts, and used it
subsequently to classify the test instances from the remaining
part. This was repeated for each of the ten folds, such that
we ended up with target class predictions for all instances in
the dataset. Finally, the predictions were compared to the true
target class, and the recognition rate was computed as the ratio
between correct and incorrect instances.

F. Classification results

The aim for the classification task is to recognize the internal
state within each class that indicates whether the container is
full or empty and open or closed.

In the first experiment, we found a 93.9 % accuracy in
recognizing the different liquid containers. Table II shows
the confusion matrix for this experiment. From the learned
decision trees, this high performance can mainly be attributed
to the different size of objects, thus pfirst and psteady are very
discriminative for this set of containers. Note that our approach
is not meant to compete with other senses like vision, but is
meant to complement other approaches and to be used for
confirmation of a particular object class hypothesis while the
robot grasps an object.

After that, we have evaluated the recognition rate of the
internal state of a container, given its class. We found that the
recognition rate strongly depends on the particular container.
This result is not surprising, as obviously feeling the internal
state of a container strongly depends on how well it manifests

TABLE III
RECOGNITION RATE, DEPENDING ON THE PROBING FORCE PARAMETER

fTARGET , FOR THE ODWALLA FRUIT JUICE BOTTLES.

ftarget Recognition Rate
17 N 69.8%
20 N 83.3%
23 N 94.8%

TABLE IV
CONFUSION MATRIX OF OUR APPROACH FOR RECOGNIZING THE

INTERNAL STATE OF AN ODWALLA FRUIT JUICE BOTTLE FROM THE
TACTILE APPEARANCE USING A ROBOTIC GRIPPER (fTARGET = 23 N). THE

RECOGNITION RATE IS 94.8%.

a b c d
24 0 0 0 a = full closed
0 20 1 3 b = empty open
0 0 24 0 c = full open
1 2 0 21 d = empty closed

its internal state to the outside, i.e., in its tactile appearance.
Interestingly, we found that the Odwalla bottles were separable
the easiest. Their internal state was estimated correctly at
94.8%, compared to 74.4% for cans, 58.3% for Naked bottles,
and only 32.5% for water bottles. The reason for the low
performance on water bottles could be that they are made of
very flimsy plastic and tend to deform unpredictably.

We also found that the recognition rate was a function of
the parameters of our hybrid controller. While the influence
of the initial grasping velocity ṗtarget was negligible, we found
that choosing a good probing force ftarget could improve
the recognition substantially (see Table III). This parameter
determines how hard the gripper probes into the object, and
should therefore be carefully selected according to the object
class. In the case of the Odwalla bottle, we found, for example,
the stronger probing force of ftarget = 23N to be more
informative than weaker ones, yielding a mode recognition
rate of 94.8%.

The confusion matrix for the specific case of recognizing
the internal state of an Odwalla bottle is shown in Table IV.

In a combined experiment, where we let the robot estimate
both the container class and the object internal state except
for water bottles (resulting in 11 possible combinations), we
obtained a recognition rate of 63.8%.

It is interesting to note that the open and full bottle tends
to be compressed for the longest time, i.e., ∆t is large. The
steady state force fsteady differentiates between the open and
empty bottle and the empty and closed bottles while the steady
state distance psteady differentiates the closed and full bottle
very easily. However, when we repeated this experiment with
bottles that had been subjected to repeated compressions, the
recognition rate decreased again to 81 %. This is not surprising
considering that the classifier was trained on data from fresh
bottles while the testing was now done with bottles that had
been subject to repeated stress. A movie showing the system
recognizing the internal state of a set of bottles using the
learned classifier can be found online2.

2http://www.youtube.com/watch?v=O9i3IcDc5HM
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TABLE V
OVERALL CONFUSION MATRIX FOR ALL HUMAN SUBJECTS FOR

RECOGNIZING INTERNAL STATE OF AN ODWALLA FRUIT JUICE BOTTLE.
THE RECOGNITION RATE IS 75.2%.

a b c d
48 8 5 0 a = empty open
5 41 1 3 b = empty closed

16 11 55 2 c = full open
2 8 7 63 d = full closed

G. Comparison with Human Performance

The experimental results show that the robot could do
reasonably well in terms of recognizing both the container
class in the first series of experiments and internal state of an
object in a second series of experiments.

We designed a human study to compare the performance of
the robot to that of humans for the internal state estimation
problem. The study was designed to find out if, using only tac-
tile feedback, humans could achieve comparable recognition
rates for the task of recognizing the internal state of an object.
Figure 1 (top right) shows the experimental setup used for the
human study. Test subjects were asked to recognize, using
only tactile information from squeezing a bottle, the internal
state of the bottle. They were provided the opportunity to train
beforehand until they were confident about their ability to
discriminate between the different internal states of the bottles.
Each test subject was then asked to identify the internal state of
16 different bottles sequenced in a random order. The subjects
were instructed not to move or pick up the bottles and could
not see the bottles while they were grasping them. To simulate
the two-fingered grasp used by the gripper, the test subjects
were asked to use only their thumb and index finger for the
grasping task. Additionally, noise-canceling headphones were
used to minimize the sound cues that subjects could pick up.
There were a total of 17 test subjects.

Table V shows the overall confusion matrix for all the trials
together. The average recognition rates for all the subjects was
75.2%. The highest recognition rate was for bottles that were
full and closed. There was considerable confusion between the
empty/closed and full/open bottles. Based on a questionnaire
filled out by the subjects at the end of the test, we found that
most subjects were using features similar to the ones chosen
for the learning approach. The two most cited features by the
human subjects were the total compression distance and the
rate at which the bottle returns to its original shape. The second
feature is easier for humans to detect than the robot since
the grippers on the robot are not easily back-drivable. The
most successful test subjects cited a different set of features
to discriminate between the bottles. They used high-frequency
feedback from tapping the bottle with their fingers to detect
the presence or absence of liquid in the bottle. In the next
section, we show how similar information can be used by the
robot as well to detect the internal state of containers.

III. APPROACH II: HIGH FREQUENCY INFORMATION

Several human subjects cited their use of high-frequency
feedback from tapping the container with their fingers as
critical to the success of their recognition efforts. Gaining such

Fig. 8. Containers used for experiments to determine presence of liquid.
Top row (left to right): Sauve, Nesquik, Dry Erase Cleaner, Zero Calorie, 409
containers, Middle row (left to right): tape dispenser, Odwalla Orange, Might
Mango, Summer Lime, Green Tea, dummy weight, Bottom row (left to right):
Tropicana, water bottle, Coffee Mate, CVS HP and Palmolive containers.

information with a robot, however, requires the ability to excite
an object sufficiently fast and the ability to sense the response
of the object to such actuation. Most robotic hands do not have
the high bandwidth necessary for such actuation. In our case,
the gripper by itself is not fast enough to excite the contents
of the container in such a manner. However, we found that we
could achieve the desired effect by using the entire arm of the
PR2. In this section, we expand on the details of actuation
and sensing for the PR2 to be able to use high-frequency
information to detect the internal state of objects. We present
experimental results that shows how this information can prove
useful, in particular, in detecting the presence of liquids inside
containers.

A. Experiments

Figure 1 (bottom row) shows snapshots of the actuation
procedure for experiments designed to excite the internal
contents of objects. The objects used in the set of experiments
are liquid containers. Each container is grasped firmly in the
gripper of the PR2 and rolled from side to side at about 0.6
Hz. This motion is designed to excite the internal contents
of closed containers. Note that if the object were an open
container, its contents would spill out as a result of this motion.

In preliminary experiments, we also tried horizontal move-
ments that would have allowed for open containers. However,
we found the PR2 to be too slow to sufficiently excite the
contents of the probed containers. This forced the use of the
strongest joint on the robot (the joint that rolls the wrist from
side to side) to sufficiently excite the contents of the container
by forcing the liquid to slosh around under the influence
of gravity. The overall approach, however, is (in our belief)
more generic and should be executable on any robot that is
capable of exciting the internal contents of objects at higher
frequencies. In particular, we believe that it is also applicable
to open containers with liquid in them if the robot were capable
of shaking the container from side to side at a high frequency
while maintaining it level.

Experimental results are presented here for 15 different
containers. Five trials were carried out for 13 containers with
liquid in them. The liquids in the different containers included
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Fig. 9. Accelerometer data corresponding to a container without liquid
(left column) and with liquid (right column) for the Odwalla orange juice
bottle. The top row shows the raw accelerometer data, the bottom row shows
acceleration data filtered using a 5Hz high-pass filter.

water, orange juice, mango juice, shampoo and cleaning fluid,
thus representing a good range of viscosity and content. Most
of the containers were filled to half their volume with liquid.
The Odwalla Orange container was tested with two amounts of
liquid in it - full and half-full, the Dry Erase Liquid container
was tested with a full volume of liquid and the Mighty Mango
and Sauve containers were tested when about a quarter full.
Five trials each were also carried out for 13 of the containers
with no liquid in them, i.e. the contents of the container were
completely emptied out. An additional five trials were carried
out for a rigid weight that weighed about the same as some
of the containers with liquid in them. Figure 8 shows all
the containers used in the experiment while Table VII shows
statistics for the trials of all containers, including their weights
with and without liquid.

B. Data Analysis

The data measured and recorded for each trial included
acceleration data from the accelerometer in the gripper of the
robot, tactile sensor data from all 44 elements of the tactile
sensors on both fingers of the PR2 gripper and joint positions,
velocities and torques for all the moving joints in the arm of
the PR2.

Figures 9 and 10 represent two example sets of sensor data
for the time period when the container is being rolled: the plots
on the left of each figure correspond to data for a container
with no liquid in it while the plots on the right correspond to
data for a container with liquid in it. The accelerometer data
in Figure 9 (top) is noisy and dominated by the component
corresponding to the motion of the container. Figure 10 (top)
shows the individual tactile sensor responses (for all 44 tactile
sensors) over the same period. It is clear that the raw data in
this form is not very useful to discern the presence or absence
of internal contents in the container.

Our key idea is that liquid sloshing around in a container
will produce high-frequency responses that the robot can
measure. To that aim, we filtered both the acceleration data
and the tactile data, using a high-pass filter on the raw data.
After filtering, we condensed the 3- and 44-dimensional signal
for the acceleration and tactile data, respectively, into a single,
real-valued signal by computing the Euclidean norm of the
signal vector.
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Fig. 10. Tactile sensor data corresponding to a container without liquid (left
column) and with liquid (right column) for the Odwalla orange juice bottle.
The top row shows the raw tactile pressure measurements of all 44 tactile
sensors; the middle row shows these measurements filtered using a 5Hz high-
pass filter; the bottom row shows the combined signal of all sensors. The
sloshing liquid produces very clear spikes in the bottom right figure.

Figure 9 (bottom row) and 10 (bottom row) show the
resulting signal from acceleration data and the tactile sensor
data filtered through a 5 Hz high-pass filter, respectively. The
filter attenuates the low-frequency components corresponding
to the rotation of the container. While the accelerometer signal
is slightly different for the two cases, the higher-frequency
components in the tactile sensor data, however, are clearly
different when the container has liquid in it. The sloshing
of the liquid in the container due to its excitation during
the rolling of the container results in a spike in the tactile
sensor pressure whenever the direction of rotation undergoes
a change. This information can easily be computed online and
is used to train a classifier that can detect the presence of
liquids in containers. For that, we compute the variance in
the signal measured by the tactile sensor while the object
is being actuated. The difference in this value for the two
cases (presence or absence of liquids), is large and consistent
across different containers. A summary of our results is given
in Table VII.

The accelerometer is significantly affected by the motion of
the arm. This makes the acceleration data noisy. It is possible
that an accelerometer placed closer to the object (e.g. on the
fingertips) may be able to capture better object information.
The tactile sensors on the PR2 are closer to the object, and the
multiple sensor cells on the sensor can measure the response
at multiple points on the object at the same time.

C. Feature extraction

The high-pass filters we apply to each of the tactile sensors
i ∈ 1, . . . , 44 are first-order Butterworth filters designed with
a cutoff frequency of 5 Hz for the sampling rate of 24 Hz.
A similar filter (designed for the sampling rate of 3 KHz) is
also applied to the accelerometer signal. The use of the 5 Hz
cutoff frequency was motivated by experiments that showed
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TABLE VI
CONFUSION MATRIX FOR THE ROBOT RECOGNIZING THE FILL STATE OF A

BOTTLE USING HIGH-FREQUENCY FILTERING ON TACTILE DATA. THE
RECOGNITION RATE IS 91.9%.

a b
58 3 a = no liquid
8 67 b = with liquid

that humans possess tactile receptors that specifically react
to signals in the 5-50 Hz range when responding to force
disturbances [2]. Let f ifiltered denote the filtered signal for each
individual tactile sensor element (here i ∈ 1, . . . , 44). We
combine the signals of all tactile sensor elements into a single
signal by computing the Euclidean norm of the filtered signal
vectors, i.e.,

ffiltered(t) =

 ∑
i∈1,...,44

(f ifiltered)2

1/2

. (16)

From this combined signal, we estimate the sample mean and
variance of this signal as

µ =
1

n

∑
t=1,...,n

ffiltered(t) and (17)

σ2 =
1

n− 1

∑
t=1,...,n

(ffiltered(t)− µ)2, (18)

where n is the number of data samples while the robot was
rolling the object and t refers to the corresponding time
indices. In total, we collected data from 136 trials of 15
different containers, see Table VII.

D. Decision tree classifier

For detecting the presence of liquid, we use the estimated
signal noise σ as the only tactile feature. The target attribute
is binary, i.e., either indicating an empty or a filled container.
We train a decision tree classifier, as described in Section II-D
using ten-fold cross validation. The learned classifier was able
to predict the correct internal state of a bottle correctly in
91.9% of the cases. Table VI gives the confusion matrix for
this experiment.

By looking at the instances for which prediction errors
occurred, we found that all five examples of a full CVS
HP bottle were incorrectly classified as empty. This bottle is
much smaller than the other containers. As a result, the tactile
response is relatively small, when compared with the response
of heavier containers.

To remedy this problem, we provided in another experiment
the weight of the object in the gripper as a second (additional)
feature. By using both the weight and the signal noise, we
found a 98.5% correct classification rate. It is important to note
here, that the heavy weighted dummy object was classified
correctly as containing no liquid, while the light CVS HP
bottle was correctly classified as containing liquid. When
looking at the learned decision tree, we found that the resulting
classifier uses both the tactile signal and weight for predicting
the fill state of a container.
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Fig. 11. The heavy dummy object induces virtually no high-frequency
component in the signal, while the much lighter CVS HP bottle displays a
weak, but clear signal. This shows that our approach does not rely on weight.

E. Discussion

In our experimental setup, one might argue that the weight
is a strong indicator of the internal state of an object. While
it may have some contribution to the observed high-frequency
part of the tactile signal induced by the robot’s motors, it is
worth noting that the corresponding signal shown in Figure 11
for the dummy weight displays virtually no high-frequency
component, while the signal of the much lighter CVS HP
bottle displays a weak but clear signal. This implies that the
presence of liquid in the containers plays a significant role for
the observed tactile feature ffiltered(t), but that its magnitude
depends on the weight of the liquid content.

However, it should be noted that the tactile signal corre-
sponding to a slip of the object also has a high-frequency
component. Heavier objects are most likely to slip, especially
if they are hard to grasp in the parallel jaw gripper of the PR2.
A heavier weight (the tape dispenser in Figure 8 weighing
about 0.5 kg) does display the same frequency response as
containers with liquid in them as shown in Figure 11. The
ability to detect shearing forces on the fingertips (using a slip
sensor) might allow us to separate out the slip component
of the signal, but currently, in the absence of such data, our
approach is unable to distinguish between the slip of heavy
objects that are grasped awkwardly and containers with liquid
in them. A stronger gripper that can grasp heavier objects more
firmly would also do well in reducing slip. The other possible
modification to our approach which may help to reduce the
effect of weight is actuating the containers from side to side
while keeping them level.

There are many factors that play a role in the strength
of the response for different containers. Smaller containers
with smaller amounts of liquid in them (e.g. the CVS HP
container) do not display the same strength of response as
the bigger containers. Similarly a thick container may damp
out the signal before it reaches the tactile sensors. The shape
of the containers may also play a part by restricting the ability
of the liquid to slosh around inside. Note that one could also
use tactile sensors to estimate the weight of the grasped object,
and then estimate the content if the weight of the container is
known. In contrast to this, we are directly estimating whether
something in the container moves in response to the rolling
movement. Our approach is therefore more general: a robot
using it does not need to know the empty weight of the
container. However, knowing additionally the weight of the
currently probed container helps the robot to more accurately
estimate its internal state.
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Object State Weight Trials Avg. Tactile
[kg] Feature [N]

Dummy object no liquid 0.199 5 0.000 ± 0.000
409 no liquid 0.074 5 0.004 ± 0.001
409 with liquid 0.459 5 0.177 ± 0.104
Coffee Mate no liquid 0.0417 5 0.003 ± 0.002
Coffee Mate with liquid 0.3188 5 0.292 ± 0.333
CSV HP no liquid 0.0268 5 0.001 ± 0.002
CSV HP with liquid 0.160 5 0.002 ± 0.001
Dry Erase Cleaner with liquid 0.254 5 0.025 ± 0.014
Green Tea no liquid 0.033 5 0.000 ± 0.000
Green Tea with liquid 0.300 5 0.012 ± 0.007
Mighty Mango no liquid 0.0381 3 0.000 ± 0.000
Mighty Mango with liquid 0.075 5 0.042 ± 0.026
Nesquik no liquid 0.038 5 0.000 ± 0.000
Nesquik with liquid 0.311 5 0.042 ± 0.016
Odwalla Orange no liquid 0.031 5 0.000 ± 0.000
Odwalla Orange half full 0.311 5 0.011 ± 0.009
Odwalla Orange full 0.487 5 0.041 ± 0.018
Palmolive no liquid 0.045 5 0.000 ± 0.000
Palmolive with liquid 0.390 5 0.312 ± 0.061
Sauve with liquid 0.206 5 0.030 ± 0.010
Summer Lime no liquid 0.029 3 0.008 ± 0.007
Summer Lime with liquid 0.315 5 0.093 ± 0.043
Tropicana no liquid 0.032 5 0.000 ± 0.000
Tropicana with liquid 0.256 5 0.052 ± 0.048
Water Bottle no liquid 0.014 5 0.000 ± 0.000
Water Bottle with liquid 0.253 5 0.179 ± 0.035
Zero Calorie no liquid 0.042 5 0.000 ± 0.000
Zero Calorie with liquid 0.323 5 0.041 ± 0.022

TABLE VII
USED CONTAINERS IN OUR EXPERIMENTS. THE TACTILE FEATURE IS

INDUCED BY LIQUID SLOSHING AROUND IN THE BOTTLE. SMALL
BOTTLES WITH LIQUID (LIKE THE CVS HP BOTTLE) YIELD SMALLER
VALUES, YET WE ARE NOT MEASURING WEIGHT: THE HEAVY DUMMY

OBJECT SHOWS NO RESPONSE AT ALL.

IV. CONCLUSION

In this paper, we have presented an approach for estimating
the internal state of objects being grasped by a mobile ma-
nipulator using tactile sensors. We proposed a set of simple
features that can be easily extracted from tactile sensing
and proprioception. In experiments carried out on real data,
we have shown that both the object class as well as its
internal state can be estimated robustly. In a direct comparison
experiment, we have shown that the robot’s performance is
of the same magnitude as human performance. We have also
shown the utility of higher-frequency information in detecting
the presence of liquids in certain types of containers. From
our experiments, we conclude that tactile sensors can be very
informative, and can provide valuable information to a mobile
manipulation robot.
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