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Elastic Energies for 3D Shape Matching

Daniel Cremers, Emanuele Rodolà, and Thomas Windheuser

Abstract
We present two methods for non-rigid shape matching. Both methods formulate shape

matching as an energy minimization problem, where the energy measures distortion of the
metric defined on the shapes in one case, or directly describes the physical deformation relat-
ing the two shapes in the other case. The first method considers a parametrized relaxation of
the widely adopted quadratic assignment problem (QAP) formulation for minimum distor-
tion correspondence between deformable shapes. In order to control the accuracy/sparsity
trade-off a weighting parameter is introduced to combine two existing relaxations, namely
spectral and game-theoretic. This leads to an approach for deformable shape matching with
controllable sparsity. The second method focuses on computing a geometrically consistent
and spatially dense matching between two 3D shapes. Rather than mapping points to points
it matches infinitesimal surface patches while preserving the geometric structures. In this
spirit, matchings are considered as diffeomorphisms between the objects’ surfaces which are
by definition geometrically consistent. Based on the observation that such diffeomorphisms
can be represented as closed and continuous surfaces in the product space of the two shapes,
this leads to a minimal surface problem in this product space. The proposed discrete for-
mulation describes the search space with linear constraints. Computationally, the approach
results in a binary linear program whose relaxed version can be solved efficiently in a globally
optimal manner.

1. Introduction
An increasing number of digitized three-dimensional objects has become available over the last

years due to the technical progress in acquisition hardware like laser scanners or medical imaging
devices. Such objects originate from a variety of different domains including biology, medicine,
industrial design or computer animation. This rapid growth in stored data brings about the need
for reliable algorithms to organize this data. One of the cornerstone problems in this context is
the matching problem: In its most typical form, it concerns the problem of determining a map
f : X → Y among two given shapes in such a way that their geometrical properties are preserved by
the transformation. A particularly challenging instance of this problem occurs when the two shapes
undergo general non-rigid deformations. As such, matching of deformable shapes has attracted the
interest of researchers over the years and a wide variety of approaches have been proposed (see,
e.g. [3] and references therein for a recent comparison).

A prominent approach to the matching problem from a metric perspective was introduced in [17],
a concept that was explored further in [4] with the introduction of the GMDS framework, where
the minimum distortion isometric embedding of one surface onto another is explicitly sought. A
different view on the problem stems from the notion of uniformization space [14, 32]. Lipman and
Funkhouser [14] proposed to model deviations from isometry by a transportation distance between
corresponding points in a canonical domain (the complex plane); the result of this process is a
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“fuzzy” correspondence matrix, whose values can be given the natural interpretation of confidence
levels attributed to each match. Fuzzy schemes are typically adopted to relax the point-to-point
mappings [18, 21]. Lipman and Daubechies [13] proposed to compare surfaces of genus zero
and open surfaces using optimal mass transport and conformal geometry. Computationally, this
amounts to solving a linear program in n2 variables where n is the number of vertices used in
the discretization of the surfaces. The problem with this approach is that no spatial regularity is
imposed on the matchings. In general, while methods based on uniformization theory are made
attractive by the low dimensionality of the embedding domain, they do not behave well with
different kinds of deformations (e.g., topological changes), and are subject to global inconsistencies
in the final mapping.

In this work, we consider two different approaches to deformable shape matching. The two
approaches share the common perspective of minimizing a distortion criterion, derived from the
metric information which the shapes to be matched are endowed with. In one case (Section 3),
following [23], we consider a notion of pairwise metric distortion that directly captures to what
extent two shapes can be isometrically put in correspondence. Motivated by the observation that
good correspondences often come at the price of high sparsity (in terms of number of matched
points), whereas large cardinality tends to bring distorted matches into the correspondence, we
attempt to control the accuracy/sparsity trade-off by introducing a weighting parameter on the
combination of two effective relaxations [12, 21], which we relate to their regularizer counterparts
from regression analysis. This leads us to the introduction of the elastic net penalty function [33]
into shape matching problems. Differently, our second approach [30] takes a physically motivated
view on the problem and minimizes a functional that encodes the physical deformation energy
[15, 31] necessary to deform one shape into the other. The formulation we give in Section 4 is
based on finding an optimal surface of codimension 2 in the product of the two shape surfaces. We
derive a consistent discretization of the continuous framework and show that the discrete minimal
surface problem amounts to a linear program. Compared to existing approaches, our construction
involves the boundary operator [27, 10, 25], and guarantees a geometrically consistent matching in
the sense that the surfaces are mapped into one another in a continuous and orientation preserving
manner.

2. Energy functionals for measuring the matching quality

In this section we discuss the matching energies that have been used to find correspondences
among shapes in [23] and [30] respectively.

2.1. Minimummetric distortion. Wemodel shapes as compact Riemannian manifolds endowed
with an intrinsic metric d. A point-to-point correspondence between two shapes X and Y is defined
as a subset C ⊂ X × Y satisfying: 1) for every x ∈ X, there exists at least one y ∈ Y such that
(x, y) ∈ C, and vice versa, 2) for every y ∈ Y , there exists x ∈ X such that (x, y) ∈ C. This
relation can be alternatively formulated as a binary function c : X × Y → {0, 1} satisfying the
mapping constraints

(2.1) max
x∈X

c(x, y) = max
y∈Y

c(x, y) = 1 ,

for every y ∈ Y and x ∈ X. According to this definition, clearly not all correspondences give rise
to meaningful matches among the two given shapes (consider, for instance, the full Cartesian
product given by c(x, y) = 1 for all (x, y) ∈ X ×Y ). A common requirement in this setting is that
the correspondence should represent a bijective mapping, or more typically an isometry between
the two surfaces. With this requirement in mind, in order to give a measure of quality to the
correspondence we evaluate the distortion induced by the mapping as measured on the two shapes
using the respective metrics dX and dY . In particular, given two matches (x, y), (x′, y′) ∈ C, the
absolute criterion

(2.2) ε(x, y, x′, y′) = |dX(x, x′)− dY (y, y′)|

directly quantifies to what extent the estimated correspondence deviates from isometry. Fol-
lowing [18, 21], we first relax the correspondence from a discrete to a fuzzy notion by letting
c : X × Y → [0, 1], effectively setting off the problem from its combinatorial nature and bringing
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it to a continuous optimization domain. Further, following a similar approach to the Gromov-
Wasserstein [18] family of metrics, we obtain a relaxed notion of proximity between shapes:

(2.3) D(X,Y ) = 1
2 min

C

∑
(x,y),(x′,y′)∈C

εp(x, y, x′, y′)c(x, y)c(x′, y′) .

Note from this definition that we don’t require the two shapes to have a measure defined over
them (differently from [18, 21]). Establishing a minimum distortion correspondence between the
two shapes amounts to finding a minimizer of the above distance. To this end, the problem can
be easily recast as a relaxed quadratic assignment problem (QAP) [16],

minC vec{C}TA vec{C}(2.4)
s.t. C1 = 1, CT1 = 1, C � 0 ,

where vec{C} is the |C|-dimensional column-stack vector representation of the correspondence
matrix C, A is a non-negative symmetric cost matrix containing the pairwise distortion terms
that appear in (2.3), 1 is a vector of n = |C| ones, and � denotes element-wise inequality. 1 We
emphasize that, although easier to solve, the relaxation provided above is still non-convex. Note
that in the standard QAP, function c is taken to be a binary correspondence and matrix C is thus
required to be a permutation matrix. The QAP is a NP-hard problem due to the combinatorial
complexity of this latter constraint.
2.2. Elastic deformation energies. A different approach to model a matching energy between
shapes is to restrict the class of deformations that transform one shape into another to the set of
diffeomorphisms. This gives us two benefits. First, the shapes do not get “cut” open during the
matching transformation. Second, we can assign to each diffeomorphism an elastic energy that
directly gives us a physical interpretation of the matching.

In the following, we assume that the two shapes X,Y ⊂ R3 are differentiable, oriented, closed
surfaces. Diffeomorphisms f : X → Y are bijections for which both f and f−1 are differentiable.
We formulate the shape matching problem as an optimization problem over the set of orientation
preserving diffeomorphisms between X and Y ,

(2.5) inff∈Diff+(X,Y )E(f) + E(f−1)

where E is a suitable energy on the class of all diffeomorphisms between surfaces and Diff+(X,Y )
is the set of orientation preserving diffeomorphisms between X and Y . Note that we choose a
symmetric problem formulation, penalizing at the same time deformation energy of X into Y and
of Y into X. This is necessary because usually E takes different values on f and on f−1.

The energy functional we use is borrowed from elasticity theory in physics [5], which interprets
the surfaces X and Y as “thin shells”. Now we try to find the deformation of X into Y which
requires the least stretching and bending energy. Such models usually consist of a membrane
energy Emem and a bending energy Ebend penalizing deformations in the first and in the second
fundamental forms of the surfaces. In this work we use the following formulation:

(2.6)
E(f) =

∫
X

(trgX
E)2 + µ trgX

(E2)︸ ︷︷ ︸
Emem

+λ
∫
X

(HX(x)−HY (f(x))2︸ ︷︷ ︸
Ebend

where E = f∗gY −gX is the difference between the metric tensors of X and Y , typically called the
Lagrange strain tensor, trgX

(E) is the norm of this tensor (see [8]), HX and HY denote the mean
curvatures and µ and λ are parameters which determine the elasticity and the bending property
of the material. This energy is a slightly simplified version of Koiter’s thin shell energy [11].

3. Minimum distortion correspondence via Elastic Net regularization

In this Section we present three different relaxations to the minimal metric distortion as formu-
lated in problem (2.4). The three approaches act by relaxing the mapping constraints imposed on
the correspondence function c(x, y). Even though originating from distinct motivations, the first
two methods share a convenient interpretation as partitioning problems in the space of potential
assignments. In Section 3.3 we provide a different view on the problem, as presented in [23, 22],
by using the language of regression analysis.
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3.1. Spectral matching. Taking the point of view of graph clustering, [12] proposed the simpli-
fied problem

(3.1) min
x

xTAx s.t.‖x‖22 = 1 ,

where x ≡ vec{C} ∈ Rn is the vector representation for the correspondence. Following Rayleigh’s
quotient theorem, this modified QAP is minimized by the eigenvector x? corresponding to the
minimum eigenvalue of A. Note that mapping constraints are not imposed in (3.1). The authors
follow a greedy algorithm to impose such constraints only after a solution has been obtained.
The method has a tendency to produce matches for each point. Nevertheless, symmetries and
structured noise in the data (indeed a characteristic of the non-rigid setting) may lead to unstable
eigenvectors [12] and thus unreliable assignments.

A useful interpretation to this approach can be given as a relaxed two-way partitioning prob-
lem [1]. Consider the set of constraints taking the form x2

i = 1 for i = 1 . . . n; these constraints
restrict the values of xi to ±1, so the problem is equivalent to finding the partitioning (as “match”
or “non-match”) on a set of n elements that minimizes the total cost xTAx. Here, the coefficients
Aij can be interpreted as the cost of having elements i and j in the same partition. Clearly, the
new constraints imply

∑n
i=1 x2

i = ‖x‖22 = n; since this actually allows the xi to take on any (small
enough) real number, optimizing over this feasible set will yield a lower bound on the optimal
value of the original partitioning problem.
3.2. Game-theoretic matching. Given the inherent difficulty to solve for a minimum distortion
correspondence under general deformations, we recently proposed to shift the focus to the search
of a group of matches having least distortion, regardless of its cardinality [21]. To achieve this, we
proposed to optimize over the probability simplex

(3.2) ‖x‖1 = 1TC1 = 1 , x � 0 .

In this formulation, the space of assignments is in a one-to-one correspondence with all possible
probability distributions of a random variable, realizing as x, modeling the concept of match. The
main benefits of adopting such L1-type constraint for the matching problem arise from its conve-
nient game-theoretical interpretation, leading to very efficient algorithms for (local) optimization
and, most remarkably, in allowing the mapping constraints to be embedded directly into the cost
matrix A. Unfortunately, the strong locality and selectivity demonstrated by the game-theoretic
approach is hardly desirable for matching problems.

Similarly to the L2 case, the game-theoretic approach can be regarded as an attempt to solve a
partitioning problem where the two partitions are represented by xi = 0 or 1 for i = 1 . . . n. This,
in turn, corresponds to imposing a bound on the “counting” norm ‖x‖0, which is relaxed here to
the continuous sparsity-inducing counterpart

∑n
i=1 |xi| = ‖x‖1 = n, with xi ≥ 0 for all i.

3.3. Matching with the Elastic Net. In practical settings, the performance of the framework
given in Section 2.1 directly depends on the definition of the metric distortion term ε. This is,
in fact, a property shared by any method attempting to minimize (2.4). Ovsjanikov et al. [20]
recently introduced the notion of shape condition number. According to this notion, the stability
of the matching can be characterized as an intrinsic property of the shape itself, and is related to
its intrinsic symmetries as well as the specific choice of a metric.

In order to incorporate a somewhat elusive notion of stability into the matching process, we
propose to change the point of view by drawing an analogy between the correspondence problem
and model-fitting. Our goal, in this context, is to determine a good approximation of the true
relationship between the two shapes: we seek to fit or approximate the optimal correspondence x?
as closely as possible, with deviation measured in the quadratic form xTAx. Problems of this kind
are often studied with the tools of regression analysis [1]. Here the interest shifts from finding a
best fit to analyzing the relationships among the several variables that build up the set of potential
assignments {xi}i=1...n. These candidate matches act as predictors for the minimum distortion
correspondence, and can be given the interpretation of explanatory variables which we observe,
while we seek to find the combination that best describes the data in the minimal distortion sense.
Since in general these variables hold a certain degree of correlation among them, it is of particular
interest to attempt to determine whole groups of highly correlated predictors, as they will likely
form consistent groups of matches in terms of the adopted measure of distortion.
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x1

x2

Figure 3.1: Contour plots of the L2 (circle), L1 (diamond), and elastic net (in
between) balls in R2. In this example we set α = 0.6. The strength of convexity
varies with α.

In this view, spectral matching can be directly related to ridge regression, whereas the game-
theoretic technique finds its equivalent in the lasso, the sparsity-inducing L1 regularizer performing
continuous shrinkage and automatic variable selection simultaneously [1, 33]; one major limitation
of the lasso is its tendency to select only one variable from a group of variables among which the
pairwise correlations are very high. In order to strike a balance between the two methods, we
adopt a family of constraints known as elastic net [33]. This regularization technique shares with
the lasso the ideal property of performing automatic variable selection, and most notably it is
able to select entire groups of highly correlated variables. The elastic net criterion is defined as a
convex combination of the lasso and ridge penalties:

(3.3) (1− α)‖x‖1 + α‖x‖22 , α ∈ [0, 1] .

This penalty function is singular at 0 and strictly convex for α > 0, thus possessing the character-
istics of both penalties (see Fig. 3.1). Strict convexity plays an important role as it guarantees the
grouping effect in the extreme situation with identical predictors (that is, whenever the distortion
between two matches is exactly 0), and provides a quantitative description of their degree of cor-
relation otherwise. Let x ∈ R|C| be the vector representation of some correspondence C ⊂ X × Y ,
we expect the elastic net-penalized solution to keep the difference |xi − xj | small whenever the
metric distortion ε(Ci, Cj) between the two matches is small. The trade-off between size of the
correspondence and matching error is regulated by the convexity parameter α, which allows to fine
tune the model complexity and balance the action of the penalty ranging from the highly selective
pure lasso for α = 0 to the more tolerant ridge behavior for α = 1. This leads to the following
family of relaxations for the QAP:

min
x

xTAx(3.4)

s.t. (1− α)‖x‖1 + α‖x‖22 = 1, x � 0 ,

with α ∈ [0, 1]. The family directly generalizes the spectral and game-theoretic techniques. Simi-
larly to the spectral approach, this formulation does not guarantee the final solution to represent
a bijective mapping, which can nevertheless be efficiently obtained a posteriori as in [12].

3.3.1. Optimization. We undertake a projected gradient approach [1] to determine a local optimum
for problem (3.4). The optimization process is governed by the equations

(3.5) x(t+1) = Πα

(
x(t) − γ(t)Ax(t)

)
,

where Ax = 1
2∇xTAx is a descent direction for the objective, γ > 0 is the step length taken in

that direction, and Πα : Rn → Rn is a projection operator taking a solution back onto the feasible
set. We initialize x(0) to the barycenter of the elastic net boundary, i.e., for all i = 1 . . . n we set
xi to the positive solution of the quadratic equation αnx2 + (1− α)nx− 1 = 0.

While efficient methods for projecting onto the L2 and L1 balls have been proposed in lit-
erature [26], projection onto their convex combination is a more involved task. Computing the
Euclidean projection Πα(x0) onto the (positive) elastic net ball boundary amounts to solving the
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Figure 3.2: Example of matchings obtained with the game-theoretic, elastic net
and spectral techniques respectively. See Section 3.3.2 for details.

following problem:
minx ‖x− x0‖22(3.6)
s.t. (1− α)1Tx + αxTx = t, x � 0 ,

with α ∈ [0, 1]. A detailed explanation of our approach on the computation of the unique minimum-
distance projection Πα in an efficient manner is given in [23]. Also note that, for practical purposes,
we adopt a more efficient alternative to the standard projected gradient descent (3.5), namely its
acceleration via vector extrapolation techniques [22].
3.3.2. Experimental results. We performed a wide range of experiments on the SHREC’10 standard
dataset [3], which includes shapes undergoing several different types of deformation, e.g. quasi-
isometric deformations, topological changes, displacement noise and changes in scale (we refer to
[23] for a detailed numerical breakdown). Differently from most existing methods, the approach
presented in this Section is quite general and not restricted to the quasi-isometric case. Indeed,
invariance to different kinds of deformations is induced by the proper choice of the metrics employed
in (2.2) (see [21] for an example). In order to make the computational task more tractable, only
a limited number of samples are considered from one shape, and then potential matches are built
with the 5 points from the other shape having similar curvature. Samples are generated via farthest
point sampling (FPS) [17, 18] using the extrinsic Euclidean metric, a technique allowing to cover
the whole surface in a sparse manner while retaining the metric information contained in the initial
shape as best as possible. Note that only one of the two shapes is subsampled, while we keep all
points in the other.

Fig. 3.2 presents an example in which the correct matches have a very small inlier ratio with
respect to the set of candidates. In this matching scenario, our method provides a means to
select only high-precision correspondences in a situation where there is huge ambiguity in most
correspondences. In this example, the set of potential assignments is constructed by taking ∼200
farthest points on one shape, and then building the whole Cartesian product with the correct
corresponding points from the other shape, after 45% of them have been moved to random positions
over the surface. This setup simulates a moderately challenging scenario in which only ∼50% of
the shape is matchable with low distortion, and the feasible set comprises all possible assignments
between the two shapes. The game-theoretic (L1) solution is highly selective and only assigns 3%
of the shape samples accurately (left image); in contrast, the spectral (L2) approach favors dense
solutions and yields matches for 93% of the points with large error (right image). Elastic net
matching (middle) allows to regulate the trade-off between size and distortion: the correspondence
is made more dense, and 53% of the points are matched while keeping the error small. Here we
set α = 0.85.

4. Minimizing the elastic energy via linear programming relaxation

In this section we will discuss the approach presented in [30] that tries to solve the elastic energy
problem
(4.1) inff∈Diff+(X,Y )E(f) + E(f−1)
already introduced in Section 2.2. The approach puts the focus on three aspects:
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(a1, b1)
(a2, b2)

(a3, b3)

b1

b3

b2

a1 a2
a3

X

Y X × Y

(a1, b1)
(a2, b1)

(a3, b3)

b1

b3

a1 a2
a3

X

Y X × Y

Figure 4.1: The construction of product triangles that make up the discrete ver-
sion of the product space X × Y. Left image: The triangle (a1, a2, a3)T on
surface X is matched to triangle (b1, b2, b3)T on Y by assigning vertex ai to vertex
bi. This directly corresponds to the triangle with vertices (ai, bi) in the product
graph. Right image: The triangle (a1, a2, a3)T is matched to the edge (b1, b3)T ,
represented here as degenerate triangle (b1, b1, b3)T .

(1) Representation of the set of orientation-preserving diffeomorphisms Diff+(X,Y ),
(2) discretization of this set and the energy E, and
(3) optimization of the discrete version of the energy.

The main idea underlying our representation is to look at subsets of the product space X ×Y. We
will introduce constraints such that these subsets become graphs of diffeomorphisms. We will show
further how we can discretize the product space, the constraints and the energy. Interestingly, the
constraints and the energy are linear in the variables that span the discretized version of X × Y.
The resulting optimization problem is thus an integer linear program (ILP).

While we cannot find the global optimum of this optimization problem we can allow non-integer
solutions and transform the ILP into a linear program (LP). The global optimum of the linear
program can be computed in polynomial time and is a lower bound of the original optimization
problem.

4.1. Diffeomorphisms and their graph surfaces. Given an orientation preserving diffeomor-
phism f : X → Y we obtain a set Γ ⊂ X × Y in the Euclidean product of X and Y by passing to
the graph

(4.2) Γ = {(x, f(x)) | x ∈ X} ⊂ X × Y.

The set Γ comes with two natural projections πX : Γ → X, (x, f(x)) 7→ x and πY : Γ →
Y, (x, f(x)) 7→ f(x). A diffeomorphism is completely characterized by its graph:

Proposition 1 (graph surfaces). Let Γ be the graph of a diffeomorphism f : X → Y . Then
(i) Γ is a differentiable, connected, closed surface in the product space X × Y .
(ii) The projections πX and πY are both diffeomorphisms.
(iii) The two orientations which Γ naturally inherits from X and Y coincide.

Conversely, any subset Γ ⊂ X × Y which satisfies (i),(ii) and (iii) is the graph of an orientation-
preserving diffeomorphism between X and Y . We call such sets graph surfaces.

The energy E(f) can be expressed as

(4.3) E(f) = Ẽ(Γ)

where Ẽ(Γ) = E(πY ◦ (πX)−1) + E(πX ◦ (πY )−1).
The outcome of the above discussion is that the optimization problem (4.1) can be phrased as

an optimization problem over the set of subsets of X × Y , which then reads

(4.4)
inf Ẽ(Γ)
subject to Γ ⊂ X × Y is a graph surface

We remark that the idea of casting optimal diffeomorphism problems as minimal surface problems
has been applied previously in the theory of nonlinear elasticity [9]. In the setup of shape matching,
it is related to the approach that Tagare [28] proposed for the matching of 2D shapes. It was
reformulated as an orientation preserving diffeomorphism approach in [24].
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(a3, b3)

(a2, b2)
(a1, b1)

(a4, b4)
f1 f2

b1

b3b4

b2

a1 a2
a3a4

X

Y X × Y

(a4, b4)

(a1, b1) (a2, b1)

(a5, b2)(a3, b3)

b1

b3b4

b2

a1 a2
a3a4 a5

X

Y X × Y

Figure 4.2: The discrete version of condition (i) includes the closeness condition
ensuring that neighboring triangles on X are matched with neighboring triangles
on Y . Left image (general case): The triangles (a1, a2, a3)T and (b1, b2, b3)T
are matched resulting in activating f2. The boundary condition ∂Γ = 0 ensures
that the matching continues with a correspondence whose triangles in X and
Y are positively incident to (a1, a3)T and (b1, b3)T respectively. This constraint
is satisfied for example by triangle f1 which is visualized here. Right image
(stretching): The stretching is achieved by matching triangle (a1, a2, a3)T to
edge (b3, b1)T . Again, the closeness condition is granted by the boundary operator
evaluated on the product edges ((a2, b1), (a3, b3))T and ((a3, b3), (a1, b1))T .

4.2. The discrete setting. We develop now a discrete counterpart of the notion of graph surfaces
in X×Y and the continuous elastic matching energy by assuming that the surfaces X,Y are given
as triangulated meshes.

4.2.1. Discrete surface patches. Let X = (VX , EX , FX) be a triangulated oriented surface mesh,
consisting of a set of vertices VX , of directed edges EX and of oriented triangles FX . A priori,
edges on X do not have a preferable orientation. Therefore, we fix an orientation for each edge on
X. Thus, whenever two vertices a1 and a2 of X are connected by an edge, either ( a1

a2 ) ∈ EX or
( a2
a1 ) = − ( a1

a2 ) ∈ EX . We extend the set of edges by degenerate edges EX = EX ∪{( aa ) | a ∈ VX}.
By assumption, the triangular faces of X are oriented. If the vertices a1, a2, a3 build an oriented
triangle on X, then

(
a1
a2
a3

)
=
(
a2
a3
a1

)
=
(
a3
a1
a2

)
∈ FX . Similarly, we extend the set of triangles by

degenerate triangles FX = FX ∪
{(

a1
a2
a2

) ∣∣ a1, a2 ∈ VX , ± ( a1
a2 ) ∈ EX

}
. Notice that degenerate

triangles can consist of only one or two vertices. The existence of these degenerate triangles will
allow stretching or compression of parts of the surface.

Next, we introduce product triangles for two triangular meshes X and Y . Define the product
of X and Y by the set of vertices V = VX × VY , the set of edges E = EX × EY and the set of
product triangles

(4.5) F :=


(a1, b1)

(a2, b2)
(a3, b3)


∣∣∣∣∣∣∣∣∣∣

f1 =
(
a1
a2
a3

)
∈ FX ,

f2 =
(
b1
b2
b3

)
∈ FY ,

f1 or f2 non-degenerate


We will call the triple (V,E, F ) the product graph as the discrete counterpart of the product space
X × Y. The product triangles in F are the basic pieces which are later glued to discrete graph
surfaces. For shape matching, a product triangle ((a1, b1), (a2, b2), (a3, b3)) ∈ F is interpreted as
setting vertex ai ∈ VX in correspondence with vertex bi ∈ VY (see Figure 4.1).

4.2.2. Discrete surfaces. Following Proposition 1 a diffeomorphism can be represented as a surface
Γ ⊂ X × Y satisfying conditions (i), (ii) and (iii). In this section we derive discrete versions of
these properties.

Definition 2. A discrete surface in X × Y is a subset Γ ⊂ F . The set of all discrete surfaces is
denoted by surf(X × Y ).

As we have seen above, a product triangle in F can be interpreted as matching a triangle onX to
a triangle on Y . Thus, the intuitive meaning of a discrete surface Γ ⊂ F is a set of correspondences
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between triangles on X and Y . Imposing the discrete counterparts of (i), (ii) and (iii) on such a
discrete surface will result in the discrete counterpart of a diffeomorphic matching.
Discrete version of (i): In the following we will find a condition which guarantees the continuity
of our matching. Recall that the boundary operator for triangle meshes [7] maps triangles to their
oriented boundary. We extend this definition to the product graph G.

As for the sets EX and EY we choose arbitrary orientations for each product edge e ∈ E. We
then define for two vertices v1, v2 ∈ V a vector O ( v1

v2 ) ∈ Z|E| whose e-th entry is given by

(4.6) O ( v1
v2 )e =


1 if e = ( v1

v2 )
−1 if e = ( v2

v1 )
0 else.

The triangles in F naturally inherit orientations from the triangles in FX and FY . This allows
us to define the boundary operator as follows.

Definition 3. The boundary operator ∂ : F → Z|E| is defined by

(4.7) ∂

a1, b1
a2, b2
a3, b3

 := O

(
a1, b1
a2, b2

)
+O

(
a2, b2
a3, b3

)
+O

(
a3, b3
a1, b1

)
,

where the ai ∈ VX and bi ∈ VY form triangles on X resp. on Y and
(
ai,bi

aj ,bj

)
is the product edge

connecting the product vertices (ai, bi) and (aj , bj). The boundary operator is linearly extended
to a map ∂ : surf(X × Y )→ Z|E|. A discrete surface Γ in X × Y is closed if ∂Γ = 0.

The closeness condition ensures that adjacent triangles onX are in correspondence with adjacent
triangles on Y and therefore guarantees a discrete notion of continuity (see Figure 4.2). The natural
discrete version of (i) is a closed, connected discrete surface in X × Y .
Discrete version of (ii): As in the continuous setting, we can project product triangles to the
surfaces X and Y by defining πX : F → Z|FX | as

(4.8) πX(f) :=
{
ea if a =

(
a1
a2
a3

)
is non-deg.

(0, . . . , 0) else

for each face f = ((a1, b1), (a2, b2), (a3, b3)) ∈ F . Here, ea is the vector with 1 in the a-entry and
0 in all other entries. We extend the projection linearly to πX : surf(X × Y )→ Z|FX |.

Let now Γ be a discrete surface in X×Y . Then we say that the projections of Γ to X and Y are
discrete diffeomorphisms if and only if πX(Γ) = (1, . . . , 1) ∈ Z|FX | and πY (Γ) = (1, . . . , 1) ∈ Z|FY |.
This gives a discrete version of (ii).

Note that in this definition we do not ask for injectivity on the vertices set. This is necessary
for modelling discretely strong compressions. However, they ensure a global bijectivity property
which is sufficient in our context.
Discrete version of (iii): By definition, the set of surfaces in X × Y only contains surface patches
which are consistently oriented. Therefore any surface in surf(X × Y ) satisfies condition (iii).

4.2.3. Discrete surface energy. Now we introduce a discrete energy on the set of product triangles
in X ×Y . For the membrane energy in (2.6) we adopt the term proposed by Delingette [6]. Given
two triangles T1, T2 ⊂ R3, Delingette computes the stretch energy Emem(T1 → T2) necessary for
deforming T1 in T2. In our framework we make the energy symmetric by associating with each
product triangle (a, b) ∈ F the membrane cost Emem(a, b) := Emem(a → b) + Emem(b → a).
For the bending term we proceed similarly associating with each product triangle (a, b) the cost
Ebend(a, b) =

∫
a
(HX−HY )2+

∫
b
(HY −HX)2. In practice we discretize the mean curvature following

[19].
Next, we extend the energy linearly from discrete surface patches to discrete surfaces in X ×Y .

Identify a discrete surface with its indicator vector Γ ∈ {0, 1}|F |, and define the vector E ∈ R|F |
whose f -th entry is Ef = Emem(f)+Ebend(f). Then the discrete energy of Γ is given by the vector
product ETΓ.
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Figure 4.3: Matchings between 3D shapes obtained by minimizing the relaxation
of energy (4.9). Since the energy can express elastic deformations such as stretch-
ing and shrinking the proposed method can find transformations that are highly
non-rigid and non-isometric. The 3D shape data is from Vlasic et al. [29] (left)
and the SHREC 2011 benchmark [2] (right).

4.2.4. Optimizing the discrete energy. The notion of discrete graph surfaces and the discrete sur-
face energy introduced in Sections 4.2.2 and 4.2.3 can be combined with the discrete version of
optimization problem (4.4) in the form of a binary linear program:

(4.9)
min

Γ∈{0,1}|F |
ETΓ

subject to
(

∂
πX
πY

)
Γ =

(
0
1
1

)
.

Similarly to what we did in (2.3), in order to solve (4.9) we relax the binary constraints to Γ ∈
[0, 1]|F |. For this relaxed version the global optimum can be computed in polynomial time. Since
the constraint matrix of the relaxed problem is not totally unimodular, we are not guaranteed
an integral solution. A simple thresholding scheme would destroy the geometric consistency of
the solution. Therefore, for obtaining an integral solution we successively fix the variable with
maximum value to 1. Typical matching results are shown in Figure 4.3. For a more detailed
experimental evaluation we refer to [30].

5. Conclusions

In this paper we discussed two approaches to non-rigid shape matching by optimizing a distortion
criterion. While for both approaches the distortion criterion is based on information derived
from the metric of the shape, it is possible to express quite different notions of similarity, i.e. a
geometrical Gromov-Wasserstein distance and a physical thin-shell energy. By following different
algorithmic strategies for both notions of similarity, we showed that it is possible to find good
matchings minimizing the distortion energies between the shapes.
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