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Abstract

The introduction of statistical shape knowledge into level
set based segmentation methods was shown to improve the
segmentation of familiar structures in the presence of noise,
clutter or partial occlusions. While most work has been fo-
cused on shape priors which are constant in time, it is clear
that when tracking deformable shapes certain silhouettes
may become more or less likely over time. In fact, the de-
formations of familiar objects such as the silhouettes of a
walking person are often characterized by pronounced tem-
poral correlations.

In this paper, we propose a nonlinear dynamical shape
prior for level set based image segmentation. Specifically,
we propose to approximate the temporal evolution of the
eigenmodes of the level set function by means of a mix-
ture of autoregressive models. We detail how such shape
priors “with memory” can be integrated into a variational
framework for level set segmentation. As an application, we
experimentally validate that the nonlinear dynamical prior
drastically improves the tracking of a person walking in dif-
ferent directions, despite large amounts of clutter and noise.

1. Introduction
In this work, we are focused on the problems of segmen-

tation and tracking: Given a sequence of images I1, . . . , It,
where Ii : Ω → R, we want to infer at any given time t the
most likely shape Ct in the image plane Ω ⊂ R. Within the
Bayesian framework, this is done by maximizing the poste-
rior distribution P(Ct | I1, . . . , It). This problem has been
studied extensively, researchers have proposed dynamical
models of shape and developed sophisticated frameworks
to propagate the posterior distribution. Most of this work is
based on explicit contour representations (e.g. [2]).1

1While object-specific models representing human figures as kinematic
chains of coupled geometric primitives allow for excellent results on track-
ing humans (cf. [19, 1, 20]), the geometric primitives and couplings are
specified by a user. In contrast, our approach is based on a generic shape
representation inferred from training data in an unsupervised manner.

Yet, explicit boundary representations are known to suf-
fer from several limitations when applied to shape learn-
ing and shape inference: Firstly, the matching of explicit
contours requires to identify pairwise correspondences be-
tween points. In general this is a combinatorial problem
– in particular if one wants to allow for local stretching
or shrinking of the respective contours. While efficient
matching algorithms have been developed based on dy-
namic programming (cf. [9]), the integration of the resulting
shape distances with statistical learning of shapes is still an
open problem. Secondly, explicit boundary representations
are typically constrained to a fixed topology. In practice,
a shape of interest may undergo topological changes – it
could be that a hole is torn into a 3D shape, or it could be
that a single 3D object will induce 2D projections of vary-
ing topology. While the transition between two topological
structures for explicit contours can be modeled based on so-
phisticated (and somewhat heuristic) decision processes (cf.
[15]), the matching of explicit shapes with different topol-
ogy for the sake of shape learning is not defined.

The level set method introduced by Osher and Sethian
[16] overcomes these drawbacks of explicit representa-
tions2 as a means to implicitly propagate a boundary C(t)
by evolving an appropriate embedding function φ : Ω ×
[0, T ] → R, where:

C(t) = {x ∈ Ω | φ(x, t) = 0}. (1)

In the context of shape learning and statistical shape infer-
ence, the level set method has several advantages:

• The implicit representation does not depend on a spe-
cific parameterization. Therefore shape matching does
not require the computation of point-correspondences.

• Shape dissimilarity measures defined on the embed-
ding functions can handle shapes of varying topology.

• The implicit representation (1) naturally generalizes to
hypersurfaces in three or more dimensions, where the
estimation of optimal point correspondences becomes
a computationally cumbersome problem.

2A precursor of the level set method was proposed by Dervieux and
Thomasset [8].
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The first applications of the level set method to image seg-
mentation were pioneered in the early 90’s by Malladi et
al. [14], by Caselles et al. [3], and by Kichenassamy et
al. [11]. As shown in the first three frames of Figure 3,
purely intensity-based segmentation methods fail to cope
with missing or misleading information due to noise, clutter
or occlusion. In recent years, researchers have successfully
introduced prior information about expected shapes into
level set segmentation. Leventon et al. [12] modeled the em-
bedding function by principal component analysis (PCA)
of a set of training shapes and added appropriate driving
terms to the level set evolution equation. Tsai et al. [21]
suggested a more efficient formulation, where optimization
is performed directly within the subspace of the first few
eigenmodes. Rousson et al. [17] introduced shape informa-
tion on the variational level. Cremers et al. introduced ker-
nel density estimation and intrinsic alignment to represent
more complex shape distributions [6] and dynamic labeling
to simultaneously impose multiple shape priors [7].

Although these approaches can be applied to tracking
objects in image sequences, they are not well-suited for this
task, because they neglect the temporal coherence of silhou-
ettes which characterizes deforming shapes. When tracking
a deformable object, clearly not all shapes are equally likely
at a given time instance. Regularly sampled images of a
walking person, for example, exhibit a typical pattern of
consecutive silhouettes. The resulting set of silhouettes can
be expected to contain strong temporal correlations. Cre-
mers [5] recently proposed a simple linear dynamical shape
model to capture such temporal correlations. Yet the use of
linear models is limited to a single periodic motion.

In this paper, we propose a more sophisticated dynami-
cal shape model for level set segmentation which allows to
simultaneously encode multiple dynamical modes. To this
end, we approximate the temporal evolution of the level set
function by a mixture of autoregressive models. This leads
to a nonlinear dynamical shape model for implicitly repre-
sented shapes. We detail the integration of nonlinear shape
priors into the segmentation process in a Bayesian frame-
work. The implementation by gradient descent induces an
evolution of the embedding function driven by the intensity
information of the current image and by a time-dependent
shape prior which relies on the segmentations obtained on
preceding frames. Experimental evaluation demonstrates
that this leads to segmentations of image sequences which
are consistent with the temporal correlations estimated from
sample sequences. The segmentation process can cope with
large amounts of noise and occlusion because it exploits
prior knowledge about temporal shape consistency and be-
cause it aggregates information over time. The nonlinearity
of the dynamical shape model allows for the emergence of
multiple dynamical modes corresponding – for example –
to people walking in different directions.

Figure 1. Samples from a sequence of training silhouettes.

2. Nonlinear Implicit Dynamical Shape Models
In the following, we define as shape a set of closed 2D

contours modulo a certain transformation group, the ele-
ments of which are denoted by Tθ with a parameter vec-
tor θ. Depending on the application, these may be rigid-
body transformations, similarity or affine transformations
or larger transformation groups. The shape is represented
implicitly by an embedding function φ according to equa-
tion (1). Thus objects of interest will be given by φ(Tθ x),
where the transformation Tθ acts on the grid, leading to
corresponding transformations of the implicitly represented
contour. We thus separate shape φ and transformation pa-
rameters θ, as one may want to use different models to rep-
resent and learn their temporal evolution.

Assume we are given a temporal sequence of training
shapes such as the ones shown in Figure 1, represented by
their embedding functions {φ1, . . . , φn} and their transfor-
mation parameters {θ1, . . . , θn}. For uniqueness we require
that all φi are signed distance functions. In the following,
we will develop nonlinear dynamical models for implicit
shape representations which allow to statistically model the
above shape sequence.

2.1. A compact low-dimensional representation

It is well-known that statistical learning and inference
can be performed more reliably and more efficiently in low-
dimensional representations. Therefore, we propose to ap-
proximate the training shapes by their principal compo-
nents, i.e.

φi(x) = φ0(x) +
n∑

j=1

αij ψj(x), (2)

where φ0 denotes the mean embedding function and
ψ1, . . . , ψn the n largest eigenmodes with n << N . The
expansion coefficients αij are given by the projection of
each shape onto these eigenmodes:

αij = 〈φi − φ0, ψj〉 ≡
∫

(φi − φ0)ψj dx, (3)

Such PCA based representations of level set functions have
been successfully applied for the construction of statistical
shape priors in [12, 21, 17]. It should be pointed out that the
application of PCA to the embedding function has certain
limitations. The space of signed distance functions is not a



linear space, such that a linear combination of eigenmodes
will in general not be a signed distance function. While
the proposed statistical shape models favor shapes which
are close to the training shapes (and therefore close to the
set of signed distance functions), not all shapes sampled in
the considered subspace will correspond to signed distance
functions.

Let us denote the vector of the first n eigenmodes as

ψ = (ψ1, . . . , ψn). (4)

Each sample shape φi is therefore approximated by the n-
dimensional shape vector

αi = (αi1, . . . , αin) = 〈φi − φ0,ψ〉. (5)

Much theory has been developed for the statistical anal-
ysis of time series data. Overviews can be found in [13, 10].
Applications of dynamical systems to model deformable
shapes were proposed among others in [2]. In our context,
we intend to learn dynamical models for implicitly repre-
sented shapes. To allow for a more transparent presentation,
we will gradually increase the model complexity from lin-
ear dynamical models of deformation, over joint models of
deformation and transformation to nonlinear mixture mod-
els.

2.2. Linear implicit dynamical shape models

To learn a temporal model of the evolution of the level set
function, one can approximate the shape vectors αt ≡ αφt

representing sequence of level set functions by a Markov
chain of order k [5]:

αt = µ+A1αt−1 +A2αt−2 + . . .+Akαt−k + η, (6)

where η is zero-mean Gaussian noise with covariance Σ,
µ denotes the mean and Ai denote transition matrices. The
probability of a shape conditioned on the shapes observed in
previous time steps is therefore given by the corresponding
autoregressive (AR) model of order k:

P(αt |α1:t−1) ∝ exp
(
−1

2
v>Σ−1 v

)
, (7)

where

v = αt − µ−A1αt−1 −A2αt−2 . . .−Akαt−k (8)

Various methods have been proposed in the literature to esti-
mate the model parameters given by the mean µ ∈ Rn and
the transition and noise matrices A1, . . . , Ak,Σ ∈ Rn×n.
We applied a maximum likelihood estimation using least
squares. Different tests have been devised to quantify the
accuracy of the model fit. Using dynamical models up to an
order of 8, we found that according to Schwarz’s Bayesian
Criterion [18], our training sequences were best approxi-
mated by an autoregressive model of second order.

2.3. Models of deformation and transformation

In the previous section, we employed an autoregressive
model to capture the temporal dynamics of implicitly repre-
sented shapes. To this end, we removed the degrees of free-
dom corresponding to transformations such as translation
and rotation before performing the learning of dynamical
models. As a consequence, the learning only incorporates
deformation modes, neglecting all information about pose
and location. The synthesized shapes in Figure 2, for exam-
ple, show a person walking “on the spot”.

In general, one can expect the deformation parameters
αt and the transformation parameters θt to be tightly cou-
pled. A model which captures the joint dynamics of shape
and transformation would clearly be more powerful than
one which neglects these transformations. At the same time,
we want to learn dynamical shape models which are invari-
ant to translation, rotation and other transformations. To
this end, we can make use of the fact that the transforma-
tions form a group which implies that the transformation
θt at time t can be obtained from the previous transforma-
tion θt−1 by applying an incremental transformation 4θt:
Tθtx = T4θtTθt−1x. Instead of learning models of the ab-
solute transformation θt, we can simply learn models of the
update transformations 4θt (e.g. the changes in translation
and rotation). By construction, such models are invariant
with respect to the global pose or location of the modeled
shape.

To jointly model transformation and deformation, we
simply obtain for each shape in the training sequence the
deformation parameters αt and the transformation changes
4θt, and fit the autoregressive models given in equations
(7) and (8) to an extended shape vector

βt ≡
(
αt

4θt

)
. (9)

Synthesizing from the autoregressive model allows to gen-
erate silhouettes of a walking person which are similar to
the ones shown in Figure 2, but which move forward in
space, starting from an arbitrary (user-specified) initial po-
sition.

2.4. Nonlinear implicit dynamical shape models

While linear dynamical models may be sufficient to
model simple essentially periodical shape deformations,
they are clearly insufficient when it comes to modeling
more complex dynamical processes. Much theory has been
developed to model nonlinear dynamical systems. In the
following, we will assume that the dynamics of our shape
can be approximated using a collection of linear autoregres-
sive models. Such mixtures models have been successfully
applied to the tracking of human motion, based on user-
specified shape representations by coupled geometric prim-
itives [1]. The probability of an (extended) shape vector



Figure 2. Synthesis of implicit dynamical shapes. Statistically generated embedding surfaces obtained by sampling from a second
order autoregressive model, and the contours given by the zero level lines of the surfaces. The implicit formulation allows the
embedded contour to change topology (third image).

βt conditioned on the shapes at previous time instances is
approximated by a mixture of N autoregressive models of
orders {ki}i=1..N according to:

P(βt|β1:t−1) ∝
1
N

N∑
i=1

1√
|2πΣi|

exp
(
−1

2
v>i Σ−1

i vi

)
,

(10)
where

vi = βt −µi −Ai1βt−1 −Ai2βt−2 . . .−Aikiβt−ki
. (11)

The fitting of a mixture of autoregressive models to a train-
ing sequence requires the estimation of the model parame-
ters given by the number N of autoregressive models, the
model orders {ki}, the means {µi} and transition matrices
{Aij}j=1..ki associated with model i, where i = 1, . . . , N .
There exist sophisticated approaches to learn these param-
eters in an unsupervised manner. The key challenge is to
solve the chicken-and-egg problem of simultaneously seg-
menting the sequence and estimating model parameters for
each subsequence. This can be done using either iterative
algorithms such as EM or direct approaches, for example
by means of polynomial factorization [22].

Since the unsupervised learning of autoregressive mix-
ture models is not the focus of this work, we will for sim-
plicity pursue a semi-supervised learning process. Specifi-
cally we assume that our training sequence is already par-
titioned into subsequences each of which is fitted by a sep-
arate AR model. While we use the entire sequence to con-
struct a PCA-based low-dimensional shape representation
shared by all dynamical modes, we then learn separate au-
toregressive models to capture subsequences which are la-
beled, for example by a user marking them as “walking
left”, “walking right”, “running left”, etc. We will demon-
strate that this approach allows to track objects undergoing
different dynamics by using the same nonlinear dynamical
shape prior.

3. Integration in a segmentation process
In the following, we will detail how the proposed non-

linear dynamical shape model can be imposed as a prior in
variational image segmentation.

Assume we are given an image It : Ω → R from an im-
age sequence and segmentations of the previous images in
terms of extended shape vectors {β̂i}i=1,...,t−1. The prob-
lem of segmenting the current frame It can then be ad-
dressed in the framework of Bayesian inference by com-
puting the shape vector β̂t and the transformation θ̂t which
maximize the conditional probability

P(βt, θt | It, β̂i, θ̂i) ∝ P(It |βt, θt) P(βt, θt | β̂i, θ̂i).

Here we assumed that the image It only depends on the cur-
rent segmentation, i.e. there is no further hidden dependence
on the preceding shape configurations.

Maximizing this conditional probability with respect to
the extended shape vector βt can be performed by mini-
mizing its negative logarithm, which is – up to a constant –
given by an energy of the form:

E(βt, θt) = Edata(It,βt) + ν Eshape(βt). (12)

Assuming Gaussian-distributed intensities of object and
background [23, 4], the data term is given by

Edata(It,βt) =
∫ (

(It−µ1)2

2σ2
1

+log σ1

)
Hφβt

dx

+
∫ (

(It−µ2)2

2σ2
2

+log σ2

) (
1−Hφβt

)
dx,

where, for notational simplicity, we have introduced the ex-
pression φβt

≡ φ0(Tθtx) +α>t ψ(Tθtx) to denote the em-
bedding function of a shape generated with parameters βt.

With the autoregressive mixture model (10), the dynam-
ical shape energy is:

Eshape(βt)=− log

[
N∑

i=1

1√
|2πΣi|

exp
(
−1

2
v>i Σ−1

i vi

)]
,



with vi defined in (11), replacing βi by β̂i for i < t.
Tracking an object of interest over a sequence of images

with a nonlinear dynamical shape prior can be done by min-
imizing energy (12). We pursue a gradient descent strategy.
Due to space limitations, we will merely report the differ-
ential equations governing the evolution of the deformation
component αt of the extended shape vector βt:

dαt(τ)
dτ

= −∂Edata

∂αt
− ν

∂Eshape

∂αt
(13)

where τ denotes the artificial evolution time, as opposed to
the physical time t. The data term is given by:

∂Edata

∂αt
=

∫
Ω

(
(It − µ1)2

2σ2
1

− (It − µ2)2

2σ2
2

+ log
σ1

σ2

)
· ψ(x) δ

(
φβt

(x)
)
dx. (14)

The gradient of the shape energy is given by:

∂Eshape

∂αt
=

∑
i

γi

(
1n 0
0 0

)
Σ−1

i vi, (15)

with vi given in (11) and 1n being the n-dim. unit matrix
modeling the projection on the shape components of vi,
where n is the number of shape modes. The normalized
weights γi are given by:

γi =
γ̃i∑
j γ̃j

, γ̃i =
1√
|2πΣi|

exp
(
−1

2
v>i Σ−1

i vi

)
.

(16)
These two terms affect the shape evolution in equation (13)
as follows:

• The data term (14) draws the shape to separate the im-
age intensities according to the estimated two Gaussian
intensity models. Since the effect of variations in the
shape vector αt are given by the eigenmodes ψ, the
data term is a projection onto these eigenmodes.

• The shape term (15) induces a relaxation of the shape
vector αt toward the most likely shape, as predicted
by the nonlinear dynamical model based on the seg-
mentations of previous time frames. This second term
consists of a weighted sum of terms. Each term drives
the current shape αt to the shape predicted by the au-
toregressive model i. The weights γi in (16) indicate
how (relatively) well the respective dynamical models
match the current dynamics. They (exponentially) sup-
press the influence of models which are not consistent
with current and past estimates of shape and transfor-
mation. Their size indicates which dynamical model
best represents the current observations.

Similar evolution equations can be derived for the transfor-
mation parameters.

4. Experimental Results
For all experiments, we constructed a prior by hand-

segmenting a sequence of a walking person. We addition-
ally partitioned the training sequence into sections associ-
ated with different dynamical models. The subsequent com-
putation of embedding functions, alignment, PCA and dy-
namical system parameters are done fully automatically.

Figure 3 shows a comparison of level set segmentation
without and with dynamical shape prior for images cor-
rupted by various amounts of noise. While the segmentation
without dynamical shape prior degrades even with moderate
amounts of noise, the segmentation with a dynamical shape
prior at 90% noise3 shows that the dynamical prior provides
reliable segmentations where human observers fail.

Figure 4 demonstrates that one obtains accurate segmen-
tations even when the walking person is fully occluded by
an oncoming bar. This is due to the fact that the dynam-
ical prior accumulates information over time and provides
segmentations which are temporally consistent with the seg-
mentations obtained on previous frames.

The nonlinear dynamical shape prior (10) allows to in-
tegrate prior knowledge about multiple autoregressive mod-
els into the segmentation process. Figure 5 provides seg-
mentation results obtained on a sequence showing a per-
son walking in different directions with 50% noise super-
imposed. These indicate that in contrast to the linear prior
(top row), the nonlinear dynamical prior (bottom row) can
reliably enhance the segmentation of different dynamical
shape modes, thereby allowing to track a person in differ-
ent directions using a single shape prior. Since we merely
imposed priors on the deformation (and not the transforma-
tion), the linear prior provides acceptable segmentations ex-
cept that all generated silhouettes seem to be walking right.
The close-ups in Figure 6 show that in contrast to the lin-
ear one, the nonlinear model selected the correct dynamical
model in a data-driven manner.

5. Conclusion
In this work, we introduced a nonlinear dynamical shape

model for implicitly represented shapes in order to cope
with misleading low-level information in level set based
image segmentation. Specifically, we proposed to approxi-
mate the temporal evolution of the eigenmodes of the level
set function by a mixture of autoregressive models. In con-
trast to existing models for implicit shapes, the proposed
approach allows to learn the temporal correlations charac-
terizing deforming shapes in terms of multiple dynamical
modes. The model can be integrated as a nonlinear dy-
namical shape prior in a Bayesian formulation of level set
based image sequence segmentation. Experimental results

390% noise means that 90% of pixel intensities were replaced by a
random intensity sampled from a uniform distribution.



No prior / 25% no prior / 50% no prior / 90% with prior / 90% with prior / 90%
Figure 3. Segmentation without and with dynamical shape priors for increasing noise level. While the segmentation results
without shape prior degrade with increasing amounts of noise, the segmentation with shape prior is reliable even for 90% noise.

Figure 4. Dealing with noise and occlusion. The input sequence shows a person walking to the left occluded by a bar moving to the
right, corrupted by 80% noise. Since the dynamical prior accumulates information over time, it allows for accurate segmentations
even when the walking person is completely occluded – see the fourth frame.

Figure 5. Linear versus nonlinear dynamical shape prior. While the linear prior (top) only encodes people walking to the right,
the nonlinear prior (bottom) simultaneously encodes both walking directions. Upon turning around (last three frames), the weights
γi in 16 flip from 0 to 1 (and vice versa), indicating that the algorithm imposes the appropriate dynamical model in a data-driven
manner. This leads to superior segmentation results in the second part of the sequence – see also the closeups in Figure 6.

confirm that the nonlinear dynamical shape prior allows to
accurately track a person walking in different directions de-
spite large amounts of noise and prominent occlusions.
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