
Event-Based Feature Tracking in Continuous
Time with Sliding Window Optimization

Jason Chui[0000−0001−8188−9734], Simon Klenk, and
Daniel Cremers[0000−0002−3079−7984]

Technical University of Munich, Germany
{jason.chui, simon.klenk, cremers}tum.de

Abstract. We propose a novel method for continuous-time feature track-
ing in event cameras. To this end, we track features by aligning events
along an estimated trajectory in space-time such that the projection on
the image plane results in maximally sharp event patch images. The tra-
jectory is parameterized by nth order B-splines, which are continuous
up to (n − 2)th derivative. In contrast to previous work, we optimize
the curve parameters in a sliding window fashion. On a public dataset
we experimentally confirm that the proposed sliding-window B-spline
optimization leads to longer and more accurate feature tracks than in
previous work.

Keywords: Dynamic vision sensor · Continuous-time feature tracking ·
Sliding window · B-splines · SE2 warping

Please add the paper submission id and the track name to the
paper.

1 Introduction

Event cameras (dynamic vision sensors) are imaging devices which asynchronously
measure per-pixel brightness changes. These sensors are suited for robotics and
virtual reality applications, since they offer lower latency, lower power consump-
tion as well as higher dynamic range and higher temporal resolution compared
to frame-based cameras. In order to actually tap into these benefits, computer
vision algorithms for event-based sensors need to be developed. However, since
event sensors are based on fundamentally different measurement principles than
standard frame-based cameras, traditional computer vision algorithms cannot
simply be applied to event data, but rather need to be developed from scratch.

Event cameras report per-pixel brightness changes of the observed logarith-
mic brightness. Each event ei = {ti,xi, pi} is a tuple of a micro-resolution times-
tamp ti, image plane coordinates xi = (xi, yi) and the respective polarity change
pi ∈ {−1, 1}. The data stream is asynchronous and sparse because an event is
transmitted only if the logarithmic brightness changes by a predefined, usually
unknown threshold. This is in contrast to frame-based cameras, where each pixel

ar
X

iv
:2

10
7.

04
53

6v
1

 [
cs

.C
V

]
 9

 J
ul

 2
02

1

2 J. Chui et al.

is illuminated during a shared exposure time interval, resulting in an absolute
brightness measurement at a fixed frequency.

A common approach is to accumulate events over a fixed time interval into
a frame-like structure and apply traditional computer vision methods on them.
The drawback of a naive accumulation is that moving edges in the scene result
in blurred edges in the image plane. One popular way to correct for this error
is by estimating constant optical flow in a certain space-time window, i.e. at a
predefined patch location and during a time interval. Each event in the window
is then warped to a common reference time using the estimated optical flow. The
goal is to create maximally sharp event patch image. This approach is known as
motion-compensation [4]. It is applied to a variety of event-based vision tasks,
such as feature tracking [5], [10], ego-motion estimation [16], [14] or motion
segmentation [12].

In case of feature tracking, there remains one main drawback with motion-
compensation: Usually, the estimated optical flow is assumed to be constant in
a certain (short) time interval, hence the trajectory of events in the x-y-t space-
time volume is piece-wise linear. To resolve this problem, we propose to track
features with a continuous curve and optimize the curve in the manner of sliding
window optimization. In this paper, we propose to employ B-splines as a curve
representation in sliding window optimization for two reasons: (1) To account for
feature tracks of variable length, we can build n-th order continuous trajectories
by adding any number of knots to the curve. (2) Adding knots or changing
knot values only changes the curve locally, so we can reduce the problem size
by setting old knots which are out of scope to a constant value. Our approach
is compared to a state-of-the-art event feature tracking algorithm and shows
significant improvements in terms of error and feature age. The contributions of
this paper can be summarized as follows:

1. We introduce the first event feature tracking algorithm that uses continuous
B-spline functions and employs SE2 warping of events.

2. We optimize the B-spline parameters of the trajectory in a sliding-window
manner.

3. We experimentally confirm significant improvements in tracking precision
and feature age over existing event tracking algorithms.

2 Related Work

One line of work performs hybrid tracking by combining frames with events.
The advantage of hybrid approaches is that during certain degenerate motions,
such as movements parallel to an intensity edge (when no events are triggered),
the frames can still provide useful intensity information for tracking. The work
by Gehrig et al. [5] detects features in standard frames and tracks those using
events. Their approach employs an event generation model, which is based on
frames and estimated optical flow to predict the observed events. To model larger

Event-Based Feature Tracking in Continuous Time with SWO 3

variations in appearance, the feature patches are additionally parameterized by
a rigid warp function in the image plane. This method achieves accurate results
on a variety of datasets. However, it relies on specialized hardware, such as the
Dynamic and Active-pixel Vision Sensor [2], which captures frames and events
within the same pixel array, or alternatively requires beam splitting techniques.

There have been adoptions of frame-based corner detectors to event streams,
such as the event-FAST corner detector by Muggler et al. [9] or the event-Harris
detector by Vasco et al. [13]. However, those trackers are not robust to changes
in motion direction [7]. In our work, we circumvent this issue by keeping most
information from the past in the form of a template, see section 3.

The work by Ignacio et al. [1] proposes an event-by-event tracking approach
which models different hypotheses per tracked feature. While this work tracks
features at a very high rate of up to 12500 events per second, it is still formu-
lated in discrete time and thus does not allow for simple derivative calculations
of the trajectory, which can be useful in some applications. The approach by
Manderscheid et al. [7] also performs tracking on an event-by-event basis. They
train a random forest which extracts only the corner features from the event
stream. The main drawback is that they rely on absolute intensity information
during training time. The work by Zhu et al. [15] first builds feature templates
by accumulating the event stream over a short time interval. A batch of new
event is then aligned to those templates by probabilistic, soft association. The
optical flow is computed as an expectation over all associations and the patch
can undergo affine deformations during tracking. The work by Seok et al. [10]
is the first approach to formulate event tracking in continuous time. However,
adding more knots to the existing Bézier curve changes all previous knots, so the
feature trajectory has to be formed by concatenating many short Bézier curves
and is only zero order continuous.

To the best of our knowledge, we are the first to formulate event tracking
with the concept of sliding window optimization.

3 Method

We define a B-spline curve B(t;Θ,∆t) which returns a transformation Tr,t to
transform a 2D-point from current frame at timestamp t to reference frame r.
All knots in the spline are denoted by Θ and the time difference between two
knots is denoted by ∆t, which is a pre-determined constant and we will ignore it
in our notation later in the paper. If an event en is within the region of a patch,
it satisfy the condition B(tn;Θ)xstart − xn < R, where xstart is the starting
position of the patch and R is the radius of the patch. The position of a warped
event en is defined as

x′n = B(tn;Θ,∆t)xn (1)

We create a patch image by warped back all events in the patch to reference
time (here we set the reference time as the starting time of the feature). Since the
warped positions of events are not guaranteed to be integers, a bi-linear kernel

4 J. Chui et al.

Fig. 1. Process of updating the sliding window with optimizing 3 knots using SE(2)
warping. The arrows on the knots indicate the rotation angles, green knots are the knots
inside the sliding window, red knots are fixed knots. The image patches containing the
star shape show the History patches. Top: The latest event is in the second last event.
Middle: The latest event is in the last event bin, we add an additional knot for the
trajectory. Down: After we add a new knot, we update the History patch and the
location of the sliding window to fix the problem size.

kb is used to construct differentiable patches. If event en is received at pixel xn

at time tn, the patch image from events received in the time domain [t : t′] is
defined as

I[t:t′](x) =
∑

{n;tn∈[t:t′]}

kb(x,x
′
n) (2)

kb(a,b) = max(0, 1− |a1 − b1|) ·max(0, 1− |a2 − b2|) (3)

The advantage of using bi-linear kernel instead of using Dirac-delta function
is that the patch image is also well-defined in sub-pixel level, which enables us
to calculate well-defined ∂I

∂x′ .
In principle, we can optimize a continuous B-spline trajectory by optimizing

all knots on the spline and taking all events into account, but this is expen-
sive and inefficient. Inspired by [10], we make use of a History patch H which
compresses the information of previous knots and events in order to speed up
the algorithm. The History patch H is built in recurrent relation. H and the
modified patch image I∗(t) at timestamp t are defined as

Htk(x; Θ) = I[tk−1:tk)(x; Θ) + ρHtk−1
(x; Θ) (4)

I∗(x, t; Θ) = I[tk:t)(x; Θ) +Htk(x; Θ) (5)

where tk is the timestamp of knot k, Ht0(x) = 0 and 0 ≤ ρ ≤ 1 is the decaying
parameter.

Event-Based Feature Tracking in Continuous Time with SWO 5

The best B-spline curve is the one which maximize the variance (sharpness)
of a patch image from active event with using History patch, see Fig. 1 for
an equivalent visualization of the problem using SE(2) warping. The modified
variance σ∗ of the patch at timestamp t is defined as

σ∗(P (t); Θ) =
1

N

∑
x

(I∗(x, t; Θ)− 〈I∗(x, t; Θ〉)2 (6)

where N is the total number of pixels in the patch, x is the image coordinate,
〈I∗(x, t; Θ〉 is the mean value of the modified patch image I∗. The work in [3]
shows that among 22 possibilities of measuring sharpness in event images, the
variance is often a suitable choice.

To maximize I∗, we need the Jacobian of the variance function w.r.t warping
parameters Θ:

∂I∗(x, t; Θ)

∂Θ
=

Ni
e∑

n=1

∂kb(x,x
′
n)

∂x′n

∂x′n
∂B

∂B(tn; Θ)

∂Θ
(7)

To use SE(2) B-spline as an example, the parameter Θ with Nk knots is
defined as

Θ = [k1, · · · , kNk
] (8)

with ki = [xi1, x
i
2, θ

i]

∂x′

∂B
= −

[
Rr,t | σxx′

]
2×3 (9)

with σx =

(
0 −1
1 0

)
, Rr,t is the rotation matrix of the feature relative to its

original orientation

∂B(tn; Θ)

∂ki
= λ(t,∆tknot)I3×3 (10)

We refer the reader to [11] for the deviation of λ(t,∆tknot). The optimal solution
Θ∗ for Equation 6 is calculated through maximizing σ∗ by line search.

4 Experiments

We evaluate all methods on each dataset with the same pre-selected, evenly-
distributed Harris corners. We use a circular patch with diameter d = 31, a
decaying parameter of ρ = 0.9 and track up to 60 features in each experiment.
We use third order B-spline and create a new spline knot every 50 milliseconds.
If the number of events used in the optimization is small, it may lead to a wrong
optimal solution. We tackle this problem by optimizing more knots with more
events in this case. In the experiments denoted by ours*, we optimize three knots

6 J. Chui et al.

Table 1. Quantitative Comparison of [15] against our method with error threshold 3.

dataset method mean relative
age

mean age[sec] mean
error[pix]

mean common
error[pix]

mean common
error for

ours/ours∗[pix]

shapes translation
ours 0.27 0.71 0.80 0.91 0.95
ours* 0.26 0.63 0.79 0.91 0.95

Zhu et al. 0.04 0.08 2.89 2.92 -

shapes rotation
ours 0.30 0.61 0.81 0.93 0.90
ours* 0.32 0.67 0.83 0.93 0.90

Zhu et al. 0.02 0.02 2.81 2.81 -

shapes 6dof
ours 0.32 1.48 1.05 0.61 1.14
ours* 0.31 1.45 1.07 0.61 1.16

Zhu et al. 0.05 0.18 2.05 1.97 -

poster translation
ours 0.47 1.43 0.87 0.71 0.88
ours* 0.48 1.47 0.87 0.71 0.88

Zhu et al. 0.33 0.71 1.15 1.10 -

poster rotation
ours 0.41 1.33 0.79 0.66 0.80
ours* 0.45 1.54 0.80 0.66 0.79

Zhu et al. 0.20 0.51 1.51 1.40 -

poster 6dof
ours 0.35 2.57 1.05 0.87 1.04
ours* 0.35 2.61 1.05 0.87 1.04

Zhu et al. 0.25 1.37 1.32 1.28 -

boxes translation
ours 0.35 1.35 0.98 0.88 0.98
ours* 0.37 1.50 1.01 0.88 1.00

Zhu et al. 0.31 0.95 1.19 0.94 -

boxes rotation
ours 0.33 1.22 0.79 0.68 0.81
ours* 0.36 1.41 0.80 0.68 0.80

Zhu et al. 0.19 0.59 1.57 1.53 -

boxes 6dof
ours 0.37 1.76 1.07 0.72 1.08
ours* 0.38 1.85 1.07 0.71 1.07

Zhu et al. 0.15 0.64 1.88 1.78 -

when there are less than d2

4 events in the sliding window, otherwise we optimize
only two knots to speed up the run-time. The method of always optimizing two
knots is denoted ours.

Evaluation is performed on the Event Camera Dataset [8], which contains
recordings from a DAVIS camera. Ground truth feature tracks are computed
from frames of the DAVIS camera using the KLT optical flow method [6]. We
compare our methods against Zhu et al. [15]. To allow for a fair comparison
against Zhu et al., we use the authors public MATLAB implementation and
initialize the tracking with exactly the same feature positions as in our method,
disabling the re-detection of new features.

We use four different metrics to do the evaluation. To illustrate the metrics
clearly, the error of feature fi at time t with using method m is denoted by
eim(t). The lifetime of feature fi before the error is larger than threshold th with
using method m is denoted by Lth

m(fi). The definition of each metric with error
threshold th are:

mean relative age = 〈L
th
m(fi)

Lgt(fi)
〉i (11)

mean age = 〈Lth
m(fi)〉i (12)

Event-Based Feature Tracking in Continuous Time with SWO 7

mean error = 〈{eim(t); t ≤ Lth
m(fi)}〉i (13)

mean common error = 〈{eim(t); t ≤ tmin}〉i (14)

where 〈. . . 〉i takes average measurement of all features i, tmin = min{(Lth
mj

(fi); j =
1, 2, . . . , Nm} is the minimal feature lifetime and Nm is the number of methods
we compare. We set the threshold th to 3 pixels in all experiments.

Fig. 2. Number of feature tracks over time with error threshold 3 for the Event Camera
Dataset.

In Table 1, we compare our method to Zhu’s [15] approach. It shows that our
method is always better than Zhu. By comparing ours and ours*, we can see
that enlarging the window size during low-events periods can help to improve the
mean age around 6% and the mean common error for ours/ours∗ almost remains
unchanged. Fig. 3 shows some examples of features which are improved when
using method ours∗. Fig. 2 shows the number of feature tracks over time. The
features in ours∗ last slightly longer than in ours. Compared to Zhu, our pro-
posed algorithm tracks more features (with lower error) at almost all instances
in time.

Since there is no public implementation of [10] available, and we are using
different initial positions, we can only compare our result qualitatively. In Fig.
4 we show the 3D trajectories which can be used to compare the results to [10]
qualitatively. It shows that our trajectories live longer than theirs.

8 J. Chui et al.

Fig. 3. Example of the features in Boxes dataset which are improved in method ours∗

compared to method ours.

Fig. 4. Qualitative results of feature tracking for the Event Camera Dataset.

5 Conclusion

In this paper we proposed a novel event tracking algorithm that aligns the event
stream with a B-spline curve representation in a sliding window fashion. By us-
ing a history patch, the locality of B-splines and a sliding window optimization,
our algorithm can track features accurately and for a long time. Our experi-
ments show that the proposed algorithm outperforms the state-of-the-art time-
continuous event tracking algorithm. We believe that this method can serve as
a basis for event-based video analysis and event-based SLAM. Future research
aims at extending our algorithm to a Sim(2)-formulation, allowing to track fea-
tures with scale changes.

Event-Based Feature Tracking in Continuous Time with SWO 9

References

1. Alzugaray, I., Chli, M.: Asynchronous multi-hypothesis tracking of features with
event cameras. In: 2019 International Conference on 3D Vision (3DV). pp. 269–278
(2019)

2. Brandli, C., Berner, R., Yang, M., Liu, S.C., Delbruck, T.: A 240× 180 130 db 3 µs
latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State
Circuits 49(10), 2333–2341 (2014)

3. Gallego, G., Gehrig, M., Scaramuzza, D.: Focus is all you need: Loss functions for
event-based vision. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 12280–12289 (2019)

4. Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization frame-
work for event cameras, with applications to motion, depth, and optical flow esti-
mation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3867–3876 (2018)

5. Gehrig, D., Rebecq, H., Gallego, G., Scaramuzza, D.: EKLT: Asynchronous, pho-
tometric feature tracking using events and frames. Int. J. Comput. Vis. (2019)

6. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an
application to stereo vision. Vancouver, British Columbia (1981)

7. Manderscheid, J., Sironi, A., Bourdis, N., Migliore, D., Lepetit, V.: Speed invari-
ant time surface for learning to detect corner points with event-based cameras.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 10245–10254 (2019)

8. Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The event-
camera dataset and simulator: Event-based data for pose estimation, visual odom-
etry, and slam. The International Journal of Robotics Research 36(2), 142–149
(2017)

9. Müggler, E., Bartolozzi, C., Scaramuzza, D.: Fast event-based corner detection.
In: British Machine Vision Conference (BMVC). pp. 1–8. British Machine Vision
Conference (BMVC), London, 2017. (September 2017)

10. Seok, H., Lim, J.: Robust feature tracking in dvs event stream using bezier map-
ping. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) (March 2020)

11. Sommer, C., Usenko, V., Schubert, D., Demmel, N., Cremers, D.: Efficient deriva-
tive computation for cumulative b-splines on lie groups. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2020)

12. Stoffregen, T., Gallego, G., Drummond, T., Kleeman, L., Scaramuzza, D.: Event-
based motion segmentation by motion compensation. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7244–7253 (2019)

13. Vasco, V., Glover, A.J., Bartolozzi, C.: Fast event-based harris corner detection
exploiting the advantages of event-driven cameras. 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) pp. 4144–4149 (2016)

14. Ye, C., Mitrokhin, A., Fermüller, C., Yorke, J.A., Aloimonos, Y.: Unsupervised
learning of dense optical flow, depth and egomotion from sparse event data. arXiv
preprint arXiv:1809.08625 (2018)

15. Zhu, A.Z., Atanasov, N., Daniilidis, K.: Event-based feature tracking with proba-
bilistic data association. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). pp. 4465–4470. IEEE (2017)

16. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning
of optical flow, depth, and egomotion. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (June 2019)

	Event-Based Feature Tracking in Continuous Time with Sliding Window Optimization

