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Figure 1: A partial multi-way correspondence obtained with our approach on a heterogeneous collection of shapes. Our method
does not require initial pairwise maps as input, as it actively seeks a reliable correspondence by operating directly over the
space of joint, cycle-consistent matches. Partially-similar as well as outlier shapes are automatically detected and accounted
for by adopting a sparse model for the joint correspondence. A subset of all matches is shown for visualization purposes.

Abstract
Recent efforts in the area of joint object matching approach the problem by taking as input a set of pairwise maps,
which are then jointly optimized across the whole collection so that certain accuracy and consistency criteria are
satisfied. One natural requirement is cycle-consistency – namely the fact that map composition should give the
same result regardless of the path taken in the shape collection. In this paper, we introduce a novel approach to
obtain consistent matches without requiring initial pairwise solutions to be given as input. We do so by optimizing
a joint measure of metric distortion directly over the space of cycle-consistent maps; in order to allow for partially-
similar and extra-class shapes, we formulate the problem as a series of quadratic programs with sparsity-inducing
constraints, making our technique a natural candidate for analyzing collections with a large presence of outliers.
The particular form of the problem allows us to leverage results and tools from the field of evolutionary game
theory. This enables a highly efficient optimization procedure which assures accurate and provably consistent
solutions in a matter of minutes in collections with hundreds of shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Shape Analysis

1. Introduction

Finding matches among multiple objects is a research topic
that has received a good deal of attention in recent years.
In its most common formulation, it translates to the prob-
lem of determining point-to-point maps between all shapes
in a collection, subject to the requirement that the ex-
tracted correspondence be in some way “consistent”. To

this end, a natural and widely accepted criterion is cycle-
consistency [ZKP10], namely that composition of maps
along loops in the collection should approximate the iden-
tity. So far, the problem has been approached by indepen-
dently computing pairwise maps [LH05, KLF11] between
the objects in the collection; the set of maps is then given as
input to a global optimizer which updates them so as to im-
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prove their quality and produce a final, consistent correspon-
dence. Although most of these approaches work well pro-
vided that the input maps are sufficiently accurate, they suf-
fer in the presence of noise (incorrect matches) in the maps
themselves, or outlier (extra-class) shapes in the collection.
Further, due to the combinatorial difficulty of imposing the
consistency requirement, many of the existing schemes pro-
vide no guarantee that cycle-consistency is satisfied exactly.

In this paper, we introduce a new method for the joint
matching of multiple deformable shapes in a collection. Un-
like the common approach outlined above, we do not require
any pairwise correspondence to be given as input, and in-
stead formulate the problem as an optimization directly over
the space of cycle-consistent (multi-way) matches.

1.1. Related work

Probably the earliest attempt to tackle multiple shape match-
ing in a principled way is the synchronistic matching ap-
proach of Schmidt et al. [STCB07]. Given a collection of
planar shapes, the authors model the joint matching prob-
lem as the search of a shortest path in their product space.
Due to the resulting intractability, the problem is relaxed to
a series of pairwise sub-problems, and the cycle-consistency
criterion introduced as a regularizer. The method allows to
improve initial pairwise solutions, but consistency is not sat-
isfied exactly and the method operates under the assump-
tion that all shapes in the collection are similar. Pachauri et
al. [PKS13] took a similar perspective by formulating the
matching problem using the language of combinatorial op-
timization; due to the spectral relaxation they perform, the
method tends to be sensitive to noise and outliers. Recently,
Yan et al. [YLL∗14] formulated the problem as one of si-
multaneous multi-graph matching [SRS13], but similarly
to [STCB07,PKS13], cycle-consistency is relaxed and grad-
ually infused in a pairwise matching process as a regularizer.

Zach et al. [ZKP10] were probably the first to make
an explicit attempt at finding solutions meeting the cycle-
consistency requirement. Starting from an initial graph of
pairwise associations among the objects in the collection,
they detect and remove erroneous edges as the ones giving
rise to inconsistent loops in the graph. As an extension to
this approach, Nguyen et al. [NBCW∗11] apply global op-
timization to select cycle-consistent maps while at the same
time allowing edges to be replaced by better map composi-
tions. The method performs well when the full point-to-point
correspondence is known and accurate for all pairs of ob-
jects. Huang et al. [HZG∗12] improved upon [NBCW∗11]
by allowing sparse correspondences, and later rephrased the
problem by replacing the pairwise maps with a spectral
counterpart [HWG14]; however, the approaches do not ap-
ply when the shapes being matched are only partially sim-
ilar [RCB∗16]. Finally, Sahillioğlu and Yemez [SY14] pro-
posed a greedy algorithm that seeks nearly-isometric con-
sistent solutions across all shapes in the collection. The ap-

proach only works well when matching shape extremities,
and it is susceptible to outlier shapes and partiality. In par-
ticular, its accuracy depends on the specific ordering of the
shapes in the collection.

All the methods outlined above demonstrate good prac-
tical performance in controlled settings, however there has
been a general lack of theoretical guarantees that ensure cor-
rectness of the final correspondence under unfavorable con-
ditions. First steps in this direction are taken by Huang and
Guibas [HG13], who formulate a convex relaxation to the
joint matching problem using the language of semi-definite
programming. The authors derive theoretical guarantees on
the recovery of the correct joint correspondence from noisy
input maps [KLF11]. Very recent works in the field of infor-
mation theory explore this direction more abstractly [CG14],
giving conditions for perfect recovery under large outlier ra-
tios. Chen et al. [CGH14] and Kezurer et al. [KKBL15] re-
cently applied this analysis to consistently match partially
similar objects from a small fraction of densely corrupted
pairwise maps. To our knowledge, their algorithms currently
represent the state of the art within this family of approaches.

1.2. Contribution

In this paper, we introduce a novel technique to construct ac-
curate, consistent correspondences within shape collections.
Our formulation has the following key properties:

• The method operates by optimizing directly over the
space of cycle-consistent correspondences, without re-
quiring pairwise maps to be given as input. As a result,
cycle-consistency is satisfied exactly by construction.

• We employ sparsity techniques in order to cope with par-
tially similar as well as outlier shapes in the collection –
an aspect that has received limited interest so far, but that
can frequently occur in practical scenarios.

• Our proposed method is easy to implement. Further, it
compares favorably with the state of the art on challeng-
ing datasets while being orders of magnitude faster.

2. Preliminaries

We model shapes as compact two-dimensional Riemannian
manifolds Si (possibly with boundary) embedded in R3,
equipped with the intrinsic distance function di.

Let us be given a collection C = {S1,S2, . . . ,Sn} of n
shapes. The product space S1×·· ·×Sn consists of all pos-
sible n-way (i.e., joint) matches between the shapes in C.
However, in practical settings it is often the case that out-
liers (e.g., shapes belonging to different classes) as well as
partially similar shapes (e.g., man and centaur) are present in
the collection (see Fig. 2). In order to deal with such cases,
we extend the set of possible joint matches as follows. For-
mally, we consider the set constructed as the union

Γ̆ =
⋃
k∈I

∏
j∈k

S j , (1)
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A B C

Figure 2: A collection of shapes may carry partiality at dif-
ferent levels. Our method allows to extract consistent corre-
spondences reliably under partial similarity (e.g., S1/S2/S3)
and at the same time detect and avoid outlier shapes (S5).

where I is a collection of index sets k defined by the power
set (denoted by P) relation

I = {k : k ∈ P({1,2, . . . ,n})∧|k|> 1} . (2)

In other words, Γ̆ is the set of all possible m-fold Carte-
sian products between the shapes in C, with 1 < m≤ n.
Clearly, this set also includes S1×·· ·×Sn and in particu-
lar |Γ̆| grows exponentially with the number of shapes. Each
element γ ∈ Γ̆ with |γ|= d ≤ n now represents a joint match
between a subset of d shapes from the collection.

Definition 1 We define a multi-way match among d ≤ n
shapes to be any element γ ∈ Γ̆. A multi-way match is repre-
sented as the ordered d-tuple

γ = (pi)i∈k with k ∈ I and pi ∈ Si ,

where k is a sequence of shape indices, denoting the shapes
matched by γ. We will write pi ∈ γ to say that the vertex pi
is matched via γ.

Note that two multi-way matches γ,γ′ ∈ Γ̆ may in general
have different lengths |γ| and |γ′|. In particular, they may
or may not have shapes in common. We will therefore de-
fine the overlap γ∩ γ

′ as the longest common subsequence
of their shape indices. For example, in Fig. 2 we show the
multi-way matches A,B,C ∈ Γ̆. For A and B we have the
overlap A∩B = (1,2), whereas A∩C = (3) and B∩C = ∅.

For our purposes, we are interested in subsets of Γ̆ that
satisfy certain properties, as described in the following:

Definition 2 A multi-way correspondence between the n
shapes in C is a subset Γ⊂ Γ̆ satisfying: for every Si ∈ C
and for every pi ∈ Si, there exists at least one γ ∈ Γ such that
pi ∈ γ.

The above definition ensures that in a multi-way correspon-
dence each vertex of each shape is matched to correspond-
ing vertices on (a subset of) the other shapes. We now define
what is the meaning of cycle-consistency in our setting.

Definition 3 We say that a multi-way correspondence Γ

between shapes in the collection C = {Si}n
i=1 is cycle-

consistent if, for any j,k, `∈ {1, . . . ,n}, whenever Γ matches
p j ∈ S j to pk ∈ Sk and matches pk to p` ∈ S`, then Γ also
matches p j to p`.

Remark 1 A multi-way match is always cycle-consistent by
construction, since it is an element of a product set. This
applies to any cycle, with length possibly longer than 3.

Note that while individual multi-way matches are always
cycle-consistent, a fixed point pi ∈ Si might be mapped to
multiple points on the other shapes by a multi-way corre-
spondence. We therefore introduce the following notion:

Definition 4 Two distinct multi-way matches γ,γ′ ∈ Γ are
said to be incompatible whenever pi ∈ γ and pi ∈ γ

′ for some
pi ∈ Si and i ∈ {1, . . . ,n}.

An illustration of incompatible matches is given in Fig. 3.

p1
p2

p3

q1

Figure 3: Left: The red matches violate cycle-consistency,
since p1 6= q1. Right: Example of two incompatible multi-
way matches (red and green): the hand in the middle shape
is assigned to multiple distinct points on the other shapes.

3. Problem statement

The goal of joint object matching is to determine a (possibly
dense) correspondence among multiple shapes in a collec-
tion, with the requirement that the correspondence be consis-
tent along cycles of any length. In this Section we formulate
the joint matching problem as one of minimum-distortion
correspondence [Mém11]. Differently from most other ap-
proaches [STCB07, ZKP10, NBCW∗11, HZG∗12, PKS13,
SY14, YLL∗14] our formulation comes with the theoretical
guarantee of cycle-consistency, and additionally deals with
partially similar as well as outlier shapes in a natural way.

Metric distortion. Suppose we are given two multi-way
matches γ,γ′ ∈ Γ respectively putting |γ| and |γ′| points into
correspondence, where in general |γ| 6= |γ′|. Then, we can
quantify the quality of the correspondence by the cost func-
tion ε : Γ×Γ→ R+∪{∞} defined as:

ε(γ,γ′) = max
pk ,p`∈γ

p′k ,p
′
`∈γ
′

|dk(pk, p′k)−d`(p`, p′`)| . (3)

Here we tacitly assume that the multi-way matches are com-
pared only on their overlap, i.e., over the shapes in common.
In (3) we put ε(γ,γ′) =∞ whenever γ and γ

′ are incompat-
ible (see Fig. 3) or non-overlapping. This definition of cost
encodes the maximum metric distortion attained by the two
multi-way matches across the shape collection.

Multi-way Lp distortion. A multi-way correspondence
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Γ⊂ Γ̆ can be alternatively modeled as a binary function
g : Γ̆→{0,1} such that for every Si ∈ C and for every q∈ Si,

∑
γ∈Γ̆

s.t. q∈γ

g(γ)≥ 1 . (4)

Function g can be seen as an indicator function over the
space of all possible multi-way matches. Then, the condition
above simply asks that each point in each shape is contained
in at least one γ ∈ Γ̆ for which g(γ) = 1, thus being a strict
requirement to match all points in all shapes.

The overall metric distortion caused by a correspondence
Γ can be measured by the Lp distortion:

‖ε‖p
Lp(g×g) = ∑

γ,γ′∈Γ̆

ε
p(γ,γ′)g(γ)g(γ′) , (5)

with p ≥ 1. Now, determining a correspondence of mini-
mum distortion amounts to seeking a minimizer (not unique
in general) to:

min
g:Γ̆→{0,1}

‖ε‖p
Lp(g×g) (6)

where g ranges over all correspondences Γ⊂ Γ̆.

Example. In the specific case where n = 2, a multi-way
match γ = (p1, p2) reduces to a pair of points and the error
criterion of Eq. (3) simplifies to the absolute metric distor-
tion ε((p1, p2),(q1,q2)) = |d1(p1,q1)− d2(p2,q2)|. Then,
by taking the limit for p→∞ the expression (6) yields the
classical Gromov-Hausdorff distance between metric spaces
(S1,d1) and (S2,d2) [Mém11].

Dealing with partiality. The combinatorial complexity of
optimizing over all possible multi-way correspondences
Γ⊂ Γ̆ makes the problem intractable even for small collec-
tions. Partial remedy to this issue is provided by relaxing the
binary map to take continuous values, i.e., g : Γ̆→ [0,1].

We further note that, although Eq. (1) enables us to better
deal with partially similar shapes, the constraint defined in
Eq. (4) requires us to match all points in all shapes. How-
ever, we would like outlier shapes to not partake to the final
correspondence. Furthermore, we want to allow individual
shape points to be left unmatched if they do not find suitable
matches throughout the collection.

We model this requirement by introducing a sparse model
for the correspondence. To this end, we relax condition (4)
by demanding ∑γ g(γ) = 1 over Γ̆. This requirement gives
us an interpretation of g as a discrete probability distribution
over the space of all multi-way matches. Importantly, the L1-
like constraint on g has a sparsity-promoting effect on the
solution, hence modeling partiality.

Unfortunately, directly minimizing a problem of the
form given in Eq. (6) subject to ∑γ g(γ) = 1 would yield
trivial solutions. Specifically, we can characterize the

global opt.
local opt.

global minimizers by: g(γ) = 1 for γ=
γ
? and g(γ) = 0 otherwise, where γ

? is
taken to be any γ ∈ Γ̆. This amounts
to concentrating the whole mass of g
into one single multi-way match, as il-
lustrated in the inset figure.

We sidestep this issue by passing to a maximization prob-
lem. Suppose we are given, as opposed to the cost ε, a simi-
larity function s : Γ̆× Γ̆→R+ measuring the extent to which
two given multi-way matches preserve pairwise distances. A
possible choice is given by the Gaussian score:

s(γ,γ′) = e
− 1

µ2 ε
2(γ,γ′)

, (7)

where µ2 ∈ R+ is the variance of s. Note that s(γ,γ′) = 0
whenever ε(γ,γ′) =∞; that is, incompatible matches are as-
signed zero similarity. We get to the following optimization
problem, which we consider throughout this paper:

Problem 1 (Partial multi-way correspondence). Given a
collection of shapes C, we seek a partial multi-way corre-
spondence among them as a maximizer to:

max
g:Γ̆→[0,1]

∑
γ,γ′∈Γ̆

s(γ,γ′)g(γ)g(γ′) (8)

s.t. ∑
γ∈Γ̆

g(γ) = 1 (9)

c̄(γ,γ′)g(γ)g(γ′) = 0 ∀ γ,γ′ ∈ Γ̆ , (10)

where we set c̄(γ,γ′) = 1 if the two matches are incompati-
ble, and c̄(γ,γ′) = 0 otherwise. Eq. (10) ensures that incom-
patible matches will not appear in any local optimum.

The transition to a maximization problem has a regular-
izing effect on its optima, as there are no trivial maximizers
meeting the constraints in this case.

Remark 2 Any local solution to Problem 1 satisfies the key
requirements of a multi-way correspondence: 1) it is always
cycle-consistent (by construction of Γ̆); 2) shape points are
activated at most once by the correspondence (by Eq. (10));
and 3) partial matches are allowed (by Γ̆ and Eq. (9)).

A note on symmetries. In case the shapes in the collec-
tion carry bilateral symmetries, mapping either side would
in principle yield the same optimum for Problem 1. In this
paper we deem correct such symmetric solutions as long as
they remain consistent across all pairs of shapes (see Fig. 4).

(a) (b)

Figure 4: (a) Incorrect correspondence due to inconsistent
handling of the symmetry. (b) Even if the solution is not
orientation-preserving, symmetries are treated consistently.
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Figure 5: Outlier shapes are automatically excluded by our
approach, as they do not find support from the other shapes
in the collection. Note that the human shapes appearing in
this example come from different datasets (TOSCA, SCAPE,
SHREC’14). A subset of all matches is shown.

4. Optimization

Problem 1 is a non-convex quadratic program with O(|Γ̆|)
variables; as such, it is in general very difficult to solve and
to give guarantees on the optimality of the solution. In this
Section we develop an efficient strategy to get good local
solutions to this problem. The general strategy is to decom-
pose it into two sub-problems: a robust process to get good
match candidates (Section 4.1), and a restriction of the orig-
inal problem to the reduced feasible set (Section 4.2).

4.1. First sub-problem (reducing the feasible set)

The first sub-problem is aimed at reducing the size of the fea-
sible set Γ̆ to a smaller subset of “stable” candidates Λ⊂ Γ̆.
Then, we will directly optimize Problem 1 over the reduced
feasible set Λ.

Outline. The general insight behind our formulation is that,
given a collection of shapes, it is relatively easy and inexpen-
sive to solve for one single multi-way match between them.
Specifically, the idea is to seek for a multi-way match γ ∈ Γ̆

that maximizes a measure of point-wise similarity across
several shapes, hence taking advantage of the stability in-
duced by the whole shape collection. The final goal is to
keep in the feasible set only multi-way matches maximiz-
ing this measure of similarity, since they are expected to be
accurate and stable against outliers, as shown in Fig. 5.

This problem can be formulated as a series of quadratic
programs with sparsity constraints (Eq. (11)), each yielding
a multi-way match γ ∈ Λ. Note that mapping constraints are
imposed such that only cycle-consistent matches are allowed
to be local optima.

Solving for a single multi-way match. Assume for simplic-
ity that |Si| = N for all i = 1, . . . ,n. Further, let us be given

a point-wise similarity function τ : Sk× S` → R+, measur-
ing the similarity of some descriptor defined at shape points
(an example is given in Section 5.1). Note that this function
is not the same as the one defined in Eq. (7), which instead
measures the similarity between multi-way matches.

We introduce the vector x∈ [0,1]nN , representing a proba-
bility distribution over all points in

⋃
i Si. Then, consider the

L1-regularized non-convex quadratic program:

max
x≥0

x>Ax s.t. x>1 = 1 . (11)

Here, matrix A is a symmetric similarity matrix:

A =


0 S1,2 · · · S1,n

S1,2 0 · · · · · ·
...

... 0 Sn−1,n

S1,n ... Sn−1,n 0

 , (12)

where each symmetric block Sk,` ∈ RN×N contains the sim-
ilarity values between the points in Sk and S`, according
to function τ. The reason for the zero blocks along the di-
agonal will become clear with Theorem 1. Note that the
matrix above is not related to the block matrix appearing
in [HG13, CGH14], which instead represents a collection of
pairwise maps (ideally permutations).

The key result of this Section is that the support of any
local maximizer to the problem above (i.e., the set of points
for which xi 6= 0) is guaranteed to be a single partial multi-
way match γ ∈ Γ̆ between the shapes in the collection, as we
state in the following theorem.

Theorem 1 Let x be a strict local maximizer of problem (11),
where A = A> and Aii = 0 for all i = 1, . . . ,nN. Then,
Ai j > 0 for all i, j such that xi 6= 0 , x j 6= 0.

Proof. See the Appendix.

According to Thm. 1, local solutions to (11) cannot simul-
taneously activate points with zero similarity. This gives us
a powerful means to restrict feasibility to solutions that acti-
vate at most one point per shape: It is sufficient to set Ai j = 0
whenever indices i and j correspond to points on the same
shape, i.e., matrix A must have zero blocks on the diagonal.

Remark 3 Since local solutions to problem (11) are guar-
anteed to be multi-way matches, they are always cycle-
consistent by definition.

A series of quadratic problems. Clearly, in order to con-
struct the reduced set Λ ⊂ Γ̆ we need a way to enumerate
the local optima of problem (11). We do so by solving a se-
quence of problems of this form, each with a different data
matrix (12). Specifically, in each problem we compute simi-
larities from a reference descriptor (or “query”) to all shape
points, and we discard all dissimilar points.

Suppose we are given a collection Q of queries to com-
pare against. A family of problems of the form (11) can
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Figure 6: Our matching pipeline. First sub-problem (from left): Given a collection of shapes as input, a set Q of queries are
generated (e.g., by farthest point sampling in the joint WKS space); we then compute distance maps (shown here as heat maps
over the shapes) in descriptor space from each shape point to each query qk ∈Q, and keep the vertices having distance smaller
than a threshold; finally, a single multi-way match is extracted by solving problem (11). Second sub-problem: The multi-way
matches extracted by iterating the previous step are compared using a measure of metric distortion; the final solution (in orange)
is obtained by solving problem (13) over the reduced feasible set.

then be generated as follows. Given a query qk ∈Q, for each
shape Si ∈ C we only consider the vertices p ∈ Si such that
τ(p,qk) > ξ for some threshold ξ > 0. In other words, each
query selects a different subset of vertices from each shape;
since we can generate and solve as many problems (11) as
there are queries qk, we can proceed constructively and store
each solution in our reduced feasible set Λ, which will have
size |Λ|= |Q|.

Note that each of these problems will be quite small, since
the number N′ of shape points that are similar to each query
is significantly smaller than the total number of points N.
We refer to Sec. 5.5 for an empirical evaluation. We also
note that this approach is different from previous approaches
which require pairwise maps as input or which require geo-
metrically consistent samples to be pre-selected across the
shapes [NBCW∗11, HZG∗12, HG13, SY14, CGH14].

Example. Suppose we are given a point descriptor function
f :

⋃
i Si→Rm, providing an embedding of all shapes in Rm.

The query set Q can be defined implicitly by a k-means clus-
tering or by farthest point sampling directly in Im f .

Numerical solution. It is worthwhile to note that problems
of this form have a natural interpretation from the point of
view of evolutionary game theory [ARBTP09, RBA∗12].
We leverage this connection by adopting the infection-
immunization dynamics algorithm [RBB11], an efficient lo-
cal optimizer with convergence guarantees that exploits the
specific structure of problem (11).

Symmetries. In order to favor symmetry-consistent
solutions (Fig. 4), we assume to
be given left-right maps for the
shapes in the collection, i.e., la-
belings f : S→{L,R} associating
each shape point to either side.
The maps are then used to aug-
ment the shape descriptors. While
there are robust approaches to perform this task [LKF12], for
our purposes it is enough to have a rough estimate so as to

avoid obviously inconsistent solutions. We do so by looking
for approximate rigid symmetries [PSG∗06] on a multidi-
mensional scaling in R3 of a few farthest samples per shape.
An example of such procedure is shown in the inset figure.
Note that, compared to existing methods, this is a simpler
requirement than having input pairwise maps.

4.2. Second sub-problem (correspondence)

We are now ready to solve a smaller version of Problem 1 by
replacing Γ̆ with the reduced set Λ. We proceed by directly
rewriting the problem in matrix notation.

Suppose we solved |Λ| = M instances (one per query) of
problem (11), hence we have partial multi-way matches γi
for i = 1, . . . ,M at our disposal. We can now compose the
similarity terms s(γi,γ j) into a similarity matrix B ∈ RM×M

+
such that Bi j = B ji = s(γi,γ j), and we set Bii = 0 for all
i = 1, . . . ,M by Theorem 1. The correspondence function g
can simply be represented by a vector g ∈ [0,1]M . Similarly
to the previous case, we arrive at the quadratic program:

max
g≥0

g>Bg s.t. g>1 = 1 . (13)

Note that the mapping constraints (10), which impose that
incompatible matches cannot be part of the final solution, are
already incorporated in the data matrix B. This is because we
set Bi j = 0 whenever γi and γ j are incompatible (by Eq. (7)).

A problem of this form for the simple case of two shapes
was previously considered in [RBA∗12]. Local solutions
to (13) (obtained again with [RBB11]) will be accurate, al-
though sparse. However, since the candidate set Λ is likely
to contain good match hypotheses due to the previous opti-
mization, there is hope to elicit a larger correspondence from
it. To this end, we consider three simple approaches:

Grouped sparse. Following [RBTP09, ART12], we pro-
ceed by iteratively solving updated versions of problem (13).
Whenever a local optimum is reached, the matches resulting
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Data: Shape collection C of n shapes
Result: Partial multi-way correspondence Γ among the

shapes in C
pre-processing (Sec. 5);
Q← generated as in the Example of Sec. 4.1;
Λ←∅;
forall the q ∈ Q do

find points p ∈ Si s.t. τ(p,q)> ξ for i = 1, . . . ,n;
construct similarity matrix A as in Eq. (12);
x← solve problem (11) using [RBB11];
γ← support of x;
update Λ← Λ∪{γ};

end
construct similarity matrix B as in Sec. 4.2;
g← solve problem (13) “grouped” as in Sec. 4.2;
Γ← support of g;

Algorithm 1: Full pipeline of our method for consistent
partial matching of shape collections. Detailed parameter
values are given in Section 5.

from the optimizer g are stored, and the data matrix is mod-
ified by setting Bi? = B?i = 0 for all i such that gi 6= 0. By
Theorem 1, this amounts to reducing the feasible set to the
remaining candidates in Λ. The iterations stop when the ob-
jective g>Bg falls below a certain threshold.

Spectral relaxation. A different way to approach the prob-
lem consists in replacing the L1 constraint g>1 = 1 by a
L2 counterpart g>g = 1. This type of constraint acts as a
Tikhonov regularizer, which tends to yield denser solutions
for this kind of problems. A global optimum can then be
computed by Rayleigh’s ratio as the principal eigenvector of
B. This comes at the price of sacrificing the mapping con-
straints guaranteed by Theorem 1, which must be imposed
by a post-processing of the obtained solution [LH05].

Elastic net. Finally, one may introduce a form of control-
lable sparsity into the problem by elastic net regulariza-
tion [RTH∗13]. In this case, the L1 constraint is replaced by
the convex combination (1−α)g>1+αg>g = 1, where pa-
rameter α ∈ [0,1] allows to transition smoothly from a for-
mulation equivalent to (13) (hence sparse) to a purely spec-
tral solution (denser).

In Fig. 7 we show a full comparison of the three alter-
natives on the TOSCA dataset, using the cumulative error
measure defined in Sec. 5. Finally, the main steps describing
our matching pipeline are given in Algorithm 1 and Fig. 6.

4.3. Complexity and scalability

We conclude the theoretical part with a complexity analysis
of our method. Suppose our collection C is made of n shapes,
each shape has N points, and M is the number of queries.

For a single query, computing the similarity matrix A
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Figure 7: Comparison between different numerical ap-
proaches to solve problem (13). Left: Matches visualized on
two scanned shapes from the SHREC’14 dataset, extracted
from a multi-way correspondence of length 7; the spectral
relaxation yields 43 matches (in green), while the elastic
net with α = 0.7 only 11 matches (in red), although less
noisy. Right: Quantitative comparison on the entire TOSCA
dataset; the iterated L1 approach provides the best combi-
nation of size and accuracy.

takes O((nN)2) operations. In practice, since for each query
we have N′ � N, this is a fast operation of the order
O((nN′)2). Optimization of problem (11) using evolution-
ary dynamics [RBB11] is a O(nN′) step. The complexity of
the first sub-problem (generation of Λ) is thus O(M ·(nN′)2).

Next, constructing matrix B is a O(M2) operation; this
also involves computing geodesic distances among all
points in Λ, which can be done efficiently via fast march-
ing [WDB∗08]. Since optimizing problem (13) is a O(M)
process, the overall complexity of the second sub-problem is
O(M2). Note that in all our experiments we have once again
M� nN, hence this step of the pipeline is typically very fast.
We refer to Sec. 5.5 for an experimental evaluation.

5. Experimental results and applications

We performed a wide range of experiments on sev-
eral benchmarks, namely: TOSCA [BBK08], SCAPE
[ASK∗05], KIDS [RRBW∗14], and SHREC’14 [PSR∗14].
These datasets consist of multiple classes of nearly-isometric
shapes, with some intra-class variation in the case of
KIDS and SHREC’14. All datasets with the exception of
SHREC’14 come with ground-truth correspondences within
each category. In all the experiments, we ran our matching
algorithm using M = 500 queries in descriptor space. Pa-
rameter ξ was chosen as the 10th percentile of the descrip-
tor distances to each query; the iterative process for solving
problem (13) was stopped when the energy fell below 0.5. †

Pre-processing. WKS descriptors [ASC11] are precom-
puted for all the meshes. We rescale each shape by the square

† Code will be made available at: http://vision.in.tum.
de/members/rodola/code
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Figure 8: Sensitivity experiments on a subset of TOSCA.
Here we plot the error curves under different choices of
point-wise similarity parameter σ (left), and metric distor-
tion parameter µ (right). In both graphs, the resulting num-
ber of multi-way matches is reported in parentheses.

root of the k-th Laplacian eigenvalue, with k = 100 for all
shapes; this has the effect of normalizing the meshes to have
similar surface area (by Weyl’s law), and at the same time to
yield comparable WKS. Where not specified otherwise, in
our experiments we run the matching pipeline on N = 300
farthest samples per shape (using the Euclidean metric). This
is done in order to avoid solutions that unduly aggregate in
small regions. Note that we do not assume samples to be
compatible across shapes as in [HG13], hence some local
error in the computed matches is to be expected.

Error measure. We quantify the quality of the correspon-
dence by using the same measure of error defined in [HG13].
Specifically, in our plots we show the percent of matches pe
which have geodesic error (i.e., distance from the ground-
truth) smaller than a threshold e. This cumulative distri-
bution is computed and aggregated over all the pairwise
matches induced by the obtained multi-way correspon-
dences. The geodesic error is normalized by the square root
of the area of each shape. As in [HG13], we also report val-
ues for p0.16 and p0.02, which respectively capture the global
and local accuracy of the matching method.

5.1. Sensitivity analysis

The first set of experiments is aimed at analyzing the sensi-
tivity of our method to different parametrizations. In order
to reduce overfitting, these experiments are performed on a
representative subset of the TOSCA dataset, consisting of
the victoria (12 shapes) and cat (11 shapes) classes.

Point-wise similarity. We measure the similarity between
points on different shapes by the similarity between their as-
sociated WKS descriptors. Each signature is computed on
the shape samples using 100 eigenpairs, 100 energy levels
and variance equal to 6.0 (default parameters as provided by
the authors). Given two points p ∈ Sk and q ∈ S`, we define
their similarity by the Gaussian weight

τ(p,q) = e−
1

σ2 ‖WKS(p)−WKS(q)‖2
2 . (14)

In Fig. 8 (left) we plot the error curves under different

Figure 9: Effect of parameter µ on the metric distortion term
of Eq. (7). Increasing the value of µ makes geometric vali-
dation more tolerant to distorted matches. In this real ex-
ample on the SCAPE dataset, the colored regions show the
admitted metric distortion for a pair of multi-way matches
at different values of µ. An optimal value for this parameter
can be chosen such that a prescribed metric distortion is not
exceeded (e.g., constrained to the orange area).

choices of σ ∈ R. Note that smaller values of σ tend to yield
more accurate solutions. The choice of σ also has an effect,
although not very pronounced, on the final number of multi-
way matches (reported in parentheses).

Metric distortion. As described in Eq. (7), penalizing the
metric distortion of a pair of multi-way matches is done by
means of a control parameter µ. As shown in Fig. 8 (right),
changing the value of µ allows to control the size/accuracy
trade-off of the final correspondence: as µ is increased, dis-
torted matches are tolerated and included in the solution.
Further illustration of this behavior is given in Fig. 9, where
we show how the worst-case metric distortion over the shape
collection can be bounded by an appropriate choice of µ.
The choice of this upper bound is ultimately driven by the
application; e.g., it makes sense in shape exploration ap-
plications (see Sec. 5.4) to require more accurate, although
sparser matches in order to obtain a better clustering.

In a separate set of experiments, we investigate the effect
of different similarity functions s. Namely, we consider both
the Gaussian function of Eq. (7) as well as a modified version
of it, given by replacing the worst-case cost of Eq. (3) by:

ε
2(γ,γ′) = ∑

pk ,p`∈γ

p′k ,p
′
`∈γ
′

|dk(pk, p′k)−d`(p`, p′`)|
2 . (15)

Following [RBA∗12], we also include a relative (Lipschitz)
notion of similarity in the comparison, defined as:

s(γ,γ′) =
mink dk(pk, p′k)

µ

maxk dk(pk, p′k)
µ . (16)

Since a fixed value of µ will in general scale differently in
the three cases, each variant is parametrized so as to yield
30 multi-way matches on average. The results of this exper-
iment are summarized in Table 1.
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Figure 10: Left: Comparison between our method and the
state-of-the-art method of [CGH14] on the TOSCA and
KIDS datasets; the quality of the input maps of MatchLift is
also reported. Right: Comparison of execution times. In all
the comparisons, the two methods generated a comparable
amount of matches.

5.2. Comparisons

We compare our method with MatchLift, the convex relax-
ation approach of Chen et al. [CGH14]. This method repre-
sents, to the best of our knowledge, the state of the art for
this class of problems. In Fig. 10 we report the results on the
TOSCA and KIDS datasets. Note that MatchLift did not pre-
viously appear in these benchmarks. For a fair comparison,
the input pairwise maps were computed using the method
described in [CGH14] with WKS as a descriptor. In the same
figure we also report a runtime comparison of the two meth-
ods on collections of increasing size. In Table 2 we show
additional comparisons with [HG13] and [HZG∗12] on the
TOSCA and SCAPE datasets. As a baseline for standard
pairwise matching, we also include the method of [RBA∗12]
in the comparison. The results show that our method per-
forms in line with the state of the art in most cases, with the
additional theoretical guarantee of cycle-consistency and at
a fraction of the computational time.

We remind the reader that all methods included in the
comparisons, except for ours, require pairwise maps to be
given as input (also evaluated in the comparisons), hence act-
ing more like global regularizers rather than “pure” multiple
shape matching methods. Also note that our method was not
tuned to perform well in the comparisons, as our sensitivity
analysis was only executed on a small subset of TOSCA.

L∞ L2 Lipschitz
Local (p0.02) 26.81 16.01 20.04
Global (p0.16) 96.21 95.49 91.05

Table 1: Comparison between different metric distortion
measures on a subset of TOSCA. The best results (in bold)
are obtained when we penalize the worst-case absolute met-
ric error. Interestingly, there is no clear advantage in using
a relative error as opposed to its absolute counterpart.

Figure 11: Joint region matching on SCAPE (only a sub-
set shown). The optimization process automatically excluded
shape regions having incompatible segmentations with re-
spect to the rest of the collection (e.g., two segments per
arm). Our pipeline took 2 sec. to produce these results.

5.3. Region matching

Our method can be trivially modified to work with region-
wise rather than point-wise correspondences, assuming a
(possibly noisy) segmentation is provided for the input
shapes. The modification boils down to define a proper simi-
larity measure among regions. To this end we use the simple
Gaussian score of Eq. (14), where the cost term is replaced
by the L2 distance between the area-weighted average WKS
of each region. Regions are computed by consensus segmen-
tation [RRBC14], using the code provided by the authors.

Note that since most shapes typically contain only 5 to 15
regions, a full similarity matrix A can be constructed which
encodes the pairwise similarities among all regions in the
collection (i.e., we do not need to define queries). We can
then solve the resulting problem (11) iteratively, each time
reducing the feasible set by removing solutions from the past
iterates (this is done by putting rows and columns of A to
zero, as per Theorem 1). In Fig. 11 we show some qualitative
results produced by this simple procedure when applied to a
noisy version of SCAPE, in which 10 random outlier shapes
from TOSCA were introduced.

Ours [HG13] [HG13]in [HZG∗12] [RBA∗12]

TOSCA (p0.16) 97.7 100 84.1 97.2 94.81
SCAPE (p0.16) 95.9 99.1 83.2 99.3 91.10
TOSCA (p0.02) 21.9 35.7 - 38.4 14.87
SCAPE (p0.02) 50.6 42.1 - 44.4 10.29

Table 2: Comparisons with other recent methods in terms
of global (p0.16) and local (p0.02) accuracy. The in column
reports the quality of the input maps [KLF11].

submitted to COMPUTER GRAPHICS Forum (12/2015).
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Figure 12: An example of shape retrieval. The query shape
is matched jointly to the shapes in the database, forming a
cluster with the shapes from the same class.

5.4. Other applications

Our approach is robust to the presence of outliers by design,
and we can always extract an accurate solution as long as the
outliers do not have a structure.

Consider the example in Fig. 1. As problem (11) is iter-
atively solved, the candidate set Λ is updated with matches
that put the horse parts into correspondence, in addition to
matches that only relate the human bodies. The subsequent
optimization of (13) then extracts two intra-similar clusters
of matches, one for each semantic group. In this case, it is
clear that there is technically no reason to treat either of the
two solutions as noise. Consider now a collection of shapes
of a given class, which has been corrupted by introducing
other shapes (Fig. 5). Since the extra-class objects fail to
form stable matches with any other object in the collection,
they will not appear in the final solution. This key feature of
our framework suggests, among others, two applications:
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Figure 13: Breakdown of our computational times over the
SCAPE dataset. Left: Runtime as a function of a subset of
shapes in the collection, with 300 samples per shape. The
first and second optimizations refer to solving problems (11)
and (13) respectively. The runtime for the first problem is ac-
cumulated over M = 500 queries. Right: Runtime as a func-
tion of farthest samples per shape, over the entire collection
(71 shapes). Note the different scales among the two graphs.

Figure 14: An example of shape clustering of the TOSCA
dataset, obtained by running the matching algorithm fol-
lowed by extraction of connected components. Classes are
encoded by color; note how all humans except for one vic-
toria pose (in black) have been clustered together. Total run-
ning time is around 1 min. 30 sec.

Shape exploration and clustering. Consider once again the
example in Fig. 5, and suppose both outlier shapes actually
belong to the same class. This scenario can be seen as an
instance of structured noise – in fact, we now have two se-
mantic classes forming intra-similar groups, and it would be
desirable to separate them into disjoint clusters [KLM∗12].
We do so by a simple iterative procedure: 1) run Algorithm 1
on the whole collection; 2) relabel the resulting multi-way
correspondence into clusters, based solely on the shape in-
dices; 3) remove the matched shapes from the collection and
repeat. Note that the clustering step is especially efficient, as
it boils down to detecting connected components in a graph
where each node represents a shape, and an edge exists be-
tween two nodes whenever there exist (at least 3) matches
connecting the respective shapes. Running this procedure on
the TOSCA dataset gives the results reported in Fig. 14.

Shape retrieval. The approach described above can be di-
rectly applied to shape retrieval applications. Given a query
shape Sq /∈ C, the task is to detect the subset Cq ⊆ C con-
taining shapes that belong to the same class as Sq. This can
be done by seeking a multi-way correspondence on the aug-
mented set C ∪{Sq}, and by retaining the cluster of shapes
that match to Sq in the final solution (see Fig. 12).

5.5. Runtime

One of the key advantages of our matching method lies in its
computational efficiency. In Fig. 13 we show a breakdown
of the runtimes across the whole pipeline. Observe that the
first optimization can be easily parallelized (we used 7 cores
in our tests), as it amounts to solving independent instances
of problem (11), one problem per query.

Our method takes around 1 min. 30 sec. to match the en-
tire SCAPE collection (71 shapes) when we use 300 sam-
ples per shape. We note that, while from the point of view
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of shape retrieval our method cannot compete with special-
ized approaches, the increased running time accounts for the
correspondences we obtain across all the shapes in the col-
lection. In this regard, shape retrieval can be seen more as a
byproduct of our method than an application per se.

Further runtime comparisons with the method of
[CGH14] are given in Fig. 10. All experiments were coded
in Matlab/C++ and run on an Intel Core i7 4900MQ with
32GB memory, using publicly available code for [CGH14]
and for the optimization step [RBB11].

6. Discussion and conclusions

In this paper we tackled the problem of consistent joint
matching of shape collections. Differently from the domi-
nant approaches, we considered a situation in which the col-
lection is not equipped with input maps between the shape
pairs. To deal with this challenging scenario, we modeled
the problem as one of minimum distortion correspondence
across the whole shape collection, while at the same time al-
lowing outlier or partially similar shapes. We showed how
to retrieve good local solutions to the resulting optimization
problem by solving a sequence of quadratic programs in an
efficient way – which in turn enabled favorable results in re-
gion matching and shape exploration applications.

Our approach does have a few shortcomings. First, since
our method relies on the computation of geodesics, we re-
quire the shapes to have no significant missing parts, i.e.,
shapes with large holes are not allowed. Second, while the
sparse model allows to successfully deal with partial similar-
ity at different levels, this partiality is not easily controllable
and it might well be that incomplete matches are extracted
even within outlier-free collections. An example of this is
shown in Fig. 14, where one human shape (in black) was
left unmatched by our method. This is related to our neces-
sity to establish a similarity criterion that acts globally on
the whole collection, hence driving longer, but less globally-
similar matches to be cut out from the solution even if cor-
rect. Enforcing specific shapes to partake in the final solution
is a possible direction of future work.
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Appendix

The appendix contains a proof to Theorem 1. The proof fol-
lows along the lines of, e.g., [ARBTP09, RBB11], although
by taking a pure optimization perspective as opposed to a
game-theoretical one.

Problem. We consider the constrained quadratic problem:

max
x≥0

x>Ax s.t. x>1 = 1 , (17)

where x ∈ [0,1]n, A = A> and Aii = 0 for all i = 1, . . . ,n.

First-order optimality conditions. A point x satisfies the
Karush-Kuhn-Tucker (KKT) conditions for problem (17) if

there exist real constants λ and µ1, . . . ,µn with µi ≥ 0 for all
i = 1, . . . ,n such that:

(Ax)i−λ+µi = 0 , (18)

and ∑i xiµi = 0. This latter condition further implies that
µi = 0 whenever xi 6= 0, since both quantities are nonneg-
ative for all i = 1, . . . ,n. Thus, we can rewrite the KKT con-
ditions (18) as

(Ax)i

{
= λ if xi 6= 0
≤ λ otherwise ,

(19)

for some λ > 0. We can easily see that

x>Ax = ∑
i, j

xix jAi j = ∑
i : xi 6=0

xi(Ax)i = ∑
i : xi 6=0

xiλ = λ ,

(20)
where the last equality follows from the constraint x>1 = 1.
Hence, a point x satisfies the KKT conditions if

x>Ax≥ (Ax)i , (21)

for all i = 1, . . . ,n. This, in turn, implies x>Ax≥ y>Ax for
all y satisfying y>1 = 1.

Second-order optimality conditions. A point x satisfies the
second-order sufficiency conditions for strict local optimal-
ity if x is a KKT point, and if the Hessian of (17) is nega-
tive definite on the subspace M(x), that is z>Az < 0 for all
z ∈M(x), where

M(x) = {z ∈ Rn : z>1 = 0 and z j = 0 for all j ∈ J}\{0} ,
(22)

and

J = { j = 1, . . . ,n : x j = 0 ,µ j > 0} . (23)

This condition can be more compactly rephrased as follows.
Consider the set

U = {y ∈ Rn : y>Ax = x>Ax ,y 6= x} , (24)

and let z = y−x with y∈U . Then (x+z)∈U , which means
z>Ax = 0, thus z ∈M(x); the converse is also true. Now we
can write

(x−y)>Ay =−z>A(x+ z) =−z>Az > 0 , (25)

by the negative definitess condition z>Az < 0. Thus, the
second-order optimality condition can be succinctly phrased
as:

x>Ay > y>Ay (26)

whenever y>Ax = x>Ax and x 6= y. Note that the converse
can also be easily proven, i.e., Eq. (26) holds if and only if x
is a KKT point and z>Az < 0 for all z ∈M(x).

We are now ready to prove the following theorem.

Theorem 1. Let x be a strict local maximizer of prob-
lem (17), where A = A> and Aii = 0 for all i = 1, . . . ,n.
Then, Ai j > 0 for all i, j such that xi 6= 0 , x j 6= 0.
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Proof Assume Ai j ≤ 0 for i 6= j and xi 6= 0, x j 6= 0. Denote
by ei the i-th column of the identity matrix, and note that

ei>Ax = (Ax)i and ei>Ae j = Ai j. Now let y = δ(ei−e j)+
x, where 0 < δ≤ x j. We have

y>Ax = δ(ei− e j)>Ax+x>Ax = x>Ax , (27)

where we used the fact that (ei−e j)>Ax= (Ax)i−(Ax) j =
λ−λ = 0 by Eq. (19). However,

(x−y)>Ay = −δ(ei− e j)>A[x+δ(ei− e j)] (28)

= −δ
2(ei− e j)>A(ei− e j) (29)

= −δ
2(Aii +A j j−2Ai j) (30)

= 2δ
2Ai j ≤ 0 , (31)

which implies x>Ay≤ y>Ay. In other words, we have con-
structed a y for which the second-order condition (26) does
not hold when y>Ax = x>Ax, contradicting the assumption
that x is a strict local maximizer.
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