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Shape correspondence problem
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Shape correspondence problem
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Point-wise maps

Point-wise maps t: X — Y
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Functional maps

Functional maps T: F(X) — F(Y)

Ovsjanikov et al., 2012
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Functional correspondence
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Functional correspondence
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Functional correspondence
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where @4, = (¢y,...,¢,), ¥ = (¢¥q,...,1,) are Laplace-Beltrami
eigenbases

Ovsjanikov et al., 2012
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Laplacian eigenbases

The Laplacian is invariant to isometries

1 b2
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Functional correspondence in Laplacian eigenbases

C=9/T®, = c;; = (i, Tp;)

For isometric simple spectrum shapes, C is diagonal since ¢, = £T ¢,



Part-to-full correspondence

Full model Partial query
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Partial Laplacian eigenvectors
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Partial Laplacian eigenvectors
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Partial Laplacian eigenvectors
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Laplacian eigenvectors of a shape with missing parts
(Neumann boundary conditions)

Rodola, Cosmo, Bronstein, Torsello, Cremers 2016



Partial Laplacian eigenvectors

Functional correspondence matrix C
Diagonal angle = area ratio of surfaces

Rodola, Cosmo, Bronstein, Torsello, Cremers 2016
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Our setting: Objects in clutter

Full model Cluttered partial view
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Functional correspondence with clutter
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Functional object-in-clutter

Tdiag(u)f = diag(v)g
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Functional object-in-clutter
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Functional object-in-clutter

min ||C® " diag(u)F — ¥ " diag(v)G|la.1 + |C® u — ¥ 0|3

,0,u,v

+ pcorr(ca 0) + ppart (ua U)

o Part regularization

2 2
Ppart (U, V) = g (/ udxr — / vdx) — s (/ udx—i—/ vdx)
M S M S

area preservation part size

+ us (/ ||VMU||dCC+/ |V31}||dx)
M S

Mumford—Shah




Functional object-in-clutter

Jin |C® " diag(u)F — ¥ " diag(v)Glj21 + |C® Tu — ¥ 0|3

+ pcorr(ca 9) + ppart (ua 1})

e Correspondence regularization
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Functional object-in-clutter

Jin |C® " diag(u)F — ¥ " diag(v)Glj21 + |C® Tu — ¥ 0|3

+ pcorr(ca 9) + ppart (ua 1})

e Correspondence regularization
Peorr(C,0) = pa]|C oW (Q)H%‘ + U5 § (CTC)?j + te § |CTC|ii
i#£j )

= orthogonality sparsity

slant




Learning descriptors

min ||C® " diag(u)F — ¥ ' diag(v)Gl21 + - --

,0,u,0

For the data term we use dense descriptor fields.
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Learning descriptors

Jnin |C® " diag(u)F — ¥ diag(v)Gljz1 + - --

For the data term we use dense descriptor fields.

e Existing isometry-invariant descriptors (HKS, WKS) are affected by
clutter and boundary effects

@ Local descriptors (FPFH, SHOT) are not isometry invariant and
sensitive to sampling

Our solution:

Perform metric learning upon 544-dim SHOT to derive 32-dim
descriptors that are robust to clutter, missing parts, and near-isometries

Sun et al. 2009; Aubry et al. 2011; Rusu et al. 2009; Tombari et al. 2010; Hadsell et
al. 2006; Masci, Boscaini, Bronstein, Vandergheynst 2015



Performance of learned descriptors
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Comparisons
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Methods: Myronenko et al. 2010 (CPD); Rodola, Albarelli, Bergamasco, Torsello 2013
(GTM); Rodola, Cosmo, Bronstein, Torsello, Cremers 2016 (PFM); Ovsjanikov et al.
2012 (FM)
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Examples with clutter
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Examples with clutter
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Failure case
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Conclusions

@ Deformable object-in-clutter has been much less investigated than
its rigid counterpart, and there is a lack of data and benchmarks.
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Conclusions

@ Deformable object-in-clutter has been much less investigated than
its rigid counterpart, and there is a lack of data and benchmarks.

@ We presented a spectral approach that works remarkably well despite
the realistic setting.

o Existing descriptors do not behave well in this setting; we need new
descriptors!

Thank you!
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Laplacian eigenvectors with clutter
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Perturbation analysis: intuition

fui

@ Ignoring boundary interaction: disjoint parts (block-diagonal matrix)

@ Eigenvectors = Mixture of eigenvectors of the parts
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Perturbation analysis: eigenvalues
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@ Slope + ~ ‘;:gfg (depends on the area of the cut)

@ Consistent with Weyl's law for 2-manifolds
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Perturbation analysis: intuition

Rodola, Cosmo, Bronstein, Torsello, Cremers 2016
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Initialization

We solve a small minimum-distortion correspondence problem with
sparsity constraints.
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Initialization

We solve a small minimum-distortion correspondence problem with
sparsity constraints.
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Formally, we find local solutions to a Li-relaxed variant of the quadratic
assignment problem (QAP).

Rodola, Bronstein, Albarelli, Bergamasco, Torsello 2012; Rodola, Torsello, Harada,
Kuniyoshi, Cremers 2013



Metric learning

Learn an embedding function F'(z) parametrized by ©, by minimizing the
siamese loss:

Li(©) =Y 7 Fe(x) - Fo(+ )|

ot ES
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where (z,27), (z,27) are knowingly similar and dissimilar point pairs.

Cosmo, Rodola, Masci, Torsello, Bronstein 2016; Bromley et al. 1994; Hadsell et al.
2006
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Metric learning

Learn an embedding function F'(z) parametrized by ©, by minimizing the
siamese loss:

Li(©) =Y 7 Fe(x) - Fo(+ )|

ot ES

+ > (L=y)(m — ||Fo(z) = Fol(z)ll2)}

z,x— €D
where (z,17), (z,27) are knowingly similar and dissimilar point pairs.

Regularize with a global distribution penalty:

Lg(©) =0/ + oo + (mg + g — He)+

Cosmo, Rodola, Masci, Torsello, Bronstein 2016; Bromley et al. 1994; Hadsell et al.
2006; Kumar et al. 2015



Training data

o All points are used for training

Cosmo, Rodola, Masci, Torsello, Bronstein 2016
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Training data

o All points are used for training
@ A local extrinsic descriptor is attached to each point

Cosmo, Rodola, Masci, Torsello, Bronstein 2016; Tombari et al. 2010
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ResNet

Function Fg is modeled as a deep residual network

2 s

in 544 FC 128 FC 64 FC 32 out 32

The geometric information lies in the descriptor fed as input

Cosmo, Rodola, Masci, Torsello, Bronstein 2016; He et al. 2015
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Perturbation analysis: details
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Perturbation analysis: details

“How would the Laplacian eigenvalues and eigenvectors of the red
part change if we attached a blue part to it?”
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Perturbation analysis: details
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Perturbation analysis: details

Denote Ax +tPx = ®(t)A(t)@(t)", Ay = PAPT, & = $(0), and
A = A(0).

Theorem 1 (eigenvalues) The derivative of the non-trivial eigenvalues
is given by
d
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Perturbation analysis: details

Denote Ax +tPx = ®(t)A(t)@(t)", Ay = PAPT, & = $(0), and
A = A(0).

Theorem 1 (eigenvalues) The derivative of the non-trivial eigenvalues
is given by
d

0 0
—\i=¢, Pxo, Py =
dt ¢7, X¢L X ( 0 DX )

Theorem 2 (eigenvectors) Assuming \; # \; for i # j and \; # \; for
all 7, j, the derivative of the non-trivial eigenvectors is given by

@, 0 0
¢ Z)\Xj(b Z/\_)\ P:(E 0)



Perturbation analysis: boundary interaction strength

Value of f

@ Eigenvector perturbation depends on length and position of the boundary

@ Perturbation strength < ¢ [, f(z)dx, where

= 3 (2o el ))

i,j=1
J#i



(bi-)Laplacian perturbation: typical picture

Mode 1 Mode 40 Mode 44

u.\
Qi

S
A

Mode 1 Mode 40 Mode 44

uw

L
M X' l;
m,,.»"""'r‘w Mg !

Punctured plate

Figure: Filoche, Mayboroda 2009
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