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Universität Mannheim

Korreferent: Professor Dr.-Ing. Heinrich Niemann,

Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 24. Juli 2002



Summary

When interpreting an image, a human observer takes into account not only
the external input given by the intensity or color information in the image, but
also internally represented knowledge. The present work is devoted to modeling
such an interaction by combining in a segmentation process low-level image cues
and statistically encoded prior knowledge about the shape of expected objects.

To this end, we introduce the diffusion snake as a variational method for
image segmentation. It is a hybrid model which combines the external energy of
the Mumford-Shah functional with the internal energy of the snake. Minimiza-
tion by gradient descent results in an evolution of an explicitly parametrized
contour which aims at maximizing the low-level homogeneity in disjoint regions.

In particular, we present an extension of the Mumford-Shah functional
which aims at maximizing the homogeneity with respect to the motion esti-
mated in each region. We named the proposed variational method motion
competition, because neighboring regions compete for the evolving contour in
terms of their motion homogeneity. Minimization of the proposed functional
results in an interlaced optimization of the motion estimates in the separate
regions and of the location of the motion boundary.

These purely image-based segmentation methods are extended by a shape
prior, which statistically encodes a set of training silhouettes. We propose two
statistical shape models of different complexity, both of which are automatically
generated from a set of binarized training images. The first one is based on the
assumption that the training shapes form a Gaussian distribution in the input
space, whereas the second one assumes a Gaussian distribution upon a nonlinear
mapping to an appropriate feature space. This nonlinear shape prior permits
to simultaneously encode in a fully unsupervised manner a fairly complex set
of shapes, such as the 2D silhouettes corresponding to several 3D objects. The
feature space is modeled implicitly in terms of Mercer kernels. Our approach
constitutes an extension of kernel PCA to a probabilistic framework.

In order to make the shape prior independent of translation, rotation and
scaling of the contour, we propose an intrinsic alignment of the evolving contour
with the training set before applying the shape prior. This generates invari-
ance with respect to these tranformations without introducing additional pose
parameters which must be determined by optimization.

Gradient descent on a single energy functional maximizes both the low-
level homogeneity criterion in each region and the higher-level similarity of
the segmenting contour with respect to the training shapes. The resulting
knowledge-based segmentation process has a number of favorable properties:
The shape prior compensates for ambiguous, missing or misleading low-level
information. It permits to segment objects of interest in images (or image
sequences in the case of motion segmentation) which are corrupted by noise,
clutter or occlusion. In particular, the nonlinear statistical prior encodes fairly
different shapes in high detail, and it generalizes to novel views which were not
part of the training set.
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Chapter 1

Introduction

1.1 Knowledge-driven Segmentation

The segmentation of images is one of the central problems in the fields of image
processing and object recognition. In this work, segmentation refers to the
division or partitioning of the image plane Ω ⊂ R

2 into a set of disjoint regions1

{Ri ⊂ Ω}i=1,...,m:

Ω =
m
⋃

i=1

Ri, Ri ∩ Rj = ∅ ∀ i 6= j.

In general, the goal of segmentation is to discriminate which part of the
image plane corresponds to an object of interest, and which part corresponds to
the background.2 In this sense, segmentation is closely related to the problem
of object recognition. Depending on the cues that distinguish the object of
interest from the background, segmentation can be based on edge information,
intensity, color, texture, motion or other information. For example, a human
figure may be segmented based on the fact that it is darker than its background,
whereas human faces may be segmented based on color. A car driving down the
street may be segmented because it is moving in a certain direction while the
background is static. Or a zebra may be identified because it has a particular
stripe pattern distinguishing it from the grass around it — see Figure 1.1.

Figure 1.1: Examples for intensity, motion and texture segmentation.

1Morel and Solimini [134] refer to this image partitioning as strong segmentation.
2The case of segmenting several objects simultaneously will not be covered in this work.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.2: Binarized image of a Dalmatian dog in a background of leaves.3

The dog is located to the right of the center with its back to the viewer,
facing left. The human observer combines low-level intensity information
and higher-level previously acquired knowledge for segmenting the image.

In all these cases, some information about the object of interest is used.
While the human brain tends to automatically select the appropriate cue —
for the moving car, the striped zebra etc. — we will assume that for a given
machine vision task, a sensible cue is specified beforehand. However, no matter
which low-level cue is used for segmentation, one will always find examples
where the object of interest is not correctly segmented because the respective
assumption underlying the segmentation approach is not fulfilled: The human
figure may not be entirely dark or there may be other dark objects in the
background. The car motion may be occluded because it is passing behind a
static light post. Or the zebra may be in an environment which contains similar
grey value patterns. In such cases, the information extracted from the image is
not sufficient to define the desired segmentation. The segmentation process is
misled by all the information which violates the respective assumption about
the low-level image properties characterizing object and background.

Yet in many cases of missing or misleading low-level information, the human
brain tends to still perform a correct segmentation of the given image, thereby
identifying the object. Figure 1.2 shows an example of a Dalmatian dog in an
environment of fallen leaves and grass.3 Due to coarse-graining and binariza-
tion, the dog cannot be distinguished from the background based on the texture
only. However, human observers will generally find the correct segmentation
after a while. How is that possible? The reason for this is that the human visual
system tends to integrate low-level and high-level information. In the case of
the Dalmatian, it combines the low-level texture information of the input image
with the high-level notion of what a Dalmatian looks like. This presumption is
supported by the experience that people will more easily recognize the object,
once they are told what to look for (i.e. a Dalmatian). Moreover, people who
have never seen a Dalmatian might not recognize it in the given image.

3This image is ascribed to R. C. James.
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The goal of the present work is to model such an interaction between the
low-level information contained in an external input image and the high-level
internal information about the object of interest, which is acquired beforehand
and statistically represented during a learning process.

In the human visual pathway, the integration of low-level cues and internally
represented high-level information arises through the neural activity in several
strongly interconnected layers of neurons, starting at the retina, over the lateral
geniculate nucleus to various layers of the visual cortex with strong feedback
connections at each level.

Rather than emulating the neuronal architecture of the human visual path-
way and simulating the corresponding highly nonlinear dynamics, we decided
for a mathematically simpler fusion of external and internal information in a
variational framework. The reason for this choice is twofold: Firstly, we believe
that the computational overhead introduced by modeling individual neurons
would impede the treatment of higher-level concepts, such as statistical models
of shape. And secondly, for the purpose of improving machine vision systems,
it may be sufficient to adopt certain general concepts from the human visual
system — in our case the fusion of external and internal information.

In this work, we make the following assumptions in order to focus on a more
specific case of combining external and internal information:

• For simplicity, we will restrict the problem of segmentation to that of
finding a single closed curve C : [0, 1] → Ω which segments the image
plane Ω. However, extensions to several curves and several objects are
conceivable.

• The higher-level internal knowledge will only comprise the shape of the
segmenting contour. This certainly limits the applicability of our ap-
proach, since many objects such as faces are not primarily defined by
their silhouette. However, we are currently investigating in how far the
internal knowledge can be extended to also encompass region information.

• As external input we will only consider planar grey value images or image
sequences:

f : Ω −→ R+, or f : Ω × N+ −→ R+.

However, all results are easily extended to color and other multi-spectral
images. Extensions to 3D images are also conceivable, yet they are not
straight forward since matters such as shape alignment and similarity
invariance of the shape information are more complicated in higher di-
mension.

In the remaining parts of this chapter, we will make some more general
remarks on the relation between variational methods and the paradigm of
Bayesian inference, about the pros and cons of explicit versus implicit con-
tour representations, and about different notions of shape dissimilarity. These
should help to characterize our approach before we specify the contributions of
our work in more detail.
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1.2 Variational Methods and Bayesian Inference

In this work, we segment a given image or image sequence f by finding contours
C which minimize functionals of the form

E(C) = Eimage(f, C) + α Eknowledge(C). (1.1)

This cost functional or energy is made up of two components: The first one
measures how well the contour segments a given input image, based on the
external grey value information given by the image f and a particular segmen-
tation cue such as homogeneous grey value or motion information. The second
term represents the higher-level knowledge about the object of interest which
was previously acquired in a learning process — e.g.in the case of the Dalmatian
in Figure 1.2, it would ideally measure how different the segmenting contour
C is from a Dalmatian. The parameter α ≥ 0 permits to define the weight
between external and internal information. For α = 0 the system only takes
into account the external input, whereas for α > 0 the internally represented
knowledge will influence the segmentation process.

Many approaches to image segmentation are modeled in a probabilistic
framework. For completeness, we want to point out that the variational ap-
proach (1.1) is equivalent to the approach of Bayesian inference: Given an
input image (or image sequence) f , one maximizes the posterior probability

P (C|f) =
P (f |C) P (C)

P (f)
. (1.2)

Maximizing this conditional probability with respect to the contour C for a
fixed input f is equivalent to minimizing its negative logarithm:

− log P (C|f) = − log
(

P (f |C)
)

− log
(

P (C)
)

+ const.

The equivalence to the variational approach (1.1) is obtained by identifying
Eimage(f, C) = − log

(

P (f |C)
)

and α Eknowledge(C) = − log
(

P (C)
)

.

The above equivalence shows how the external energy is related to the prob-
ability of a grey value distribution f given a contour C. Moreover, the internal
energy Eknowledge can be interpreted as the negative log-likelihood of the a pri-
ori probability for a given contour C. As we will see further on, this can be a
rather general prior which simply states that longer contours are less probable,
like

P (C) ∝ e−α|C|,

where |C| is a measure of the contour length. But it can also be a more elaborate
shape dissimilarity measure

P
(

C | {Ci}
)

,

which is constructed from a set of training silhouettes {Ci}i=1,...,m.

Independently of the chosen paradigm — the variational formulation (1.1)
or the maximum a posteriori (MAP) formulation (1.2) — different methods can
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be employed to obtain the extrema. There exists a number of global optimiza-
tion techniques such as simulated annealing [81], mean field annealing [79] and
graduated nonconvexity [18]. In this work, however, we will only consider local
optimization techniques. There are several reasons for this choice:

• In numerical studies, we found that the functionals we study tend to
have few minima, such that global optimizers can be expected to produce
similar results.

• Compared to many other optimization problems, in our case even local
extrema generally correspond to sensible segmentations of a given input
image. In fact, a local optimum is often more desirable, since it cor-
responds to the “closest” segmentation for a given initialization. For
example, if there are several objects in an image, they may be obtained
sequentially by local optimization with different initial contours.

• Since our goal is to model the interaction of external and internal informa-
tion in a segmentation process, we avoided the additional complications of
global optimizers: Firstly, most standard implementations cannot guaran-
tee to find the global optimum, especially in the case of high dimensions.4

And secondly, tuning the parameters needed by most global optimization
methods can be tedious.

• Especially in high dimensions, global optimization tends to be much slower
than a local scheme. We found that by using local optimization schemes,
we are able to obtain performances close to real-time for many applica-
tions. Although this is not our main goal, it tends to facilitate experi-
mentation and makes online demonstrations feasible.

1.3 Implicit versus Explicit Contours

In this work, we decided for an explicit representation of the contour C in (1.1).
This choice shall be briefly justified in the following.

For the representation and temporal evolution of contours, one can choose
between explicit and implicit representations. Implicit contours C are contours
of the form

C = {x ∈ Ω | φ(x) = 0}. (1.3)

This means that the contour C is given by the zero level set of a function
φ : Ω → R. In the case of algebraic implicit contours the function φ is given
by a polynomial [75, 147]. An alternative is to approximate arbitrary functions
φ numerically on a grid. This approach has become quite popular with the
introduction of level set methods [143], which permit the numerical propagation
of surfaces φ with a curvature-dependent speed.

A number of well known segmentation methods have been (re)formulated
in terms of implicit contours. The initial contour is embedded in a surface,
for example by the signed distance function. The contour evolution is replaced

4In our case, optimization is usually done in more than 200 dimensions.
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by an evolution of the embedding surface, and the corresponding contour at a
given time is obtained by determining the zero level set of the evolving surface
(cf. [32, 108, 35, 195]).

The alternative to implicit contour representations are explicit ones. These
can for example be implemented by a set of discrete marker points [200] which
are then evolved over time. In the computer vision community the most popular
explicit contour representation for shape modeling, segmentation and tracking
are spline contours [129, 39, 96, 71] of the form

C : [0, 1] −→ Ω, C(s) =
N
∑

i=1

pi Bi(s),

where pi ∈ R
2 are the control points and Bi(s) are appropriate spline basis

functions of some fixed degree. Linear, quadratic or cubic spline basis functions
are most commonly used.
Explicit contour representations have several advantages and disadvantages:

+ The computational cost of evolving a parametric contour is much lower
than that of evolving the associated surface, because it amounts to up-
dating a fairly small number of parameters rather than the full two-
dimensional embedding function (or at least a narrow band of this function
around each contour).

+ The explicit nature of the contour provides a compact representation of
a given shape. This permits to directly perform shape analysis, shape
alignment and the statistical modeling of a distribution of training shapes
(cf. [83, 67, 47]).

− In the propagation of an explicit contour, numerical instabilities can arise
if control (or marker) points move too close together. Generally one needs
to revert to a regridding mechanism [200] or introduce some additional
force which prevents the clustering of control points (cf. [56]).

− During the evolution of the embedding surface φ, an implicit contour can
undergo topological changes such as splitting and merging, which do not
need to be modeled explicitly, because topological changes of the contour
C do not imply topological changes of the embedding function φ.

However, in many applications of knowledge-driven segmentation, topo-
logical changes of the contour can be excluded a priori. Usually a given
prior shape information restricts the evolving contour to a manifold of fa-
miliar shapes, in which no contour splitting or merging can occur. There-
fore the constraint imposed by the shape prior can be considered much
stronger than that imposed by the constancy of the contour topology.

In this work, we decided for an explicit contour representation because it
facilitates the modeling of statistical shape priors.

Recently, there have been some efforts to model shape statistics on the basis
of implicit contour representations [120]. However, there the training shapes
are embedded by the signed distance function and the distribution of embed-
ding surfaces is modeled statistically. Apart from the fact that this drastically
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increases the dimension of the input space, it is unclear in what way the sur-
face representation affects the shape learning, since only the zero level set of
the surface corresponds to a perceivable shape. Matters such as alignment and
reparameterization are not satisfactorily solved. Moreover, although the seg-
mentation process with an implicit contour permits a contour splitting, the
separate contours cannot be treated as statistically independent. This means
that the proposed shape influence cannot be used for the segmentation of several
(independent) objects in a given input image.

On the other hand, there have been several approaches to model topological
changes for explicit contours [119, 127, 115, 64]. These methods are necessarily
heuristic and additional decision parameters have to be introduced, too. Yet
they have been demonstrated to work well in many practical applications.

1.4 Two Distinct Notions of Shape Dissimilarity

The goal of this work is to integrate appropriate statistical priors on the shape
of the segmenting contour into the segmentation process. To this end, we will
represent a set of training shapes in a vector space and derive different shape
dissimilarity measures on the basis of the distribution of the training shapes.

For clarity, we distinguish two very different notions of shape dissimilarity:

1. The dissimilarity of two different shapes (or contours): Such a measure
can incorporate low-level geometric information in terms of the deforma-
tion energy needed to bend or stretch one contour into the other, as for
example proposed in the work of Basri et al. [9]. It can also rely on higher-
level concepts such as the correspondence of subparts — for example the
relative position of corresponding legs may be different from one human
figure to another. The resulting dissimilarity measure can incorporate
operations known from syntactic or string matching such as substitution,
deletion or insertion. This has been done among others by Gdalyahu and
Weinshall [78]. Moreover, cognitive psychophysical concepts such as the
correspondence of maximal convex or concave subparts can be integrated
in such distance measures, as proposed by Latecki and Lakämper [116].

2. The dissimilarity of a given shape with respect to a set of training shapes:
If the first notion of distance between two shapes can be formulated as
a metric induced by a scalar product, then the training shapes are part
of a Hilbert space. This permits to estimate a shape probability dis-
tribution underlying this set of training shapes. The associated energy
density, given by the negative logarithm of this probability density, can
be interpreted as a shape dissimilarity measure.

The second notion of dissimilarity is obviously based on a choice for the
first one. Yet, these two notions are complementary: The first one assumes
some knowledge about how one shape is deformed into another — this becomes
apparent once parameters have to be specified to determine the cost of e.g.
deletion, insertion or bending. In contrast, the second notion of dissimilarity is
a statistical one which is induced by a set of example shapes.
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In this work, we focus on the second notion of shape dissimilarity, because
it is closer to the paradigm of learning from examples. For computational
efficiency, we will revert to very simple measures of the distance between two
shapes. We will present two measures of statistical shape dissimilarity which
differ in their complexity. Numerical experiments will show that these permit
to encode fairly complex and detailed shape information if a sufficient number
of training shapes is given.

1.5 Related Work

There already exists a vast amount of literature on many image segmentation
methods. To survey this entire field is beyond the scope of this work. A brief
review of variational approaches to segmentation will be given at the beginning
of Chapter 2, with a particular focus on the ones our own approach is based
upon. Similarly, references to related work in the field of motion segmentation
are postponed to Chapter 5.

The principles underlying vision in biological systems have been studied by
neurobiologists and psychophysicists, one of the earliest of which was Helmholtz
[92]. The idea to treat biological vision and computer vision as a joint problem
was propagated among others by Marr [123]. The interpretation of computer
vision as a problem of Bayesian inference was pioneered in particular by a group
of researchers at Brown University, namely Grenander, Geman, Mumford and
co-workers (cf. [87, 81, 203]).

The study of shape has a long tradition. An early writing on shape is that
of Galilei [77], who compared bones of differently sized animals, finding that for
stability reasons they differ not only in size but also in their shape. An early
work dealing with the dissimilarity of two shapes is that of D’Arcy Thompson
[173], who showed that one species of fish (the Diodon) could be geometrically
transformed into another (the Orthagoriscus). Similarly, he warped the skull of
a human into that of a chimpanzee or a baboon by deforming an underlying
Cartesian grid. This technique has been refined with deformations in terms
of thin-plate splines by Bookstein in [22]. Many of the key ideas underlying
statistical shape analysis were developed by Kendall [103] and Bookstein [21].
For a detailed review we refer to [67].

Statistical models of shape variation for computer vision were pioneered by
Grenander [88]. Shape approximation by spline curves was propagated among
others by Menet et al. [129] and Cipolla and Blake [39]. Increasingly more elab-
orate models of shape and appearance have been proposed by Cootes, Taylor
and co-workers under the names of point distribution model, active shape and
active appearance model [44]. Baumberg and Hogg [10] presented a method for
automatic shape acquisition using background subtraction and a spline-based
shape analysis.

More recently, a number of nonlinear models of shape variation were pre-
sented, i.e. models where the permissible shape variation is not constructed
by a linear combination of eigenmodes. Among these are mixture models by
Cootes et al. [48] and the related hierarchical point distribution models by Heap
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and Hogg [91], hybrid models using both Cartesian and polar coordinates [90],
nonlinear extensions by Sozou et al.using multi-layer perceptrons [169] or poly-
nomial regression [168], and kernel principal component analysis by Romdhani
et al. [150] and Twining and Taylor [179].

Applications of shape models in segmentation or matching were proposed
among others by Yuille [197], Yuille and Hallinan [198], Grenander [88], Staib
and Duncan [170], Cootes et al. [46], Kervrann et al. [105, 106], Wang and Staib
[183], Duta et al. [70], and Leventon et al. [120]. We will not go into detail
about the contributions of each of these works. For a more detailed review, we
refer to [17].

In comparison to the above approaches, the main points of our work are:

• Statistical shape models are usually incorporated in edge-based segmen-
tation methods, whereas we use region-based methods.5 In Chapter 2, we
will discuss differences between edge-based and region-based variational
segmentation methods and introduce our own segmentation approach, the
diffusion snakes, on the basis of the Mumford-Shah functional [136].

• The region-based segmentation method can be easily extended to different
low-level segmentation cues such as texture, color or motion. In Chapter
5, we will demonstrate this by introducing statistical shape information
into a novel framework for variational motion segmentation.

• We do not restrict the segmenting contour to the low-dimensional sub-
space of a few deformation modes (cf. [198, 16]). Although such a compact
representation tends to reduce the computational effort, it has certain
disadvantages. Firstly, the effect of the prior cannot be continuously de-
creased. Secondly, a shape probability which is non-vanishing only in
a low-dimensional subspace is less faithful from a probabilistic point of
view — see Section 3.3. And finally, extensions to more general (non-
linear) probabilistic shape models are not straight-forward, because in
these cases, finding a low-dimensional parametric description of permissi-
ble shape variations (such as the principal eigenmodes in the linear case)
may be entirely infeasible.

• Nonlinear models of shape variation have appeared only fairly recently.
Therefore, to our knowledge, there has not been any work of incorporating
nonlinear shape statistics into a region-based segmentation method. This
will be presented in Chapter 4.

1.6 Contributions

Different parts of the work presented here have been published on various oc-
casions [57, 58, 56, 50, 51, 52, 59, 54, 53, 55]. Some of this work resulted from
cooperations with two diploma students, namely Timo Kohlberger and Florian
Tischhäuser. Therefore some results concerning nonlinear shape statistics have

5Note also, that in many applications of shape models in computer vision, a fitting of open
contours to image structures is performed. This does not produce a (strong) segmentation in
the sense of a partitioning of the image.
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appeared in [112], and results on multigrid implementations of the diffusion
process in [177].

The main contributions can be split into four components which are con-
tained in the Chapters 2 through 5. For better readability these chapters are
mostly self-contained.

Diffusion Snakes

In Chapter 2, we present a variational method for image segmentation which
can be considered a hybrid of two models: The functional combines the external
image energy of the Mumford-Shah functional [136] with the internal energy of
the classical snake [102]. Due to the underlying diffusion process, we named it
diffusion snake. The corresponding snake-like implementation of the piecewise
constant Mumford-Shah model is called the simplified diffusion snake.

In numerous experimental results, we show that these region-based snakes
are fundamentally different from edge-based approaches such as the classical
snake: The issues of image smoothing and optimal edge placement are separated
in the variational formulation, such that noise robustness and large basins of
attraction are obtained without destruction of relevant image information such
as the precise location of edges and corners. Moreover, during minimization
by gradient descent the contour converges over fairly large spatial distances
although there are no balloon-terms [40] in the functional which would induce
a bias towards expansion or contraction. On the contrary, we demonstrate
that for the same parameter value the contour can both expand and contract
depending on the image information. We also compare segmentation results
obtained by the diffusion snake and the simplified diffusion snake with those
obtained by a level set implementation of geodesic active contours [32, 108].

Diffusion Snakes with Linear Statistical Shape Prior

In Chapter 3, we propose to extend the diffusion snake functional by a statistical
shape energy which favors the formation of familiar contours. Familiarity is
defined on the basis of a set of binarized training shapes. We discuss the issues
of automatic contour extraction, alignment and shape learning. We assume that
the set of training shapes are distributed according to a Gaussian probability
density. In contrast to most active shape models, we do not restrict the contour
deformation to a low-dimensional subspace of the first few eigenmodes. Due
to a regularization of the sample covariance matrix we obtain a finite non-zero
probability in the full space of possible contour deformations. The covariance
regularization is related to probabilistic principal component analysis or sensible
PCA [131, 155, 176]. However, we propose a choice of the regularizing constant
which deviates from that proposed in [131, 176].

We present numerous ways to incorporate in the variational approach an
invariance of the shape prior with respect to certain transformations of the
contour. In particular we discuss a framework of learning invariances, which
conforms with the paradigm of learning from examples. We show that robust-
ness to some transformations can be learnt, but that this method cannot be
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extended to full similarity invariance. As a remedy, we propose a closed-form
solution for incorporating similarity invariance into the variational approach.
It is formulated on the basis of the spline representation of the contour and has
the advantage that no additional parameters must be introduced to account
for translation, rotation or scaling. We compare this method of incorporating
invariance to alternative approaches known from the literature.

Experimental results demonstrate the influence of the linear shape prior on
the segmentation process. We show examples where the application of different
shape priors permits to parse an object into its constituent components. Sim-
ilarity invariance of the shape prior is demonstrated. Moreover, we show how
the shape prior permits to cope with noise, clutter and occlusion.

Shape Statistics in Feature Space for Segmentation

In Chapter 4, we present a nonlinear generalization of the shape dissimilarity
measure which is based on the assumption that the training shapes are dis-
tributed according to a Gaussian probability density after a nonlinear mapping
to an appropriate feature space. The mapping to the feature space is modeled
implicitly in terms of Mercer kernels [130, 49]. The proposed dissimilarity mea-
sure can be interpreted as an extension of kernel PCA [164] to a probabilistic
framework.

Compared to alternative nonlinear shape models, the proposed method does
not assume any prior knowledge about the type of nonlinearity. Moreover,
no prior clustering or classification of the training shapes is necessary. The
model contains a single free parameter for which automatic estimates are given.
Combined with the external image energy in the diffusion snake functional, this
shape energy restricts the contour evolution to a submanifold of familiar shapes.

Experimental results show that the nonlinear shape prior is far more pow-
erful than the linear one since it permits to encode a large variety of different
shapes, such as those corresponding to different objects and different views of a
3D object. The capacity of the nonlinear shape prior to cope for noise, clutter
and occlusion of the objects of interest is demonstrated in several artificial and
real-world applications. The restriction of the contour to the learnt manifold
during applications in segmentation and tracking is demonstrated by appropri-
ate projections of both the training shapes and the evolving contour. In this
way we are able to verify the statistical nature of the nonlinear shape prior,
namely that it can encode in high detail a large set of fairly different training
silhouettes while still permitting a generalization to novel views which were not
part of the training set.

Some relations of the proposed feature space distance to classical methods
of density estimation are discussed in Appendix C.

Motion Competition

In Chapter 5, we propose an extension of the Mumford-Shah functional to the
problem of segmenting an image sequence into regions of piecewise homogeneous
motion. Again we present an implementation with an explicit contour similar
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to that of the diffusion snakes. This permits an incorporation of a statistical
prior on the shape of the motion discontinuity curve. We focus on the two
cases of piecewise constant and piecewise affine motion, however other linear
parametric models could be used as well.

In experimental results we demonstrate the fundamental differences between
motion and grey value segmentation. We compare segmentation results ob-
tained with the models of piecewise constant grey value, piecewise constant
motion and piecewise affine motion. We experimentally verify the properties of
the proposed motion segmentation: During minimization, the motion disconti-
nuity curve converges over fairly large distances, and the motion estimates are
updated in alternation so as to gradually separate the different motion fields.
In particular, the method permits to segment two differently moving regions,
as given in the case of moving objects captured by a differently moving camera.

As in the case of grey value segmentation, we demonstrate the capability of
the shape prior to cope with incomplete motion information due to noise and
compensate for the (more fundamental) limitations induced by the aperture
problem. We demonstrate that due to the statistical shape prior, an object
of interest can be segmented on the basis of its relative motion although the
motion information is partially occluded.

Conclusion and Appendix

In Chapter 6, we briefly review the results of the present work. We discuss
a number of limitations of the proposed methods and point out directions of
ongoing and future work.

In order to not break the flow of the argument, certain topics were post-
poned to the Appendix. Part A contains some remarks on spline distance
approximations. Essentially we justify the use of the Euclidean distance be-
tween spline control point polygons as an approximation of a more elaborate
spline distance. Part B contains details on a multigrid implementation of the
inhomogeneous diffusion process underlying the contour evolution of the dif-
fusion snake. We define appropriate restriction and prolongation operators to
model the transfer between coarse and fine grids and present the stencils used
in the numerical implementation. Part C contains some remarks on feature
space distances and their relation to classical methods of density estimation.
In particular, we show that the Euclidean distance associated with a spheri-
cal (isotropic) Gaussian distribution in feature space corresponds to a Parzen
estimate in the original space. We then present some preliminary insights char-
acterizing the Mahalanobis distance associated with an ellipsoidal (anisotropic)
Gaussian distribution in feature space.



Chapter 2

Variational Image

Segmentation

A large variety of approaches have been proposed to tackle the problem of image
segmentation. In the following, we will briefly review some of the variational
methods. Explicit variational formulations have a number of advantages (cf.
[134]):

• The variational approach presents explicitly the quantity which is opti-
mized. In contrast, many heuristic approaches propose an application
of successive image processing steps or a combination of different tools.
However, in order to modify or improve a given segmentation method,
one should know what precisely is optimized.

• Most segmentation methods can be formulated in terms of an explicit
functional which is minimized.

• The variational approach automatically offers a quantitative criterion for
comparing the quality of two given segmentations in a self-consistent way.

• The variational formulation can be deduced from a classical axiomatiza-
tion of image processing given by multiscale analysis [4].

• Many of the results presented in this work will show that the variational
framework is well suited to model the fusion of external image informa-
tion and internally represented prior knowledge in a single segmentation
process. As discussed in Section 1.2, this variational integration of exter-
nal and internal information is equivalent to the probabilistic framework
of Bayesian inference.

2.1 From Edges to Multiscale Image Analysis

Some of the earliest approaches to image segmentation are based on the low-
level feature of edges [25, 125, 132], where edges are commonly defined as regions
where the magnitude of the image gradient is maximal or where the Laplacian

13
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of the image shows zero-crossings. They indicate locations of intensity discon-
tinuities which are assumed to correspond to discontinuities in the geometry.

A fundamental property of edges is that they are only defined with respect
to the spatial scale on which the intensity discontinuity takes place. Moreover,
the detection of edges by differentiation of the intensity function is very sensitive
to noise. To address these two difficulties, one commonly reverts to multiscale
filtering and multiscale edge detection. Essentially this means that the image
is first smoothed at various scales and the edges are determined afterwards
in terms of the maxima of the gradient or the zero-crossings of the Laplacian.
Equivalently one can directly convolve the input image with suitable derivatives
of Gaussian-like filters. The width of the filter determines the spatial scale on
which edges are to be detected. The family of images obtained by filtering the
input image at various scales induces the notion of scale space.

The theory of linear multiscale filtering has been extensively studied [153,
124, 192, 110, 199, 30]. An early axiomatic derivation of linear Gaussian scale-
space was given by Iijima in 1962 [99, 100], see also [187]. As pointed out by
Koenderink [110], linear Gaussian smoothing of an image f at various scales is
equivalent to solving the heat equation

∂u(x, t)

∂t
= 4u(x, t)

u(x, 0) = f(x)

(2.1)

with the input image f as the initial condition, as the solution to (2.1) is given by

u(x, t) = gt ? f , where ? denotes the convolution and gt(x) = 1
4πt exp

(

− ||x||2

4t

)

.

In order to introduce a non-trivial steady state into equation (2.1), it can
be extended by an inhomogeneity:

(

∂

∂t
− λ24

)

u = f − u, (2.2)

with the scale parameter λ ≥ 0. This is the gradient descent evolution for the
functional

E(u) =

∫

Ω

(f − u)2 dx + λ2

∫

Ω

|∇u|2 dx. (2.3)

For a given scale parameter λ, the minimum of (2.3) corresponds to a smoothing
of the input image f at the given scale. The functional (2.3) can be considered
the most simple example of an entire class of variational formulations for image
processing problems, which consist of two terms: The first one is an approxima-
tion or fidelity term which assures that the minimum is in some sense similar to
the input image and the second term is a regularity or smoothness term, which
guarantees that the minimum is as smooth or regular as possible (cf. [174, 172]).

The linear diffusion equation (2.2) aims at smoothing all image structure
on the spatial scale λ. In practice, however, one would like to smooth noise
without loosing the information about the location of edges and other relevant
image features. In this case one can revert to adaptive or nonlinear filtering
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[145, 139, 159, 138, 34, 184, 85, 142]. A corresponding variational approach is
given by functionals of the form

E(u) =

∫

Ω

(f − u)2 dx + λ2

∫

Ω

G (|∇u|2) dx, (2.4)

where the function G is generally some kind of robust estimator of the edge
strength.1 Functional (2.4) is commonly referred to as the Perona-Malik model
[145]. For G(s) = s, (2.4) reduces to the linear case (2.3). In contrast to the
linear model, edges or more generally areas of large image gradient tend to
be preserved, if the function G rises more slowly than the linear function. In
particular, if G(s) =

√
s, the smoothness term is called the total variation (cf.

[142]). The gradient descent evolution associated with the functional (2.4) is a
nonlinear diffusion equation, with a diffusivity which depends on the magnitude
of the image gradient.

This approach can be extended even further to models of nonlinear an-
isotropic diffusion with a matrix-valued diffusivity D which also takes into ac-
count the direction of the image gradient (cf. [184]). The resulting diffusion
process smoothes the image in direction of the level lines, thereby enhancing
the edges. However, variational formulations underlying such anisotropic diffu-
sion processes only exist for the case of vector-valued images [186].

2.2 Edge-based Segmentation Approaches

2.2.1 Snakes

The variational approaches (2.3) and (2.4) both produce simplified versions
of a given input image f , in the sense that the input image is smoothed at
the spatial scale λ. In the case of (2.4), smoothing adapts to the local image
gradient. However, neither of these approaches produces a strong segmentation
of the input image, as no partitioning of the image plane into disjoint regions is
performed. Even if edges are detected in an image with the help of multiscale
filtering: How should they be linked in order to obtain a segmentation of the
image? This question has been addressed by a number of researchers [152, 189].

A variational approach to solve the problem of edge linking is the classical
snake functional proposed by Kass, Witkin and Terzopoulos [102]:

E(C) =

∫

{ν1

2
|Cs|2 +

ν2

2
|Css|2 − |∇f(C)|2

}

ds. (2.5)

Here C(s) denotes an explicit parametric closed curve, and Cs and Css denote
the first and second derivative with respect to the curve parameter. The first
two terms in (2.5) can be interpreted as an internal energy of the contour, mea-
suring the length of the contour and its stiffness or rigidity2. Both are weighted

1In [34] it is shown that a more consistent method is obtained (for the model without the
fidelity term) if the function G is applied to the absolute value of the Gaussian-presmoothed
image uσ = gσ ? u (where gσ is a Gaussian of width σ).

2From a survey of a number of related publications and from our personal experience, it
appears that the rigidity term is not particularly important, such that one commonly sets
ν2 = 0.
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Initial contour Final segmentation
Gaussian smoothed

input image

Figure 2.1: Initial and final contour for the snake (2.5). The input image
is a black box on white ground (depicted in grey for better visibility). In
order to create a sufficiently large basin of attraction, the input image was
Gaussian-smoothed as shown on the right. Due to this smoothing, the edge
gradient is noticeable at a longer range. However, the smoothing also blurs
details such as the corners. This dilemma arises since the original snake is
only defined on a single scale.

with nonnegative parameters ν1 and ν2. The last term is the external energy
which accounts for the image information, in the sense that the minimizing
contour will favor locations of large image gradient. Minimization of (2.5) by
gradient descent results in the evolution equation3

dC(s, t)

dt
= −dE

dC
= ν1 Css − ν2 Cssss + ∇|∇f(C)|2. (2.6)

The last term in this evolution equation drives the contour to areas of high
image gradient. As discussed in Section 2.1, edges are always defined on a
certain spatial scale. This is precisely the weakness of the snakes: Depending on
the initialization, the input image f needs to be appropriately presmoothed in
order to create a sufficiently large basin of attraction for the snake to converge.
However, as discussed in Section 2.1, linear presmoothing also destroys the exact
location of edges, so that the final segmentation tends to “blur” the object of
interest by smoothing sharp corners and small details — see Figure 2.1.

Although the snake solves the problem of edge linking, it is not defined in a
multi-scale framework. A remedy which we found to work in practice is to run
the snake evolution on input images fσ which are smoothed on several scales
σ1 >σ2 >σ3 > · · ·> σn. Moreover, additional terms can be introduced to draw
the contour towards corners [17]. However, these remedies are not very elegant
from a theoretical point of view. In addition, Gaussian smoothing at several
scales is a rather time consuming process, while speed is one of the strengths
of the explicit snakes.

3In a number of publications, including [102], the signs of the individual terms in the
evolution equation (2.6) are partially incorrect.



2.2. EDGE-BASED SEGMENTATION APPROACHES 17

2.2.2 Balloons

Another way to drive the contour in (2.5) towards the desired segmentation
over larger distances is to introduce an additional force which can either shrink
or expand the contour. These so-called balloons proposed by Cohen and Cohen
[40] are obtained by adding an extra term to the functional (2.5) which favors
regions of a certain size:

E(C) =

∫

{ν1

2
|Cs|2 +

ν2

2
|Css|2 − |∇f(C)|2

}

ds + ν3

∫

Ωi

dx, (2.7)

where Ωi is the region inside the contour. Depending on the sign of the param-
eter ν3 ∈ R , this induces an additional driving force along the contour norma
which either shrinks (ν3 > 0) or expands (ν3 < 0) the contour.

Obviously, this additional term reduces the generality of the snake. In a
practical application, one needs to know whether the initial contour is located
inside the object of interest or whether it encloses the object. Moreover, de-
pending on the magnitude of ν3, the final segmentation will show a bias towards
the inside or the outside of the segmented object. In practice, this bias can be
minimized by decreasing the magnitude of ν3 during the evolution.

2.2.3 Geodesic Snakes

The classical snake (2.5) is formulated on the basis of an explicit contour. As
discussed in Section 1.3, this has several disadvantages, the main one being
the topological rigidity, i.e. the fact that no contour splitting or merging is
possible. Rather than explicitly incorporating mechanisms which permit topo-
logical changes of the explicit contour [119, 127, 115, 64], one can embed the
contour evolution into an evolution of a surface, where the contour is given by
the zero level set of the respective surface. These so-called geodesic snakes have
been simultaneously proposed by Caselles, Kimmel and Sapiro [32, 33] and by
Kichenassamy, Kumar, Olver, Tannenbaum and Yezzi [108].

In [33] the classical snake (2.5) is first generalized to a larger class of edge
detectors by replacing −|∇f |2 with g (|∇f |)2, where g : R → R is a strictly
decreasing function which asymptotically vanishes: lim

s→∞
g(s) = 0. Under some

additional assumptions (in particular ν2 = 0) it is then shown that by Mauper-
tuis’ principle of least action, the minimization of the snake energy amounts to
finding paths of minimal “weighted” distance

min
C

1
∫

0

g (|∇f(C(q))|) |Cq(q)| dq, (2.8)

where the infinitesimal contour length dC = |Cq(q)| dq is weighted by the in-
verse edge strength4 g (|∇f(C(q))|). The minimization problem (2.8) can be
interpreted as finding a geodesic curve (i.e. a curve of smallest length) in a
Riemannian space, the metric tensor of which is induced by the input image f .

4We speak of inverse edge strength, because g decreases with increasing edge strength.
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Gradient descent on (2.8) results in the curve evolution equation

∂C(t)

∂t
= g (|∇f(C)|) κ n − (n∇g)n, (2.9)

where n denotes the unit inward normal on the contour and κ its Euclidean
curvature. The first term represents a Euclidean curve shortening flow which
is weighted by the inverse edge strength g. The second term is the normal
component of the force towards areas of large image gradient. In practice, the
first term is extended by replacing κ with κ + c, where c is an appropriate
constant. This induces a similar expansion or shrinking force along the normal
as was obtained for the balloon model (2.7). Here again, it appears that a
choice of the sign of c implies prior knowledge on whether the curve is to shrink
towards an object which is initially enclosed (inward flow) or rather to expand
towards an object which initially encompasses the contour (outward flow).5

The evolution equation (2.9) can be embedded into an image evolution of
the form6

∂φ(x, t)

∂t
= |∇φ| div

(

g(|∇f |) ∇φ

|∇φ|

)

, (2.10)

which implies that all level sets of the function φ(x, t) evolve according to equa-
tion (2.9). The contour of interest is usually encoded as the zero level set of
φ — see equation (1.3). The advantage of this implicit formulation is that the
contour C can undergo topological changes which do not need to be modeled
explicitly. This permits the segmentation of several objects in a given image. A
modification of (2.10) where g(|∇f |) is replaced by g(|∇u|) was proposed under
the name of self-snake in [156].

2.3 Region-Based Segmentation Approaches

2.3.1 The Chicken and Egg Dilemma

The above approaches can be considered edge-based approaches in the sense
that the contour is essentially drawn to the nearest maxima of the input image
gradient. As discussed in Section 2.1, the input image is generally presmoothed
at a scale σ to obtain more reliable edge information — this creates larger
basins of attraction and a certain noise robustness since edges at scales smaller
than σ are removed. Yet, it is precisely this presmoothing which destroys
image information such as the exact location of edges and corners. Ideally one
would like a smoothing which does not destroy the edge information. This
dilemma between smoothing of noise and the preservation of edges and corners
has been commonly considered a “chicken and egg problem”: An object of
interest is more easily segmented, if one smoothes the grey value across the
area corresponding to the object; however, in order not to smooth across the
boundaries of the object, one already needs to know where the object is.

5Note that the Euclidean curve shortening flow by itself implicitly induces a shrinking of
the contour. An appropriate choice of the constant c added to the curvature κ might help to
compensate this effect.

6A precursor of such an implicit snake was proposed in [31, 121].
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Interestingly, this chicken and egg dilemma can be tackled by a variational
approach, which is described in the following section.

2.3.2 The Mumford-Shah Functional

In 1985, Mumford and Shah [135, 136] proposed to approximate a given input
image f with a piecewise smooth function u by minimizing the functional

E(u, C) =
1

2

∫

Ω

(f − u)2 dx + λ2 1

2

∫

Ω−C

|∇u|2 dx + ν |C| (2.11)

simultaneously with respect to the image u and with respect to the contour C.
The first term is a fidelity term, as it enforces that the function u is similar to
the input image f in the L2-sense. The second term enforces smoothness of the
segmented image but permits discontinuities of u across a boundary denoted by
C. The last term gives the one-dimensional Hausdorff measure of the length of
this boundary. The parameter λ defines the spatial scale on which smoothing
is done.

Similar models as (2.11) were formulated for the discrete case in a Markov
random field method by Geman and Geman [81] and as the weak membrane
model by Blake and Zisserman [18].

The free discontinuity problem in (2.11) triggered a large number of detailed
theoretical studies (cf. [134, 117, 20]). Existence of global minimizers with a set
C of closed boundaries was proved by Ambrosio [5] and de Giorgi et al. [61].
Regularity of the minimizing contours has been shown in [19, 6]. In [136], it is
shown that corners or T-junctions are not permissible for minimizing contours,
and that triple junctions can only arise with identical angles of 120◦. For a
detailed discussion of theoretical aspects we refer to the book of Morel and
Solimini [134].

A coarse to fine method for minimizing the Mumford-Shah functional was
proposed by Blake and Zisserman [18] under the name of graduated non-convexi-
ty. Essentially the authors convexify the original functional and determine a
family of more and more non-convex approximations of the functional which are
iteratively minimized, where the solution at each level serves as an initialization
for the next (less convex) level. A similar coarse-to-fine approximation of the
Mumford-Shah functional in terms of Γ-convergence was proposed by Ambrosio
and Tortorelli [7]. Level set implementations of the Mumford-Shah functional
were recently presented by Chan and Vese [35] and by Yezzi et al. [195].

A number of more heuristic methods of region growing (cf. [95]) can be
considered precursors of the Mumford-Shah functional in the sense that they
aim at partitioning the input image into piecewise homogeneous regions by
appropriate hierarchical split and merge techniques.

2.3.3 Simplification and Probabilistic Generalization

If the parameter λ in equation (2.11) is increased, the smoothness constraint is
given more weight. In the limit λ → ∞, the approximation u will be forced to
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be constant in each region Ri ⊂ Ω separated by the boundary set C:

u(x) = ui for x ∈ Ri, (2.12)

The functional (2.11) then reduces to the cartoon limit [133, 136]:

E(u, C) = E({ui}, C) =
1

2

∑

i

∫

Ri

(f − ui)
2 dx + ν |C|, (2.13)

with the parameter ν appropriately rescaled.7 Minimization of (2.13) results
in an approximation of the input image f by a function u which is piecewise
constant on a set of regions Ri separated by the boundary set C, where the
constants ui take on the mean grey value in each region Ri:

dE

dui
= 0 ⇐⇒ ui =

1

|Ri|

∫

Ri

fdx. (2.14)

By associating with a given boundary set C the minimizing constants ui in
(2.14), the resulting functional reduces to a functional E(C) which only de-
pends on C. As discussed in [134, 136], the analysis of minimizers in terms of a
finite number of rectifiable Jordan curves is drastically simplified in the piece-
wise constant case. We will not go into detail about these results, since we will
later on further restrict permissible segmentations C to parametric closed con-
tours. Results of minimizing the functional (2.13) by a pyramidal algorithm of
recursive merging for the case of scalar (grey value) and vector-valued (texture)
images were for example presented in [111].

Moreover, as detailed by Zhu and Yuille in their work on region competition
[204], the piecewise constant Mumford-Shah functional provides an ideal start-
ing point for a probabilistic interpretation of region-based segmentation. In
contrast to the original Mumford-Shah functional (2.11), the simplified model
(2.13) provides a segmentation for which the grey value in each region Ri is ap-
proximated by a constant ui. Instead of approximating by a constant, one can
more generally approximate the intensity in each region Ri by a probabilistic
model P (f(x)|αi) with a parameter vector αi. The specific energy density for
region Ri in the functional (2.13) is then replaced by the negative log-likelihood
that a grey value f is encountered at point x, given the probabilistic model pa-
rameterized by αi:

E({αi}, C) = −1

2

∑

i

∫

Ri

log P
(

f(x)|αi

)

dx + ν |C|. (2.15)

In this sense, the simplified Mumford-Shah model (2.13) corresponds to the
specific case of Gaussian probability distributions for the grey values in the
regions Ri with mean ui and constant variance. As pointed out in [204], the
obtained variational approach (2.15) is related to the approach of minimum
description length [149, 118].

7As pointed out in [136], the functional (2.13) is equivalent to the Ising model [101], if it is
discretized on a lattice and the constant values ui for each region are restricted to {−1, +1}.
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This probabilistic interpretation of the variational segmentation approach
permits a number of extensions of the Mumford-Shah functional. In [204], the
Gaussian probabilities are for example extended to permit for each region Ri

not only a different mean ui but also a different variance σi:

P (f(x)|αi) =
1√

2π σi

exp

(

−(f − ui)
2

2σ2
i

)

, where αi = {ui, σi}. (2.16)

The resulting segmentation process is then able to separate regions which have
the same mean but different variances.8

As discussed in [204], the Gaussian model (2.16) is easily extended to vector-
valued functions f : Ω → R

n. This permits to segment images based on texture
and color information.

An entirely different extension of the Mumford-Shah functional from the
problem of grey value segmentation to that of motion segmentation is presented
in Chapter 5. We named the resulting variational approach motion competition,
because each region competes for the segmenting contour in terms of the log-
likelihood that a given local motion estimate was generated from the respective
motion model for this region.

Compared to the edge-based approaches discussed in Section 2.2, the Mum-
ford-Shah functional essentially separates the two problems of modeling the
image information in each region (by the function u) and the optimal positioning
of the separating boundary (by the contour set C). The generalizations of the
Mumford-Shah functional show some fundamental differences between region-
based segmentation methods and the edge-based approach discussed earlier:

• The region-based segmentation does no longer rely on the vague concept
of an edge — see the discussion in Section 2.1 — but rather maximizes a
homogeneity criterion in each of the segmented regions.

• The region-based segmentation process can incorporate essentially arbi-
trary probabilistic models for the image information in the separate re-
gions. This permits to elegantly treat very different segmentation cues
such as image intensity, color, texture or motion in essentially the same
probabilistic framework.

• Though both edge-based and region-based segmentation functionals tend
to have several local minima for a given input image, we found in numer-
ical implementations that for a large variety of segmentation tasks, the
region-based formulation permits a convergence of the contour over much
larger distances than commonly observed for edge-based approaches.

2.4 Diffusion Snakes

As discussed in the introduction, the goal of the present work is to introduce
a prior knowledge on the expected shape of the contour into a segmentation

8However, during minimization the intensity variance at a particular point needs to be
estimated over a window of a certain width which represents an additional parameter that
must be optimized.
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approach. Having briefly reviewed a number of variational approaches to seg-
mentation, we will now present a modification of the Mumford-Shah functional
which facilitates the introduction of a statistical prior on the shape of the seg-
menting contour.

Figure 2.2: Example of a uniform quadratic B-spline curve. The control
points are represented by squares.

2.4.1 Spline Representation

In order to model the distribution of a set of training shapes statistically, it
is convenient to revert to explicit parametric descriptions of shape. We will
focus on the shape variation of a single object. For simplicity we will therefore
represent the segmenting contour C in (2.11) as a single closed spline curve of
the form

C : [0, 1] −→ Ω , C(s) =
N
∑

n=1

pn Bn(s) , (2.17)

where Bn are the uniform, periodic, quadratic B-spline basis functions [71] and
pn = (xn, yn)t denote the control points. This gives a compact representation
of shape by a control point vector

z = (x1, y1, . . . , xN , yN )t, (2.18)

with a continuous normal vector at each point of the contour — see Figure 2.2
for an illustration and Chapter 3 for more details.

The representation of the segmenting contour as a closed spline curve cer-
tainly restricts the class of possible boundary formations, not allowing open
boundaries, contour splitting, etc. However, if the goal is to segment a simply-
connected object of interest, then a restricted topology may be beneficial for
the segmentation process. Moreover, the explicit contour permits the introduc-
tion of a statistical shape prior on the basis of the control point distribution
associated with a set of training shapes. This will be discussed in more detail
in Chapters 3 and 4.
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2.4.2 Region-based Snakes

In a first spline-based implementation of the Mumford-Shah functional — see
[57] — we represented the contour length in (2.11) as commonly done by:

|C| =

1
∫

0

|Cs(s)| ds. (2.19)

This produces a term proportional to the curvature in the evolution equation
for the contour. In our framework of spline contours this term is not only
computationally costly, but it also does not restrict the spline control points
from clustering in one place. Once control points overlap, the normal vector on
the contour becomes ill-defined. Since the contour is evolved along its normal,
the segmentation process becomes instable. We found that this problem only
arises in cases where the shape prior is absent, since otherwise the prior will
restrict the control point polygon to a learnt distribution which was derived
from training shapes with equidistant control points (cf. Chapter 3).

A modification of the original functional solves the problem of control point
clustering: Replacing the original L1-type norm (2.19) by a squared L2-type
norm, one obtains the the diffusion snake functional:

(DS) E(u, C) =
1

2

∫

Ω

(f − u)2 dx + λ2 1

2

∫

Ω−C

|∇u|2 dx + ν ||C||2, (2.20)

where

||C||2 =

1
∫

0

C2
s ds (2.21)

is the length constraint which is used for modeling curves known as elastica9.
For a detailed discussion of the invariance properties associated with various
smoothness functionals we refer to [63]. The internal energy (2.21) is also
used for snakes, balloons and geodesic active contours — see equation (2.5).
Therefore the diffusion snake model (2.20) can be considered a hybrid between
the Mumford-Shah functional (2.11) and the snake (2.5). It is a region-based
segmentation model with an explicit contour, having the external energy of the
Mumford-Shah functional and the internal energy of a snake.

Minimizing the internal energy (2.21) with respect to C leads to an Euler-
Lagrange equation of the simple form

Css(s) = 0 for s ∈ [0, 1]. (2.22)

For the quadratic B-spline curve this is equivalent to

pi =
pi−1 + pi+1

2
, i = 1, . . . , N. (2.23)

9Other modifications of the Mumford-Shah functional with respect to length and curvature
measures have been considered in [122].
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Therefore, by minimizing (2.20), each control point pi tends to be centered
between its two neighbors. This is what makes (2.20) well suited for the spline-
based implementation. Moreover, experimental results show that the common
argument in favor of the L1-type norm (2.19), namely that it allows discon-
tinuities in the boundary, is of a more theoretical nature, since in our case a
sufficiently fine parameterization allows the formation of arbitrarily sharp cor-
ners.

The same modification can be performed for the model (2.13) which gives
the variational energy associated with the simplified diffusion snake:

(SDS) E(u, C) =
1

2

∑

i

∫

Ri

(f − ui)
2 dx + ν

1
∫

0

C2
s ds. (2.24)

2.5 Minimization by Gradient Descent

The energies for the diffusion snake (2.20) and the simplified diffusion snake
(2.24) are each simultaneously minimized with respect to both the segmenting
contour C and the segmented image u.

2.5.1 Curve Evolution

Minimizing the diffusion snake functional (2.20) with respect to the contour C
(for fixed u) leads to the Euler-Lagrange equation

∂E

∂C
=
[

e−(s) − e+(s)
]

· n(s) − ν Css(s) = 0 ∀s ∈ [0, 1]. (2.25)

The terms e+ and e− denote the energy density [136]

e+/− = (f − u)2 + λ2 (∇u)2 (2.26)

outside and inside the contour C(s), respectively, and n denotes the outer
normal vector on the contour. For the simplified diffusion snake (2.24), u is
piecewise constant and the second term in (2.26) disappears:

e+/− = (f − u)2. (2.27)

Solving the minimization problem by gradient descent results in the evolu-
tion equation

∂C(s, t)

∂t
= −∂E(u, C)

∂C
=
[

e+(s, t) − e−(s, t)
]

· n(s, t) + ν Css(s, t) ∀s, (2.28)

where an artificial time parameter t has been introduced.
Equation (2.28) can be converted to an evolution equation for the control

points by inserting the definition (2.17) of the contour as a spline curve:

N
∑

i=1

dpi(t)

dt
Bi(s) =

[

e+(s, t) − e−(s, t)
]

· n(s, t) + ν
N
∑

i=1

pi(t)
d2Bi(s)

ds2
. (2.29)
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This equation is now discretized with a set of nodes si along the contour
to obtain a set of linear differential equations. The solution gives the temporal
evolution for the coordinates of each control point (xm, ym):

dxm(t)

dt
=

N
∑

i=1

(

B−1
)

mi

[

(

e+
si
− e−si

)

nx + ν(xi−1 − 2xi + xi+1)
]

,

dym(t)

dt
=

N
∑

i=1

(

B−1
)

mi

[

(

e+
si
− e−si

)

ny + ν(y i−1 − 2yi + yi+1)
]

.

(2.30)

The cyclic tridiagonal matrix B contains the spline basis functions evaluated
at the nodes si: Bij = Bi(sj), where si corresponds to the maximum of Bi.

10

The two terms in the respective equations in (2.30) can be interpreted as
follows: The first term maximizes the homogeneity in the adjoining regions
as measured by the energy densities (2.26) or (2.27). This forces the contour
towards the boundaries of the object. The second term minimizes the length
(2.21) of the contour and thereby enforces an equidistant spacing of the control
points.

2.5.2 Inhomogeneous Linear Diffusion

In order to minimize the modified Mumford-Shah functional (2.20) with respect
to the segmented image u, we rewrite the functional in the following way:

E(u, C) =
1

2

∫

Ω

(f − u)2 dx + λ2 1

2

∫

Ω

wc(x)|∇u|2 dx + ν ||C||2. (2.31)

The contour dependence is now implicitly represented by an indicator function

wc : Ω → {0, 1}, wc(x) =

{

0 if x ∈ C

1 otherwise
. (2.32)

The Euler-Lagrange equation corresponding to this minimization problem is
given by:

1

λ2

dE

du
=

1

λ2
(u − f) − ∇ · (wc ∇u) = 0. (2.33)

Its solution corresponds to the steady state of the following diffusion process:

∂u

∂t
= ∇ · (wc ∇u) +

1

λ2
(f − u), (2.34)

in which the contour enters as an inhomogeneous diffusivity defining a boundary
to the diffusion process. This underlying diffusion process is what gave rise to
the term diffusion snake.

10Rather than discretizing by a set of nodes, a similar set of linear differential equations
is obtained by projecting equation (2.29) onto the basis functions {Bk}k=1,...,N . Although
this solution is more elegant from a mathematical point of view, the obtained evolutions are
not distinguishable from an experimental point of view and the computational overhead is
somewhat larger, since the inverted matrix is not cyclic tridiagonal but cyclic pentadiagonal.
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In the case of the cartoon limit, the diffusion process is replaced by an
averaging process, such that the image u takes on the mean grey value ui of
each adjacent region Ri:

ui =
1

|Ωi|

∫

Ωi

f dx. (2.35)

These values are dynamically updated in alternation with the contour evolution.

Two different schemes have been used to approximate the diffusion pro-
cess: A simple explicit approximation to the diffusion equation (2.34), and a
more sophisticated multigrid scheme for solving the corresponding steady state
equation (2.33). Both schemes are not straightforward because the strongly
inhomogeneous coefficient function wc has to be taken into account. Standard
implementations may easily lead to diffusion across the discontinuity curve C
and thus to undesired effects on the contour evolution. In the following, we will
explain both schemes, starting with the simpler one.

A Simple Numerical Scheme

We approximate equation (2.34) by finite differences. Let τ > 0 denote the step
size in t-direction and let uk

i be an approximation to u(x, t) in some pixel i at
t = kτ . In a similar way, wk

i and fi serve as approximations to wc(x, t) and
f(x), respectively. Moreover, let N (i) denote the 4-neighborhood of pixel i. If
we assume square pixels of size 1, a consistent discretization of (2.34) is given
by

uk+1
i − uk

i

τ
=

∑

j∈N (i)

√

wk
j wk

i (uk
j − uk

i ) +
1

λ2
(fi − uk+1

i ) ∀ i. (2.36)

The proposed discretization of the indicator function wc prevents diffusion
across the curve C.

Assuming that uk
i and its neighbors {uk

j | j ∈ N (i)} are already known from
the k-th iteration step, we can solve this equation explicitly for the unknown
uk+1

i :

uk+1
i =

(

1 − τ
∑

j∈N (i)

√

wk
j wk

i

)

uk
i + τ

∑

j∈N (i)

√

wk
j wk

i uk
j + τ

λ2 fi

1 + τ
λ2

. (2.37)

This constitutes our simple iteration scheme for all pixels i and all iteration
levels k.

Let us now investigate its stability. Equation (2.37) computes uk+1
i as a

weighted average of uk
i , its four neighbors {uk

j | j ∈ N (i)}, and fi. Note that
the weights sum up to 1. Stability of this process can be guaranteed if all
weights are nonnegative. Negative weights, however, can only appear in the
first term, if τ is chosen too large. Since

0 ≤
√

wk
j wk

i ≤ 1, (2.38)
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we end up with the stability restriction

τ ≤ 1

4
. (2.39)

In this case we have a convex combination which guarantees that

min
j∈N (i)

(fj , u
k
j ) ≤ uk+1

i ≤ max
j∈N (i)

(fj , u
k
j ) ∀ i, k. (2.40)

By initializing u0
j := fj and iterating over k, this simplifies to the discrete

maximum-minimum principle

min
j∈N (i)

fj ≤ uk
i ≤ max

j∈N (i)
fj ∀ i, k. (2.41)

This guarantees that the filtered image remains within the bounds of the original
image.

A Multigrid Scheme for Diffusion Snakes

We discretize the steady state equation (2.33) by finite differences to obtain a
linear system with natural (Neumann) boundary conditions:

Au = f, and ∂nu = 0 on ∂Ω. (2.42)

Solving this linear system with standard solvers like Gauss-Seidel or Jacobi
takes a long time, as low frequencies in the error vanish slowly. Therefore we
propose a multigrid implementation, which consists in recursively transferring
the problem from a grid with size h to a coarser grid of size 2h, and solving this
to obtain a good initialization for the solution on the fine grid.

Note that a standard implementation of some numerical multigrid scheme,
like the one in [171], may easily lead to a poor implementation of the steady state
equation (2.33) due to the strongly inhomogeneous term wc. The hierarchical
representation of this term at multiple scales is even more difficult. For the
diffusion snake to work, smoothing across the curve C must be prevented at all
scales. The technical details of our implementation are described in Appendix
B.

Results of the Multigrid Implementation

Figure 2.3 shows that using multigrid methods for solving the linear system
(2.42) leads to a performance gain of several orders of magnitude compared to
the use of standard algorithms. Using a w-cycle with three descending v-cycles
(see Appendix B for details) and one step for presmoothing and postsmoothing
on each level, one reaches the level of precision of a standard computer in only
a few multigrid steps.

Analogous to the performance of standard solvers for common model prob-
lems, we found the computation time of the multigrid implementation to be
fairly independent of the size of the smoothing parameter λ. This proves the ro-
bustness of our hierarchical scheme with respect to the strongly inhomogeneous
diffusivity wc. Moreover, the additional storage requirements are negligible.
Further details can be found in Appendix B and in [177].
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Figure 2.3: Comparison of different multigrid implementations and the
symmetric Gauss-Seidel as a standard solver. The error is defined in loga-
rithmic scale as log10 ||e||2. The respective numbers of presmoothing steps,
postsmoothing steps and v-cycles on each level are given in brackets.

2.6 Numerical Results

In this section we present numerical results of image segmentations obtained
with the diffusion snake (2.20) and the simplified diffusion snake (2.24) in the
absence of a statistical shape prior.11 The results demonstrate different prop-
erties of the diffusion snakes, showing their strengths and limitations.

The depicted contour evolutions correspond to various steps in the mini-
mization of the diffusion snake functionals (2.20) or (2.24). Minimization is
performed by iterating the evolution (2.30) of the contour C in alternation with
an update of the smoothed approximation u, as defined in (2.34) or (2.35). The
diffusion snake has two free parameters, namely the smoothing scale λ and the
contour smoothness weight ν, whereas the simplified version only has the single
parameter ν. For the description of the spline contour, we generally use a fixed
number of 100 control points, apart from the two examples in Figures 2.4 and
2.5, where we used a larger number of 600 control points for a better resolution.

2.6.1 Separating Regions of Homogeneous Intensity

As discussed in the previous section, the contour of the diffusion snake evolves so
as to maximize the grey value homogeneity in each region. Since minimization
is done by gradient descent and since the functional is not convex, one expects
the final segmentation to depend on the initialization.

This is demonstrated in Figure 2.4, where we segmented the same input im-
age with the simplified diffusion snake for two slightly different initial contours.
In the first evolution, the contour converges towards the black object, whereas
for the second evolution, the contour converges towards the complement. This

11Internal energies such as the length constraint in (2.20) can be considered shape priors

(cf. [195]), but they are purely geometric and do not introduce knowledge about a specific
object of interest.
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Figure 2.4: Contour evolution of the simplified diffusion snake for the
same input image and two slightly different initializations. Due to the min-
imization by gradient descent, the final segmentation depends on the initial
contour. The final contour on the bottom right shows that no contour split-
ting or merging mechanisms are incorporated in the segmentation process.

demonstrates the relatively simple mechanism underlying the contour evolu-
tion: If the mean grey value inside the initial contour is darker than the mean
grey value outside the contour — see (2.35) — then the contour will evolve so as
to encompass the dark area, and vice versa (apart from the contour smoothing
induced by the length constraint).

2.6.2 Convergence over Large Distances

The example in Figure 2.4 showed a second fundamental property of the dif-
fusion snake, namely that the contour can evolve over a fairly large spatial
distance during the minimization process. Yet, at the same time the segmented
structures are not blurred as for the classical snake — see Figure 2.1.

In many edge-based approaches, convergence over large distances is en-
hanced by a contraction or expansion force, as discussed for the balloon (2.7).
Although such a term could be added to the diffusion snake functional, we did
not do so, because it not only assumes a prior knowledge on whether the con-
tour is to expand or to contract, but also tends to introduce a bias towards
smaller or larger regions.

Since we did not include a balloon force in the models (2.20) and (2.24),
the contour can both expand and contract without any change of parameters.
This is demonstrated in Figure 2.5. For the same input image we performed
a minimization on the functional (2.24), once with an initial contour which
encompasses the object of interest (top row), and once with a contour which
is mostly located inside the object (bottom row). The respective contour evo-
lutions demonstrate that the diffusion snake can both contract and expand
without any change in the parameter value.
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Figure 2.5: Inward and outward flow for the same parameter value. Since
the diffusion snake models (2.20) and (2.24) do not contain a balloon term —
see equation (2.7) — the contour can both expand and contract depending
on the image information. During minimization the contour converges over
a fairly large spatial distance without a particular bias on the size of the
object of interest such as the balloon term.

2.6.3 Segmentation of Real-World Images

The Figures 2.4 and 2.5 show certain properties of the diffusion snake. Yet the
example images are artificial ones. Figure 2.6, left side, shows a grey level image
of a hand in front of a background and the initial contour (dashed line). The
second image shows the final segmentation obtained with the diffusion snake
model. Due to a large weight ν of the term minimizing the length of the contour,
the thumb is cut off and the fingers are not fully segmented. If the parameter
ν in (2.20) and (2.24) is decreased, the final contour is allowed to increase in
length. The resulting segmentation is shown in the third image of Figure 2.6
for the cartoon limit. The hand is approximated better. However, some of the
clutter in the background is included in the segmentation while the fingers are
still not fully segmented.

The scene in Figure 2.6 contains little clutter, therefore segmentation results
are rather good. Once the amount of clutter is increased, this changes consid-
erably. Figure 2.7 shows an example of a hand in front of a strongly cluttered
background. The grey value of the background is approximately the same as
that of the hand. The result is that none of the segmentation approaches is
able to extract the object of interest. Note that due to the underlying diffu-
sion process the modified Mumford-Shah approach converges more locally than
its cartoon limit, which simply segments areas of approximately constant grey
value — see Figure 2.7, third image. This will be discussed in more detail in
Section 3.6.4.



2.6. NUMERICAL RESULTS 31

Figure 2.6: Segmentation with no prior.12 From left to right: Initial
contour, final segmentation for the diffusion snake, the simplified diffusion
snake, and a level set implementation of geodesic active contours.

Figure 2.7: Segmentation with no prior12 in strongly cluttered back-
ground. From left to right: Initial contour, segmentation results obtained
for the diffusion snake, the simplified diffusion snake, and a level set scheme
of geodesic active contours.

2.6.4 Comparison with Geodesic Active Contours

In order to compare our results to another segmentation approach, we per-
formed a level set implementation of geodesic active contours — see Section
2.2.3. We opted for this comparison since the level set formulation of geodesic
active contours is one of the most competitive among present segmentation
methods. For the same input images f and the same initial contours C, we
minimized the energy functional (2.8) for a Gaussian-smoothed input image fσ,
and the metric [185]

g(s2) =

{

1, if s2 = 0

1 − exp
(

− 3.315
(s/λ)8

)

, if s2 > 0
. (2.43)

Here λ serves as contrast parameter.

We did not include any additional terms such as balloon forces since they
assume a prior knowledge about whether the object of interest is inside or
outside the initial contour. Moreover, the two diffusion snake models do not
contain any such term either.

12For comparability with later results, the initialization corresponds to a hand shape, yet
this does not have a relevant impact on the final segmentation.
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Our geodesic active contour implementation used an efficient pyramid ad-
ditive operator splitting (AOS) scheme that does not require to recalculate a
distance transformation in each iteration [185].

The comparison in Figure 2.6 shows that the segmentation obtained by the
Mumford-Shah based models and the one obtained by the geodesic active con-
tour model are similar for homogeneous background. However, the comparison
with Figure 2.7 indicates that in a strongly cluttered background the geodesic
active contours give a more satisfactory approximation of the object of interest
— indicating at least its approximate location.

One should however keep in mind, that the model formulations are con-
ceptually very different: Whereas the geodesic active contour model is directly
governed by the gradient of the smoothed input image, this is different for the
Mumford-Shah model — especially for the case of the cartoon limit, which is a
region-based rather than an edge–based segmentation approach.

Moreover, in the case of the geodesic active contour model, the final con-
tour is obtained as the zero level set of a higher dimensional surface. In our
model formulation the final segmentation curve is obtained in form of a param-
eterized spline curve. The latter permits a straight-forward implementation of
shape statistics and similarity invariance — see Chapters 3 and 4. Moreover,
an explicit representation of the segmented contour is of interest in terms of
generative-model-based vision.

Figure 2.8: Segmentation of the input image shown in Figure 2.4 which
was corrupted by noise. 60% of the image pixels were replaced by an ar-
bitrary grey value sampled from a uniform distribution over the interval
[0, 255].

2.6.5 Robustness to Noise

In many practical computer vision applications, the assumptions about the
grey value homogeneity of object and background are not fulfilled. The image
may for example be heavily corrupted with noise. Edge-based approaches tend
to tackle this difficulty by presmoothing the image. As discussed in Section
2.2, this tends to destroy a lot of valuable image information such as the exact
location of edges. Moreover, this approach assumes some prior knowledge about
the spatial scale of the noise which determines the optimal smoothing scale.

This is different for region-based approaches such as the diffusion snakes,
where the problems of smoothing and optimal edge location are separated by
two variables u and C in the functionals (2.20) and (2.24). Figure 2.8 demon-
strates that the resulting segmentation process is robust to noise without blur-
ring edge information.
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(a) (b) (c) (d)

Figure 2.9: Corrupted low-level intensity cues. Segmentations obtained
by the simplified diffusion snake for an occluded hand (a), for the occluded
figure of a rabbit (b), for a subsampled and smoothed image of a license
plate section (c), and for a noisy image of a hand (d). The noise was
induced by replacing 75% of the pixels with an arbitrary grey value sampled
from a uniform distribution over the interval [0, 255].

2.6.6 Limitations of Purely Image-based Segmentation

As a motivation for the following chapters, we will now present a number of
results which emphasize the need to incorporate into the segmentation process
some prior information on the objects of interest.

The diffusion snake model produces segmentations based on a simple cri-
terion for the low-level image intensity information. As for any purely image-
based segmentation approach, the contour will inevitably fail to converge to-
wards the desired segmentation as soon as the assumptions about the low-level
intensity statistics are no longer fulfilled. In our case a number of reasons may
induce such a failure:

• If there are large amounts of clutter, then the hypothesis of homogeneous
background intensity may be strongly violated such that the final segmen-
tation fails to capture the object of interest. This is shown by the results
in Figure 2.7.

• The object of interest may be partially occluded, such that the desired
segmentation is neither defined in terms of homogeneous grey value nor
in terms of well-defined edge information. Two example images and the
resulting segmentation for the simplified diffusion snake are shown in Fig-
ure 2.9, (a) and (c).

• The image information may be insufficient due to subsampling or coarse
graining. This problem commonly arises in practical applications with
cameras of low resolution. Figure 2.9, (c) shows a segmentation result for
a subsampled and smoothed section of a license plate.

• If the input image is strongly corrupted by noise, then the low-level in-
tensity information may be so perturbed that it will not drive the contour
towards the desired segmentation. Such an example is shown in Figure
2.9, (d).
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In all of these cases, the low-level image information is not sufficient to define
the desired segmentation. Yet, for the human observer, the objects are clearly
visible. As argued in Chapter 1, the human visual system tends to rely on both
the low-level image information and higher-level concepts about objects which
are familiar from a previous learning process.

How such an interaction of low-level intensity cues and high-level knowledge
about the shape of expected objects can be combined in a segmentation process
on the basis of the variational approaches (2.20) and (2.24) will be presented
in the next two chapters. In particular, we will show that including statisti-
cal shape knowledge in the variational approach permits to obtain the desired
segmentation for the examples in Figure 2.9.



Chapter 3

Linear Shape Statistics in

Segmentation

In this chapter, we present an extension of the diffusion snake models DS (2.20)
and SDS (2.24) by a term which favors the formation of contours which are
familiar from a previous learning process.

In Section 3.1, we detail the representation of the contour as a spline curve.
We discuss methods of measuring the distance between two contours. We
present a method of automatic contour extraction and introduce a method
of aligning a set of training contours both with respect to similarity transfor-
mations1 and with respect to cyclic permutation of the control points.

In Section 3.2, we briefly review the method of principal component analysis
(PCA), which extracts the modes of largest variation. In Section 3.3, we present
a model of linear shape statistics which is based on the assumption that the
control point vectors corresponding to the set of training shapes are distributed
according to a Gaussian distribution. Compared to PCA, we do not work
in the subspace spanned by the first few eigenmodes, but rather in the full
space of possible spline contours. Advantages and disadvantages of such a
probabilistic embedding are discussed. Moreover, we compare two approaches
for regularizing the sample covariance matrix.

In Section 3.4, we discuss the problem of integrating invariance under cer-
tain transformation groups into the shape energy. In particular, we present two
complementary approaches: Firstly, we investigate the possibility of learning
invariances from the set of sample contours. We show that this works for trans-
lation, but that it cannot be extended to similarity transformations. Secondly,
we present a closed-form solution for a variational integration of similarity in-
variance, which is based on the spline representation of the contour. Compared
to most other approaches, it does not require the introduction of explicit pa-
rameters to account for translation, scaling and rotation. In this context, we
discuss two alternative approaches to introduce invariance, namely the opti-
mization of explicit pose parameters and the use of intrinsically invariant shape
descriptors.

1In this work, the group of similarity transformations only encompasses the direct similar-
ities [126] rotation, scaling and translation — mirroring will not be considered.

35
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Figure 3.1: Periodic, quadratic and uniform B-spline basis functions on
the interval [0, 1].

In Section 3.5, we detail how the Gaussian shape prior is incorporated in the
variational approach. Section 3.6 contains experimental results of the diffusion
snake model with the linear shape prior. These are chosen so as to highlight
different aspects of the obtained segmentation method.

3.1 Shape Learning

3.1.1 Shape Representation

We represent the silhouette of an object by a closed curve of the form

Cz : [0, 1] −→ Ω ⊂ R
2 , Cz(s) =

N
∑

n=1

pn Bn(s) , (3.1)

where Bn are the uniform, periodic, quadratic B-spline basis functions [71, 17]
shown in Figure 3.1, and pn = (xn, yn)t denote the control points. To simplify
the notation, we denote the vector of all control points by

z=(x1, y1, . . . , xN , yN )t. (3.2)

In practice the number N of control points is fixed to a value which permits
sufficient contour detail. See Figure 3.2 for an illustration.

We decided for a quadratic spline representation for several reasons: First,
compared to a polygonal representation the contour in (3.1) is differentiable at
all points s ∈ [0, 1] such that a normal vector is easily defined. Such a normal
vector is crucial since contour evolution approaches generally propagate the
contour along its normal vector. Secondly, the smooth contour permits a com-
pact representation of many natural shapes. And thirdly, the computational
overhead due to the quadratic basis functions is moderate. Yet other repre-
sentations might be interesting to study. In particular, some speed-up can be
expected of a polygonal representation. Since in practice the above representa-
tion gives a sufficiently high shape variability, we did not see a need for more
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Input image 20 points 40 points 70 points 100 points

Figure 3.2: Spline representation of a hand shape (left) with increasing
resolution.

elaborate representations such as nonuniform or rational splines. Such represen-
tations introduce a higher number of parameters and additional mathematical
complexity.

For an efficient drawing of the spline curve (3.1), we implemented the algo-
rithms of de Boor and de Casteljau, where the latter one works on the equivalent
Bézier representation of (3.1). We refer to [96] for details.

3.1.2 Shape Metrics

An important issue of shape statistics is that of defining appropriate metrics.
Given two curves Cz and Cẑ of the form (3.1), what is the distance between
them? A sensible analytical solution is given by:

||Cz − Cẑ||2 := min
g

1
∫

0

(

Cz(s) − Cẑ(g(s))
)2

ds, (3.3)

where minimization is done over all continuous monotonous reparameterizations
g : [0, 1] → [0, 1]. Since the optimization over all possible reparameterizations
is quite tedious, we will in practice revert to approximations of the above min-
imization.

Assuming that the correct reparameterization is fairly close to the identity,
one can perform a local optimization [17] by enforcing that the derivative of the
integrand with respect to g should be zero for all s ∈ [0, 1]. A Taylor expansion
leads to the approximation:

||Cz − Cẑ||2 ≈
1
∫

0

[(

Cz(s) − Cẑ(s)
)

· n(s)
]2

ds,

where n is the normal vector on one of the curves. Thus the integrand measures
only the displacement in direction of the normal. If both curves are sufficiently
close to a reference curve, then the normal can be taken on the reference curve.

For our purpose we reverted to a simpler (and rougher) approximation of the
distance measure (3.3). Given two spline curves Cz and Cẑ, both parameterized
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with N control points, we approximate:

||Cz − Cẑ||2 ≈ min
π

1
∫

0

(

Cz(s) − Cπẑ(s)
)2

ds,

where minimization is done over the set of cyclic permutations (renumberings)
π of the N control points in the vector ẑ. Since the control points are set
(more or less) equidistantly, this approximation can be improved by working
with larger numbers of control points.

Once the correct parameterization is determined and enforced, i.e. the con-
trol points are appropriately renumbered, the distance can be expressed in terms
of the control point vectors:

d(Cz, Cẑ) =

1
∫

0

(

Cz(s) − Cẑ(s)
)2

ds = (z − ẑ)t A (z − ẑ), (3.4)

with the matrix A given by
A = B ⊗ I2, (3.5)

where I2 is the 2 × 2 unit matrix, ⊗ denotes the Kronecker product and the
matrix B contains the overlap integrals of the spline basis functions:

Bij =

1
∫

0

Bi(s)Bj(s) ds ∀ i, j = 1, . . . , N. (3.6)

As the matrix A is symmetric and positive definite, it induces a scalar product
on the space of spline curves:

(Cz, Cẑ) := zt A ẑ (3.7)

In this way we obtain a Hilbert space structure for the space of spline curves.
In fact we can embed the contour Cz in a Euclidean vector space by associating
each curve Cz with a vector A1/2 z, with the control point vector z given in
(3.2) and the matrix A from (3.5).

For the quadratic spline basis functions shown in Figure 3.1, the matrix B
in (3.6) is cyclic pentadiagonal with a dominant diagonal. For computational
simplicity we will neglect the overlap by approximating Bij ≈ δij which implies
that A ≈ I. This means that we approximate the Mahalanobis distance in (3.4)
by the simpler Euclidean distance between the control point polygons

d(Cz, Cẑ) ≈ (z − ẑ)t (z − ẑ). (3.8)

By this approximation we associate each contour with the corresponding control
point polygon, and the distance between two contours is measured in terms of
the distance between the two control point polygons. Although this appears
to be a fairly rough approximation, we will see that it drastically simplifies
future modeling. Moreover, with an increasing number of control points, the
control point polygon will approach the contour as shown in Figure 3.2. For
a further justification of this approximation we refer to Appendix A, where
we will discuss the effect of this approximation on shape alignment and shape
statistics in more detail.
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Figure 3.3: Example views, binarized training images and extracted con-
tours after alignment.

3.1.3 Automatic Shape Acquisition

In order to learn the silhouettes for a set of objects or different views and poses
of an object, one possible way is to manually place certain landmark points
along the object outline on all the views in the training set. This has been done
for example in [44]. However, this is a supervised approach and the manual
interaction can be cumbersome if the number of training shapes is large. An
application to large training sets is therefore infeasible.

Therefore, we have chosen a different approach [10], where the training
images are preprocessed in order to adapt them to an automatic spline fit.
In practice, we binarize the training images by applying a threshold and —
if necessary — a median filter to remove noise. In more difficult background
conditions one can preprocess the input images by background subtraction.
Then we extract the boundary of the object in form of a chain code of length
m: {fn ∈ Ω}n=1,...,m. The optimal spline control point polygon is now given
by:

zx/y = B−1 1

m

m
∑

n=1

B
(

n
m

)

fx/y
n ,

where the superscripts x/y refer to the vectors of x- and y-components, re-
spectively. B is the vector of basis functions {Bn}, and B is the matrix (3.6)
of overlap integrals. Figure 3.3 shows an example of 100 training contours
extracted from binarized example views of a 3D object.

Compared to the manual selection of landmark points, the automatic ex-
traction of spline control points does not provide us with the correct corre-
spondences of control points for several shapes. For example, in the process of
manual landmark selection for a set of hand shapes, one can guarantee that all
fingertips of one hand shape will be associated with the corresponding ones of
the other hand shapes. For the automatic acquisition process described above,
this can no longer be guaranteed. In practice we solve this problem by determin-
ing the cyclic renumbering of control points which produces the best alignment
of the two contours, as explained in the next section. Certainly this solution
is suboptimal in several ways: First, there may be no control point at the cor-
responding contour position, e.g. the corresponding fingertip. This limitation
becomes negligible if a sufficient number of control points is used. Secondly, if
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the two shapes strongly different in one location — for example if one of the
fingers in one hand image is much longer than in the other images — then due
to the equidistant spacing of control points the correct correspondences of all
subparts cannot be enforced. We will come back to this limitation at the end
of this work in Section 6.2.

3.1.4 Alignment of Training Contours

Given a set of training contours, we want to eliminate the degrees of freedom
corresponding to cyclic permutation of control points and those corresponding
to similarity transformations, i.e. translation, rotation and scaling.

For the purpose of alignment of contours, we will deviate from the standard
notation (3.2) and identify each control point vector z ∈ R

2N with a vector
z ∈ C

N :
z = (x1 + iy1, . . . , xN + iyN )t , where i =

√
−1.

Let z, ẑ ∈ C
N be two such control point vectors. For the beginning we will

assume that control points are numbered such that we already have the correct
correspondence. Let both vectors be centered:

zt 1N = ẑt 1N = 0, where 1N = (1, . . . , 1)t ∈ R
N .

The optimal alignment or superimposition of z and ẑ with respect to the simi-
larity transformations is called the full Procrustes fit [67, 83]. Performing this
fit amounts to minimizing the distance

D2(z, ẑ) = ||z − αẑ + β||2, (3.9)

with respect to the translation β ∈ C and the parameter α = reiφ ∈ C which
accounts for scaling by a constant r ≥ 0 and rotation by an angle φ ∈ [0, 2π].
Setting the corresponding derivatives to zero, one can solve for the minimizing
parameters [67, 190] to obtain:

β = 0, α =
ẑ∗z

ẑ∗ẑ
, (3.10)

where ∗ denotes transposition and complex conjugation. If the initial vectors
z and ẑ are centered and also normalized (i.e. z∗z=1), then the distance (3.9)
with the optimal parameters (3.10) is called the full Procrustes distance. It is
given by:

D̂2(z, ẑ) = 1 − |z∗ẑ|2. (3.11)

Given a set of training vectors χ = {zi ∈ C
N}i=1,...,m which are centered

and normalized, we can align them in several ways. One way is to align them all
by the above approach, minimizing the full Procrustes distance with respect to
one of the vectors (say the first one). Rather than distinguishing one particular
vector as the reference vector, one can instead align them with respect to the
Procrustes estimate of the mean vector which is defined as

µ̂ = arg inf
µ

m
∑

i=1

D̂2(zi, µ).
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As shown in [104], there is a closed-form solution for this Procrustes mean. In
fact, using the definition (3.9) of the Procrustes distance and the solution (3.10)
for the optimal transformation parameters, one obtains:

µ̂ = arg inf
µ

m
∑

i=1

(

1 − µ∗ziz
∗
i µ

µ∗µ

)

= arg sup
||µ||=1

µ∗Sµ.

The solution of this expression is given (up to rotations) by the complex eigen-
vector µ̂ corresponding to the largest eigenvalue of the matrix

S :=

m
∑

i=1

zi z
∗
i .

The vectors {zi} are then aligned with respect to this full Procrustes mean µ̂
as shown above. This simultaneous superimposition of several shape vectors is
called generalized Procrustes analysis [84].

Since we are working with automatically extracted shape vectors zi, the
correct correspondences between control points are not given. Therefore we
have to include an optimization with respect to cyclic renumbering of control
points in the above alignment process. There are N possible cyclic renumber-
ings for each shape in the set. Carrying out the above method of generalized
Procrustes analysis for all possible Nm−1 combinations of renumberings of the
training vectors would be far too time-consuming.

An iterative solution to the generalized Procrustes analysis, when the correct
correspondences are given, is used in [41]. This method can be extended by an
additional optimization over cyclic renumbering of the control points. The
resulting alignment procedure is as follows:

• The training vectors are centered and normalized. One of them is chosen
as an initial estimate of the mean.

• The others are aligned to the estimate of the mean with respect to simi-
larity transformations and renumbering. The correct renumbering is ob-
tained by minimizing the full Procrustes distance (3.11) over all N cyclic
permutations. Then the correct alignment parameters are given by equa-
tion (3.10).

• Once all shape vectors are aligned to the estimate of the mean and nor-
malized afterwards, the mean is updated. Then the entire process is
iterated.

Although we did not find any proof of convergence, we found the iteration to
converge after a few steps in practice. The normalization of the shape vectors
in each iteration is of importance because otherwise, the shape vectors tend to
shrink with every iteration. This is due to the fact that the Procrustes fit of
a shape vector z to the reference vector ẑ shrinks the vector z by the factor
|α| ≤ 1 — see equation (3.10) — where |α| = 1 if and only if the two vectors
are the same.
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1st p.c. 2nd p.c. 3rd p.c. 4th p.c.

Figure 3.4: Sampling up to two standard deviations along the first four
principal components from the mean for a set of 15 hand shapes.

3.2 Principal Component Analysis

There is a number of ways to statistically analyze the shape variation contained
in a set of training shapes. The present section focuses on linear statistics,
where the term linear indicates that all permissible shapes are given by the
mean shape plus a linear combination of a set of eigenmodes. The eigenmodes
which capture most of the shape variation encountered in the training set are
called the principal components or eigenshapes. Principal component analysis
(PCA) is a standard technique. Its first application to modeling shape variation
was proposed in [45] for polygonal outlines under the name of point distribution
model. A subsequent extension to spline curves was presented in [10]. We will
briefly sketch this method now.

Let χ = {zi ∈ R
2N}i=1,...,m be a set of training shapes, aligned as discussed

in Section 3.1.4. Denote the sample mean by:

z̄ =
1

m

m
∑

i=1

zi, (3.12)

and the (unbiased) sample covariance matrix by:

Σ =
1

m−1

m
∑

i=1

(zi − z̄)(zi − z̄)t. (3.13)

The symmetric real matrix Σ can be diagonalized. Let λ1 ≥ λ2 ≥ · · · ≥ λm

be the ordered (nonnegative) eigenvalues of Σ. The modes of largest variation
are given by the eigenvectors ei corresponding to the largest eigenvalues λi.
The eigenvalue λi is a measure of the relative amount of the total variation
explained by the eigenmode ei. A compact lower-dimensional shape model is
given by linear combinations of such eigenmodes added to the mean shape:

z(α1, . . . , αr) = z̄ +
r
∑

i=1

αi

√

λi ei, where r < m. (3.14)

Scaling by
√

λi has been introduced for normalization; it corresponds to the
standard deviation in the eigendirection ei. The shape variation associated
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with a given eigenmode can be visualized. Figure 3.4 shows a sampling along
the first four eigenmodes from the mean.

Extending the shape parameters {αi} by pose parameters {x, y, s, θ} to ac-
count for translation, scaling and rotation of a given shape, one obtains the
Active Shape Model [47]. In general, this small number of parameters is locally
or globally optimized to fit features in an image.

3.3 The Gaussian Model in Shape Space

3.3.1 From Learnt Shape Statistics to a Shape Energy

The model of shape statistics we propose in this section is based on the PCA
approach, the differences are detailed in the following. We assume that the
training shapes zi ∈ χ — aligned as discussed in Section 3.1.4 — are dis-
tributed according to a multivariate Gaussian distribution. The main axes of
the associated hyperellipsoid are given by the principal components. Yet we
do not restrict the contours to the linear subspace spanned by the first few of
these eigenmodes. Although we sacrifice the computational efficiency induced
by such a sparse representation, there are several reasons why we decided to
work in the full space of possible spline curves:

• The “full” Gaussian model is more faithful from a probabilistic point of
view: Given a finite number of training shapes, the modes orthogonal to
the first few principal components should not be assigned a zero proba-
bility.

• By not limiting the degrees of freedom of the evolving contour to the
subspace spanned by a small number of eigenmodes, we can perform a di-
rect comparison of segmentation processes with and without the statistical
prior, without further modifications of the model.

• By dropping the notion of eigenmodes, a generalization to improved sta-
tistical models such as the one proposed in Chapter 4 is more straight-
forward. In fact, for more elaborate nonlinear models of shape variation,
a description in terms of eigenmodes is no longer possible.

We assume that the training shapes zi ∈ χ are distributed according to a
Gaussian probability density:

P(z) ∝ exp

(

−1

2
(z − z̄)t Σ−1

⊥ (z − z̄)

)

,

with the sample mean z̄ as defined in (3.12).

If the training shapes span a lower-dimensional subspace of the 2N -dimen-
sional input space, then the sample covariance matrix Σ from (3.13) is not
invertible. Therefore we perform a regularization of the form:

Σ⊥ = Σ + λ⊥

(

I − V V t
)

, (3.15)
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where V is the matrix of eigenvectors of Σ. In this way, we replace all zero
eigenvalues of the sample covariance matrix Σ by a constant

λ⊥ ∈ [0, λr], (3.16)

where λr denotes the smallest non-zero eigenvalue of Σ.2

Maximizing the shape probability P(z) is equivalent to minimizing its neg-
ative logarithm. Up to a constant the latter is given by the quadratic shape
energy

E(z) =
1

2
(z − z̄)t Σ−1

⊥ (z − z̄). (3.17)

This Mahalanobis distance measures the dissimilarity of a given shape z with
respect to a set of training shapes which are encoded in terms of their second-
order statistics by the sample mean z̄ and the (appropriately regularized) sample
covariance matrix.

3.3.2 On the Regularization of the Covariance Matrix

Regularizations of the covariance matrix as done in (3.15) were proposed by
several authors under the names of residual variance approximation and sensible
or probabilistic PCA [42, 131, 155, 176, 57]. Commonly [131, 176] the constant
λ⊥ is estimated as the mean of the replaced eigenvalues by minimizing the
Kullback-Leibler distance of the corresponding densities:

λ⊥ =
1

2N − r

2N
∑

i=r+1

λi. (3.18)

In our case, N is the number of spline control points. However, we believe
that this is not the appropriate regularization of the covariance matrix in our
situation. The Kullback-Leibler distance is supposed to measure the error with
respect to the correct density, which means that the covariance matrix calcu-
lated from the training data is assumed to be the correct one. But this is not
the case because the number of training points is limited. In particular, setting
λ⊥ to the mean of the replaced eigenvalues would not solve the problem in our
case, since the replaced eigenvalues are all zero.

A conceptually sound approach to determine the optimal mean µ̃ and co-
variance matrix Σ̃ for a given set of sample points {zi} is the Bayesian maximum
a posteriori estimate:

{µ̃, Σ̃} = arg max
µ,Σ

P ({zi}|µ, Σ) P (µ, Σ) .

However, this approach assumes knowledge about the prior probability distri-
bution P (µ, Σ) on the space of all Gaussian distributions, which means that
one needs to specify a model for the likelihood of different means and covariance
matrices. Making assumptions about this prior distribution is probably no more

2We point out, that the inverse Σ−1

⊥
of the regularized covariance matrix defined in (3.15)

fundamentally differs from the so-called pseudoinverse.
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effective than making a direct assumption about the value of the regularizing
constant λ⊥.

An approach which is very similar to (3.15) is that of regularized discrimi-
nant analysis [76]. There a regularized covariance matrix is obtained by a linear
combination of the sample covariance matrices associated with an isotropic and
an anisotropic Gaussian model:

Σγ = γΣ + (1 − γ)σ2I,

with a regularization parameter γ ∈ [0, 1], and σ2 being the variance of the
sample data (cf. [89]).

With the constraint (3.16) we obtain a probabilistic model for which unfa-
miliar variations from the mean are less probable than the smallest variation
observed on the training set. This appears to be a reasonable hypothesis. Lack-
ing a more precise estimate, we fix

λ⊥ = λr/2

in all applications.

3.3.3 On the Curse of Dimensionality

This “conservative” hypothesis about the probability of unfamiliar shape defor-
mations permits us to work with sample sizes which are much smaller than the
dimension of the underlying vector space. The commonly employed expression
curse of dimensionality [12] suggests that the number of samples needed to ob-
tain reliable statistics increases rapidly with the dimension of the input data.
However, for several reasons the suggested limitations do not apply in our case:

• The full dimension of the vector space is not necessarily relevant. For
example, if all training data is confined to a low-dimensional subspace,
the relevant dimension is obviously that of the subspace.

• The regularization (3.15) permits to associate a sensible probability even
with directions which are orthogonal to the subspace spanned by the
training data. Obviously, this regularization becomes more important for
smaller sample sizes.

• In practice the training shapes are usually not sampled completely at
random. For the acquisition of training shapes, we generally sample a set
of more or less representative views of a given object, such that we can
expect more reliable estimates of the mean and the covariance matrix for
a given number of sample shapes.

Therefore, the eigenmodes as shown in Figure 3.4 do not change much whether
we use 6, 15 or 50 training shapes — although the input dimension is 200 (for
100 control points).
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Figure 3.5: Schematic plot of the quadratic shape energy (3.17). Familiar
deformation modes are represented by x, unfamiliar ones by y (see text).

3.3.4 The Elastic Tunnel of Familiar Shapes

To visualize the effect of the regularizing constant λ⊥ in the definition of Σ⊥,
Figure 3.5 shows a schematic plot of the shape energy. For the purpose of clarity
the shape space is reduced to two dimensions — a learnt (familiar) direction
x (representing the subspace of the principal components) and an orthogonal
direction y. The shape energy is less sensitive to shape deformation along
the learnt directions than to deformation in orthogonal directions. The entire
space of permissible shape variations is basically reduced to an elastic tunnel
of familiar shapes. Restricting the shape variability to this tunnel amounts to
a drastic reduction in the effective dimensionality of the search space. Yet, in
contrast to the PCA approach, deformation in “unfamiliar” directions is still
possible.

3.4 Incorporating Invariance

By construction, the shape energy (3.17) is not invariant with respect to trans-
formations such as translation, rotation and scaling of the input vector. Yet,
certain invariances of the shape prior are desirable in many applications, for
example in a recognition task one might want the computer to accept a certain
shape as a hand, independent of its rotation and translation.

In Sections 3.4.1 and 3.4.2, we will discuss two complementary approaches
to tackle this problem. The first one is an approach of learning invariance,
which induces a robustness to certain transformations derived from the train-
ing shapes. Although it works well for translation only, we will nevertheless
present it here because it is a straight-forward extension of the learning pro-
cess presented in the previous sections. The second approach is complementary
in the sense that the invariance is not learnt implicitly from the examples but
rather constructed explicitly. In particular, we present a shape energy which is
by definition invariant with respect to similarity transformations. We derive a
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gradient descent equation on this energy, and we discuss extensions to affine
invariance.

In Section 3.4.3, we discuss some commonly used alternatives to incorporate
invariance, namely the minimization of explicit pose parameters and the use of
inherently invariant shape representations such as the use of relative coordinates
or Fourier descriptors.

3.4.1 Learning Invariance

The way we introduced the shape prior in the previous sections fundamentally
differs from many other approaches to introduce prior knowledge in computer
vision tasks. Namely we pursue the paradigm of learning from examples. So we
do not specify the knowledge about hands by a set of fixed rules such as “A hand
consists of one big blob for the palm and five elongated blobs for the fingers...”.
Instead we present the machine a set of training images containing hand shapes,
and let the machine “learn” by itself the rules that define the concept “hand”.
The advantages of machines which can learn in such a way are obvious: Not
only are fixed rules difficult to define for more complicated recognition tasks,
but also a machine which can learn in an unsupervised manner will on the long
run advance much faster. Moreover, this concept of learning from examples is
much closer to the way humans acquire knowledge.

The problem of integrating invariance can be tackled in a similar way. As-
sume that we are given a set of training shapes {zi}, such that the correspon-
dences between pairs of control points are correct. Upon acquisition of the
shape vector, this set contains information about the location, rotation and
scale of each shape. Previously we discarded this information by aligning the
shape vectors with respect to similarity transformations. In the following we
will analyze to what extent one can instead retain this information and learn
the respective invariance in the process described in Section 3.3.

Assume that we store the center position for all shapes, then align them
with respect to similarity transformations as done in Section 3.1.4, and finally
add the respective center locations again. A Gaussian distribution estimated
from this data will encode the translatory information. In fact, if the training
shapes are sufficiently distributed over the image plane, then the deformation
modes which correspond to translation in x- and y-direction will be favored by
the Gaussian model of Section 3.3.

To illustrate this, we will assume for simplicity that all training shapes
{zi}i=1,...,m have been centered and aligned. Two additional training shapes
are generated by translating the mean shape z̄ given in equation (3.12) by a
fixed amount in both directions along the x-axis:

zm+1 = z̄ + γ dx, zm+2 = z̄ − γ dx, with γ > 0,

where the vector dx = (1, 0, 1, 0, . . . )t/N denotes the normalized translation in
x-direction. For this artificially enlarged training set, the sample mean coincides
with the old one, whereas the new sample covariance matrix Σ̂ is given in terms
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of the original one Σ by:

Σ̂ =
1

m+1

m+2
∑

i=1

(zi − z̄)(zi − z̄)t =
m−1

m+1
Σ +

2

m+1
γ2 dxdt

x.

Since the initial set of training shapes was centered, we have the orthogonality:

zt
idx = 0 ∀i = 1, . . . , m, and Σ dx = 0.

Therefore we obtain:

Σ̂ dx =
2

m+1
γ2 dx.

This means that translation along the x-direction appears as one of the eigen-
modes of the new covariance matrix Σ̂. The further the translation γ, the larger
the corresponding eigenvalue and the more such deformations are favored by
the shape energy (3.17). Note that the other eigenmodes ei of Σ which represent
the possible variations of shape are not affected, since they are by construction
orthogonal to dx. In the same way, translation dy in y-direction can be “learnt”.

In precise terminology, the resulting shape energy is not invariant with re-
spect to translation, but rather robust to translation. In practice, however,
the effect is almost identical if the translation γ in the learning step is suffi-
ciently large. Moreover, such a robustness to similarity transformations is quite
common for the human visual system, where numerous examples indicate that
certain objects (such as faces) are reliably recognized only if the rotation from
the default position does not exceed a certain amount. The further the rota-
tion, the smaller the recognition rate. Translation learning within the Gaussian
model will favor a certain position in the image plane (the location of the mean
shape) and penalize deviations from this location.

If the initial shape set is aligned but not centered, then the eigenmodes of
the covariance matrix will in general be linear combinations of the translatory
degrees of freedom dx and dy and the other modes {ei} of shape deformation.
We will not go into detail about this.

This method of translation learning relies on the fact that there exist vec-
tors dx and dy associated with translatory motion which are independent of the
particular translated shape and which are orthogonal to the shape deformation
modes. Unfortunately, this is not the case for rotation and scaling. Therefore
the latter two invariances cannot be learnt in the Gaussian model. The eigen-
vectors which model the rotation and scaling cannot be separated from the
shape z. The concepts of scaling and rotation of one shape cannot be extended
to other shapes.

The following example will illustrate in what way rotation and scaling are
always associated with a particular shape. We denote the rotation matrix for
a 2N -dimensional control point polygon by

Rθ = IN ⊗
(

cos θ − sin θ

sin θ cos θ

)

. (3.19)
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Assume that the training set contains only one shape in all possible rotations
{Rθ z}, such that all rotation angles θ ∈ [0, 2π] appear equally often. Further-
more, assume the shape z to be normalized: ztz = 1. We will show that all
eigenmodes of the covariance matrix are given by scaled and rotated versions
of the shape z. The mean shape is given by

z̄ =
1

2π

2π
∫

0

Rθ z dθ,

and the covariance matrix is given by

Σ =
1

2π

2π
∫

0

Rθ z (Rθ z)t dθ.

This matrix is symmetric and positive semidefinite. All eigenvalues are real and
nonnegative. Their sum is given by:

tr [Σ] =
1

2π

2π
∫

0

tr
[

Rθ z (Rθ z)t
]

dθ =
1

2π

2π
∫

0

tr
[

ztz
]

dθ = 1.

The corresponding eigenvalue system is given by { 1
2 , 1

2}, and the eigenvectors
are given by Rµz for any angle µ ∈ [0, 2π]:

ΣRµz =
1

2π

2π
∫

0

RθzztRµ−θzdθ =





1

2π

2π
∫

0

Rθ cos(µ − θ)dθ



 z =
1

2
Rµz.

Obviously the eigenvectors span the same 2-dimensional linear subspace
if the training set contains only three linearly independent rotations of the
input shape z. Yet scaling and rotation are not learnt: The eigenvectors Rµz
associated with scaling and rotation cannot be separated from the particular
shape z! Therefore the concepts of rotation and scaling cannot be generalized
to other shapes, as was the case for translation.

As a possible remedy, one could switch from a control point representation
in Cartesian coordinates x and y to a representation in cylindrical coordinates
r =

√

x2 + y2 and φ = arctan
( y

x

)

:

z = (r1, φ1, . . . , rN , φN ).

In principle this would permit the learning of rotation and scaling, since in this
representation both of these operations correspond to deformations along the
constant vectors (1, 0, 1, 0, . . . )t and (0, 1, 0, 1, . . . )t. However, first of all it is
difficult to deal with the inherent ambiguities associated with the periodicity of
the angle coordinate. And secondly, this solution would only shift the problem,
since in cylindrical coordinates translation can no longer be learnt.
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3.4.2 Variational Integration of Invariance

Rather than trying to learn the invariances from the example shapes in the lin-
ear model of shape statistics, one can construct them explicitly. In the following
we shall demonstrate how this can be done for the group of similarity transfor-
mations. However, other invariances — such as the more general invariance to
affine transformations — can be incorporated in the same manner.

Let {zi} be a set of training shapes, aligned as detailed in Section 3.1.4,
and let E(z) be the energy (3.17) corresponding to a Gaussian model of shape
probability. There are several ways to incorporate invariance under a certain
transformation group into (3.17). For example, one can simply integrate or
minimize over this group:

Eint(z) =

∫

E
(

sRθ(z − t)
)

ds dθ dt, (3.20)

Emin(z) = min
s,θ,t

E
(

sRθ(z − t)
)

. (3.21)

However, both of these approaches have certain drawbacks. For translation
and scaling, the integration range has to be restricted for the integral to be well
defined. Moreover, the integration produces an average of energy (3.17) over
all possible transformations. Although the resulting measure is by construction
invariant to these transformations, this averaging process will generally not
produce a sensible measure of shape dissimilarity: The value of energy (3.17)
evaluated for an incorrectly translated or rotated shape vector should not affect
the final measure, yet it does in the integration in equation (3.20), left side.

The minimization in (3.21) is therefore a much better solution. However,
as for the integration, a closed-form solution for this minimization appears
infeasible. A simplification of this minimization is the following approach which
can be solved analytically.

Since the training shapes were aligned to their mean shape z̄ with respect to
translation, rotation and scaling and then normalized to unit size (cf. Section
3.1.4), the same should be done to the argument z before applying energy (3.17).
This is detailed in the following.

We eliminate the translation by centering the control point vector (3.2):

zc =

(

I2N − 1

N
T

)

z, (3.22)

where I2N denotes the unit matrix of size 2N , N is the number of control points,
and the 2N × 2N -matrix T is given by:

T =











1 0 1 0 · · ·
0 1 0 1 · · ·
1 0 1 0 · · ·
...

...
...

...
. . .











.

Next, we eliminate rotation and scaling by aligning with respect to the mean
of the training data. The final shape energy expressed in terms of the original
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Figure 3.6: For a given shape vector z, a similarity invariant shape energy
is obtained by applying the statistical energy (3.17) to the vector ẑ deter-
mined by registration with the training set (depicted in gray), see equation
(3.23).

energy E in (3.17) is given by:

Eshape(z) = E(ẑ), with ẑ =
Rθ zc

|Rθ zc|
, (3.23)

where θ denotes the angle corresponding to the optimal rotation of the centered
control point polygon zc with respect to the mean shape z̄. Figure 3.6 shows
a schematic drawing of this intrinsic alignment. In Section 3.1.4, we discussed
the alignment in complex notation. Conversion of (3.10) to the equivalent
representation in real coordinates gives the formula:

ẑ =
M zc

|M zc|
, with M = IN ⊗

(

z̄ t zc −z̄ × zc

z̄ × zc z̄ t zc

)

, (3.24)

where ⊗ denotes the Kronecker product and z̄ × zc := z̄ tRπ/2 zc.
Given an initial shape z, one can maximize the similarity with respect to

the set of training shapes by performing a gradient descent on the final shape
energy (3.23). In order to determine the gradient of (3.23), we will denote the
differentiation of vector-valued functions f : R

n → R
m by:

df

dx
=









∂f1

∂x1
· · · ∂f1

∂xn

...
. . .

...
∂fm

∂x1
· · · ∂fm

∂xn









.

Applying the chain rule for differentiation to (3.23), one obtains the follow-
ing gradient descent equation:

dz

dt
= −dEshape(z)

dz
= −dE(ẑ)

dẑ
· dẑ

dzc
· dzc

dz
. (3.25)
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The three terms in this product can be interpreted as follows:

• The first term is the gradient of the original energy evaluated for the
aligned shape ẑ. It contains the shape information extracted from the
training set. For the linear model (3.17) it is given by:

dE(ẑ)

dẑ
=
(

Σ−1
⊥ (ẑ − z̄)

)t
.

It causes a relaxation of the aligned shape ẑ towards the mean shape
z̄, weighted by the inverse of the regularized covariance matrix. This
weighting causes unfamiliar deformations from the mean to decay faster.

• The second term in the product of (3.25) takes into account the influence
of changes in the centered shape zc onto the aligned shape ẑ. In matrix
notation it is given by:

dẑ

dzc
=

M ′zc + M

||Mzc||
− (Mzc)(Mzc)

t(M ′zc + M)

||Mzc||3
, (3.26)

where M is the matrix defined in (3.24) and M ′ denotes the tensor of
rank 3 given by:

M ′ =
dM

dzc
.

Using the real notation (3.2) for the control point vectors and the defini-
tion of M in (3.24), the entries of this constant sparse tensor are given
by:

M ′
ijk =

dMik

d(zc)j
=











































z̄j , i = k

z̄j+1, i = k + 1, i even, j odd

−z̄j−1, i = k + 1, i even, j even

−z̄j+1, i = k − 1, i odd, j odd

z̄j−1, i = k − 1, i odd, j even

0, otherwise

.

• The third term in the product of (3.25) accounts for the change of the
centered shape zc with the input shape z. According to definition (3.22),
it is given by:

dzc

dz
=

(

I2N − 1

N
T

)

.

This term centers the energy gradient, as a direct consequence of the
translation invariance of the shape energy. This means that the force
which minimizes the shape energy has no influence on the translation of
the contour. Similarly, rotation and scaling of the shape are not affected
by the shape optimization, due to the term (3.26) in the evolution equation
(3.25).
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Note that the final shape energy (3.23) is by definition invariant with respect
to similarity transformations of the contour. In particular, this variational
integration is entirely parameter-free!

This closed-form solution to incorporate invariance can be extended to the
more general group of affine transformations, since there exist closed-form so-
lutions for the alignment of two polygons with respect to affine transformations
— see [190]. However, we will not pursue this idea in the present work.

3.4.3 Alternative Approaches to Invariance

Optimization of Explicit Pose Parameters

A common alternative to treat similarity transformations of the shape (cf. [47,
93, 106, 17, 120, 36]) is to introduce explicit pose parameters to account for the
degrees of freedom associated with translation, scaling and rotation. Then a
joint optimization with respect to both the shape parameters corresponding to
shape deformation modes and the pose parameters is performed. This was done
by deterministic approaches [47, 36], by stochastic approaches such as genetic
algorithms [93], or by simulated annealing on the basis of the Gibbs sampler
[106].

Since the gradient descent presented in Section 3.4.2 constitutes a deter-
ministic approach, we will for comparison present the corresponding approach
with explicit pose parameters, derived in analogy to the one presented in [36].

The shape energy Eshape is defined in terms of the quadratic energy E in
(3.17) by:

Eshape(z, s, x, y, θ) = E(ẑ), with ẑ = s Rθ (z + x dx + y dy),

where the pose parameters s, x, y, θ stand for scaling, translation and rotation,
respectively, and with the vectors dx = (1, 0, 1, . . . , 0)t and dy = (0, 1, 0, . . . , 1)t

again denoting translation of the shape in x- and y-direction.
These parameters are assigned appropriate initial values, and shape and

pose are both optimized by iterating the respective gradient descent equations
for translation

dx

dt
= −dEshape

dx
= −dE(ẑ)

dẑ

dẑ

dx
= −dE(ẑ)

dẑ
s Rθ dx, (3.27)

for scaling

ds

dt
= −dEshape

ds
= −dE(ẑ)

dẑ

dẑ

ds
= −dE(ẑ)

dẑ
Rθ (z + x dx + y dy), (3.28)

for rotation

dθ

dt
= −dEshape

dθ
= −dE(ẑ)

dẑ

dẑ

dθ
= −dE(ẑ)

dẑ
s R ′

θ (z + x dx + y dy), (3.29)

and for shape

dz

dt
= −dEshape

dz
= −dE(ẑ)

dẑ

dẑ

dz
= −dE(ẑ)

dẑ
sRθ. (3.30)
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The matrix R ′
θ in (3.29) denotes the derivative of the matrix Rθ defined in

(3.19):

R ′
θ =

dRθ

dθ
= IN ⊗

(

− sin θ − cos θ

cos θ − sin θ

)

.

As can be seen in equations (3.27), (3.28), (3.29) and (3.30), the evolution
of the respective parameters is simply given by appropriate projections of the
gradient of the original energy (3.17) evaluated at the transformed shape ẑ.

Compared to the closed-form solution proposed in Section 3.4.2, this latter
approach has several drawbacks:

• It mixes the degrees of freedom associated with shape deformation and
those associated with pose. This can be improved by restricting the shape
deformation to the shape eigenmodes {ei} of the covariance matrix of the
training set, as detailed in Section 3.2:

Eshape(α, s, x, y, θ) = E(ẑ), with ẑ = sRθ(z̄ +
∑

i

αiei + x dx + y dy).

The evolution equation (3.30) is then replaced by corresponding evolution
equations for the shape parameters α = {αi}:

dαi

dt
= −dEshape

dαi
= −dE(ẑ)

dẑ

dẑ

dαi
= −dE(ẑ)

dẑ
s Rθ ei.

This separates shape and translation, because the shape eigenmodes are
orthogonal to the translation vectors dx and dy. However, it does not fully
separate the deformation modes ei from rotation and scale. In contrast,
in the approach of Section 3.4.2, we first enforce the optimal similarity
transformation and then perform a gradient descent. This induces a clear
separation of shape and pose in the sense that only the deformation which
cannot be “explained” by similarity transformations will be associated
with shape deformation.

• Compared to the closed-form solution of Section 3.4.2, we need to find
appropriate parameters associated with each pose parameter in order to
balance the different gradient descent equations. In numerical implemen-
tations this may be tedious. Moreover, too large step sizes may introduce
numerical instabilities.

• Additional local minima may be introduced by the pose parameters. In
a given application, this may prevent the convergence of the contour to-
wards the desired segmentation.

On several segmentation tasks we were able to confirm these effects by
comparing the two approaches — see Section 3.6.5.
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Alternative Shape Representations

Another approach to introduce invariance is to revert to contour representations
which are intrinsically invariant with respect to certain transformations. From
the large number of possible representations, we will briefly discuss two of these,
namely the use of relative coordinates and the use of Fourier descriptors.

A straight-forward extension of the representation used in the previous sec-
tions is to employ relative coordinates in order to enforce translational invari-
ance. These can be defined e.g. relatively to a fixed control point or relatively
to the center point. To additionally enforce rotation and scale invariance, a fur-
ther extension is to describe the connecting line segments of the control point
polygon in terms of their lengths {li} and their angles {φi}, both measured
relatively to a reference line such as the first segment or the medial axis. This
representation is invariant to similarity transformations of the contour. How-
ever, the invariance comes at a certain cost: Firstly, the intrinsic ambiguities
of the angle representation are difficult to cope with when performing shape
statistics. Secondly, the relative coordinates produce undesired dependencies:
If measured relatively to the first segment, a perturbation of the first control
point will affect all coordinates, and if measured relatively to the medial axis,
all coordinates will show a discontinuous behavior for shape deformations which
modify the medial axis — a circle would for example define an instable control
point configuration.

Rather than working in the spatial domain, one can revert to the Fourier
domain [201, 86, 146, 114, 170]. Fourier descriptors are obtained by applying
the discrete Fourier transform to the contour. By construction, the Fourier
descriptors are invariant with respect to translation. Appropriate modifications
permit to incorporate similarity invariance [28] and even affine invariance [8].
Moreover, Fourier descriptors present a multiresolution description of shape.

Yet, in our context, the use of Fourier descriptors has two disadvantages:
Firstly, it introduces additional computational complexity. Since the image in-
formation driving the contour evolution is determined in the spatial domain,
working with Fourier descriptors would require to constantly transform between
the two domains. Secondly, by construction the Fourier descriptors represent
spatially global deformation modes. With a limited number of frequency com-
ponents one cannot model spatially very localized changes of the contour —
such as the motion of a single finger when the rest of the hand is stable.

Similar arguments hold for moment invariants [97, 182]. A spatially local-
ized version of the Fourier descriptors is given by wavelet descriptors [193, 148,
38]. A detailed analysis of these approaches is beyond the scope of this work.

3.5 Linear Shape Statistics in Segmentation

In this section, we will combine the linear shape prior introduced in Section
3.3 with the diffusion snakes introduced in Sections 2.4 and 2.5. The result is
a variational approach to segmentation, which incorporates both information
from the input image and statistically encoded prior knowledge about the shape
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of the segmented object. We propose to minimize the total energy given by:

E(z) = Eimage (u, Cz) + α Eshape(z), (3.31)

where the image energy Eimage is either the DS in (2.20) or its simplified version
SDS in (2.24).

Invariance of the shape prior will be introduced either in terms of learnt
translation invariance as proposed in Section 3.4.1, or in terms of the closed-
form variational integration of similarity invariance as proposed in Section 3.4.2.

In the case of translation learning, the two translational degrees of freedom
appear as two eigenvectors of the covariance matrix and the shape energy Eshape

is simply given by the quadratic energy (3.17). The gradient descent equations
for the control point (xm, ym) are then given by:

dxm(t)

dt
=

N
∑

i=1

(

B−1
)

mi

[ (

e+(si, t)−e−(si, t)
)

nx(si, t) + ν(xi−1−2xi+xi+1)
]

− α
[

Σ−1
⊥ (z − z̄)

]

2m−1
,

dym(t)

dt
=

N
∑

i=1

(

B−1
)

mi

[ (

e+(si, t)−e−(si, t)
)

ny(si, t) + ν(yi−1−2yi+yi+1)
]

− α
[

Σ−1
⊥ (z − z̄)

]

2m
. (3.32)

This simply extends the contour evolution equations in (2.30) by the last term
which maximizes the similarity of the evolving contour with respect to the set
of training shapes. The three terms in the respective equations in (3.32) can
be interpreted as follows:

• The first term forces the contour towards the object boundaries, maxi-
mizing a homogeneity criterion in the adjoining regions which compete in
terms of their energy densities e+ and e−. Depending on the model —
piecewise smooth or piecewise constant grey value — they are given by
(2.26) and (2.27), respectively.

• The second term enforces an equidistant spacing of control points by
minimizing the length measure (2.21).

• The last term causes a relaxation towards the most probable shape, by
minimizing the shape energy. The indices 2m − 1 and 2m are simply
associated with the x- and y-coordinates of the m-th control point in the
notation of (3.2). Note that the relaxation towards the most probable
shape is weighted by the inverse of the modified covariance matrix, such
that less familiar shape deformations will decay faster. This interesting
property arises automatically due to the proposed variational integration
of the prior.

For full similarity invariance of the shape prior, the energy Eshape is given by
(3.23). Consequently, the gradient of the shape energy, given by the last term in
the evolution equations (3.32), has to be modified as detailed in Section 3.4.2.
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3.6 Numerical Results

In this section, we will present numerical results of the segmentation approach
which combines the linear shape prior with the diffusion snakes. Depending
on the context, we introduce invariance either in terms of learnt translation
invariance as proposed in Section 3.4.1 or full similarity invariance as proposed
in Section 3.4.2. For all results we used a fixed number of N =100 control points,
as this gives sufficient resolution for the objects which are to be segmented.
The specific number of control points is not crucial. It should, however, be
constant for the shape statistics to be well defined. If not specified otherwise,
we generally show the input image and the contour C which minimizes the total
energy (3.31).

3.6.1 Image-driven versus Knowledge-driven Segmentation

The total energy (3.31) is a weighted sum of an image energy and a shape
energy. Minimizing the image energy forces the contour towards the boundaries
of the object as suggested by the grey value information. Minimizing the shape
energy forces the contour towards the boundaries of the object as indicated by

−1 0 1

Image Energy
Shape Energy
Total  Energy

−1 0 1

Image Energy
Shape Energy
Total  Energy

Figure 3.7: Energy plots. For two different training sets, both plots show
the Mumford-Shah image energy Eimage, the shape energy Eshape and the
total energy for a fixed input image as a function of different contours.
For the parameter values −1, 0, 1, the three respective contours are shown
below. The object in the image corresponds to the contour in the middle.
For the training set on the left, the mean (i.e. most probable) shape and
the input object are the same, such that the total energy is simply a convex
version of the image energy having the same minimum. For the training
set on the right, input object and mean shape are not the same, so that the
position of the minimum is shifted by the prior. Minimization of the total
energy produces a “compromise” between image and shape information.
Note that in both cases, the total energy is convex while the image energy
by itself is not.
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the statistically learnt object notion. If the minima of both energies are the
same, then adding the shape energy tends to “convexify” the total energy, since
most contour deformation modes are effectively suppressed by the prior. If there
is a discrepancy between the input intensity information and the learnt object
notion, then minimization of the total energy will produce a segmentation which
is a weighted compromise between that indicated by the intensity information
and that favored by the shape prior. These effects are explained on the basis
of energy plots in Figure 3.7.

Increasing the weighting parameter α in the total energy (3.31) allows to
continuously shift from a purely image-based segmentation to one which mostly
relies on the learnt shape information. The following results will demonstrate
this aspect.

Ellipse versus Rectangle

Figure 3.8 gives a simple demonstration of the effect of the shape prior on the
segmentation result: Without prior knowledge, the segmented image coincides
with the input image (left contour), whereas the results for larger knowledge
weight α (middle and right contour) are shifted towards the prior information,
which encodes a set of six ellipses. We used the diffusion snake model (2.20)
for the image energy and learnt translation invariance for the shape prior.

No prior Weak prior Strong prior

Figure 3.8: Rectangle with prior favoring ellipses. The knowledge energy
was calculated on a set of six ellipses. The input image (grey square) and
the final contour (black) are shown for increasing values of the knowledge
weight α.

Parsing an Image into its Constituent Components

The second example shows that the effect of the shape prior can be exploited
in order to deal with occlusions of the object of interest. Figure 3.9 shows
an input image which can be interpreted as an ellipse covered by a bar. The
contours correspond to the respective minima of the total energy (3.31) for the
diffusion model (2.20) and two different priors. For the top row, we used a prior
constructed on a set of six ellipses (which were not aligned), with translation
invariance introduced as detailed in Section 3.4.1. For the bottom row, we con-
structed a prior from a set of four vertical bars. The final segmentations show
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Figure 3.9: Ellipse covered by a bar. Input image (left) and segmenting
contours for a prior favoring ellipses (top row) and a prior favoring bars
(bottom row). With increasing knowledge strength α (from left to right)
unfamiliar shape deformations are suppressed. The input image is parsed
into its constituent components by applying different priors.

that for increasing weight α of the prior, the segmentation process continuously
ignores shape deformations that are less probable according to the respective
shape statistics. Note, however, that for both priors the resulting contour does
not simply correspond to the mean shape, i.e. the most probable shape of the
respective model. Even for large values of α (Figure 3.9, right side), the seg-
mentation process still incorporates evidence given by the input image. In this
example, we can actually parse the image into its constituent components, by
specifying different objects of interest with different priors.

Initial contour
Segmentation
without prior

Segmentation
with prior

Evolution
with prior

Figure 3.10: Segmentation results for the SDS with a prior favoring
ellipse-like shapes. Some intermediate contours (right) indicate how the
contour evolution is restricted to the submanifold of familiar shapes.

Reducing the Effective Dimension of the Search Space

The Gaussian shape prior effectively restricts the evolving contour to the lin-
ear subspace of familiar contours spanned by the first few eigenmodes of the
covariance matrix.3 For the example from Figure 3.9, this is visualized in Fig-
ure 3.10. It shows the initial contour, the segmentation without prior and the

3Due to the regularization (3.15) of the covariance matrix, the restriction to the subspace
spanned by the principal components is incorporated as a soft constraint — see Section 3.3.2.
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segmentation with prior. Some intermediate contours, shown in the last image,
indicate how the evolving contour is restricted to ellipse-like shapes during the
gradient descent minimization.

3.6.2 Translation Learning

In the examples in Figures 3.9 and 3.10, invariance of the shape prior with
respect to translation was “learnt” as detailed in Section 3.4.1. The training
shapes were not aligned at all, their locations being only more or less con-
centric. As discussed in Section 3.4.1, this already induces some robustness
to translation. By additionally translating the mean shape along the two or-
thogonal spatial directions and updating the covariance matrix accordingly, the
translatory degrees of freedom will become energetically more favorable and
translatory motion is facilitated. The effect of enabling translatory motion
on the knowledge-driven segmentation process is demonstrated in Figure 3.11.
Without the translation learning, the center of the final contour has shifted
only marginally from its initial location. After translation learning, translatory
motion of the contour is no longer suppressed by the prior.

As discussed in Section 3.4.1, learning invariance cannot be extended to
rotation and scaling. Moreover, the shape prior after translation learning is not
invariant but rather robust against translation. Because of these limitations, we
will not investigate the issue of learning invariances any further. Instead, in all
following examples we will only employ the closed-form variational integration
of translation or similarity invariance as proposed in Section 3.4.2.

Figure 3.11: Translation learning. The input image (grey) is an ellipse
occluded by a bar. The left image shows the initial contour. The shape
energy was constructed on a set of 6 (more or less concentric) horizontal
and vertical ellipses, which effectively restricts contour variation to elliptical
shapes, the translatory degrees of freedom being essentially suppressed. The
middle image shows the final contour without translation learning: The
center of the ellipse has essentially not moved. The right image shows
the final contour with translation learning: The shape energy is much less
sensitive to translation of the shape, and the ellipse that best describes the
input image is found. Due to the statistical a priori-knowledge, the bar is
ignored by the diffusion snake despite the prominent signal transitions at
its boundary.
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Aligned training set Initial contour Intermediate 1

Intermediate 2 Final segmentation Result without prior

Figure 3.12: Segmentation with statistical prior. Aligned training con-
tours and contour evolution from initial to final step. For comparison,
the corresponding segmentation without the prior is shown on the bottom
right. The second intermediate step indicates that the embedding of the
shape prior as a soft constraint permits some shape deformation outside the
subspace spanned by the training shapes.

3.6.3 Coping with Clutter

In the following, we denote as clutter all noise which is spatially structured (i.e.
not fully random). Clutter in the background may be strongly misleading for the
Mumford-Shah based segmentation approach, since it violates the hypothesis
of constant or smooth grey value information. The statistical prior permits the
segmenting contour to “ignore” such misleading information by restricting it to
the subspace of familiar shapes.

To demonstrate this property, we go back to the example image of Figure
2.6, for which — although it did not contain a lot of clutter — we did not
obtain the desired segmentation without a shape prior. In order to include
prior information, we constructed a shape energy upon a set of six binarized
hand images as explained in Sections 3.1.3 and 3.1.4. The hand in Figure 3.12
was not part of the training set. The aligned training contours are shown in
Figure 3.12, top left. From the invariances suggested in Section 3.4.2 we only
included translation. The training shapes all had the same rotation and scale as
the object in the image. Results which also include scale and rotation invariance
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will be shown separately later on.

For the same input image and the same initial contour as in the example of
Figure 2.6, we then performed a gradient descent on the full energy (3.31) for
the DS (2.20)4. Figure 3.12 shows three steps in the contour evolution from
the initialization to the final segmentation. For a comparison, the image on
the bottom right shows the corresponding segmentation obtained without the
shape prior.

The statistical prior effectively restricts the contour deformations to the
subspace of learnt deformations. However, due to the embedding of the shape
probability into the full space of possible deformations, as explained in Section
3.3, some deformation outside this subspace is still feasible — as can be seen
in the intermediate steps in Figure 3.12. This flexibility turns out to strongly
improve the ability of the system to evade incorrect local segmentations. The
final segmentation is cut at the wrist, since the training shapes were all cropped
there for simplicity.

The question of which value to assign to the length-governing parameter ν
in equations (2.20) and (2.24), discussed in Section 2.6, becomes obsolete: The
effective restriction of shape deformations imposed by the prior allows to drop
the additional length minimization term. However, for the purpose of analyzing
the effect of the prior we kept the value of ν constant for the segmentations with
and without prior.

The scene in Figure 3.12 contains little clutter. Therefore segmentation
results are rather good even in the case when no prior knowledge is included.
Once the amount of clutter is increased, this changes. Therefore, we go back to
the example in Figure 2.7, which shows a hand in front of a strongly cluttered
background. Note that the grey value of the background is approximately the
same as that of the object of interest. Without the statistical prior, none of the
segmentation approaches compared in Section 2.6 is able to extract the object
of interest.5 In the example of Figure 2.7, the hypothesis of constant or smooth
grey value is not valid for the background, such that the Mumford-Shah based
segmentation without shape prior lead to unsatisfactory results.

As in the previous example, we now include the shape prior and perform a
gradient descent on the total energy (3.31) to obtain the segmentation shown
in Figure 3.13, top row, for the case of the diffusion snake functional with and
without statistical prior. Again, the shape in the image was not part of the
training set.

The final segmentation produced with the statistical prior is the desired one.
Small discrepancies between the object boundary and the final contour in the
area between the fingers are probably due to the fact that the shape prior does
not fully suppress some shape variability in that area. This could be improved

4Segmentation results of equal quality as in Figure 3.12 were obtained by including a
statistical shape prior in the SDS (2.24).

5Since there exists a vast amount of very different segmentation approaches, there may be
some which produce an adequate segmentation of the hand in the image of Figure 2.7. Yet,
for any segmentation approach which only takes into account the information contained in the
grey values, one can always find an example image for which the desired segmentation is not
obtained.
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Initial contour
DS

with prior
DS

without prior

SDS
with prior

SDS
without prior

Energy plots

Figure 3.13: Object in strongly cluttered environment. Results of seg-
mentation with and without shape prior for the diffusion snake (2.20) and
its cartoon limit (2.24). Note that the cartoon model (bottom row) does
not produce the desired segmentation even with the prior. The bottom
right image shows associated energy plots for the DS (top) and the SDS
(bottom) — see text.

with a more elaborate alignment of the training shapes during shape learning.
However, we decided to avoid any shape learning that involves the calculation
of landmarks or any manual interaction such as the labeling of correspondences.

The segmentation obtained with statistical prior in the case of the cartoon
model (SDS) was not successful, as can be seen in Figure 3.13, bottom row.
The reason for this failure to capture the object of interest will be discussed
next.

3.6.4 Comparing the Diffusion Snake and its Cartoon Limit

The full Mumford-Shah functional and its cartoon limit differ in their contour
evolution equation in that the former collects grey value information from the
area surrounding the contour by means of a diffusion process, whereas the lat-
ter does this by separately averaging over the areas adjacent to the respective
contour point. The images in Figure 3.14 show the piecewise smooth approxi-
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Original λ = 10 λ = 20 λ = 40 λ = 1000

Figure 3.14: From the diffusion snake to the cartoon limit. Original
image f and diffused versions u for a fixed contour. With growing values
of the smoothing parameter λ in (2.20), the amount of information about
the local context is reduced. The contour is modeled by edgels “between
pixels”, such that all pixels belong to one of the adjacent regions and are
therefore affected by the diffusion process.

mation u of a given input image which minimizes the diffusion snake functional
(2.20) for a fixed contour C and increasing values of the smoothing parameter
λ. These images demonstrate how the piecewise smooth approximation u con-
verges to the piecewise constant approximation of the cartoon limit for λ → ∞.
This approximation u is the basis of the contour evolution — see equations
(2.25) and (2.26). Therefore, the motion of the diffusion snake (DS) is affected
mostly by the image information in the neighborhood of the respective contour
point, the size of which is determined by the scale parameter λ. The cartoon
snake (SDS), however, is equally affected by information in any part of the
image. This explains the very different segmentation results obtained for the
image in Figure 3.13, both with and without prior.

The segmentation obtained with the simplified diffusion snake (SDS) will
be affected by grey value differences on a global scale. To analyze which effect
this property has upon the energy landscape, we calculated the value of the
diffusion snake functional and its cartoon limit for a fixed contour which we
simply translated in x- and y-direction. This corresponds to a suppression of
shape deformation. We used the same input image as in Figure 3.13. The
contour was optimally placed upon the hand boundaries and then shifted in
equidistant steps up to 30 pixels in each direction. The resulting energies are
plotted in Figure 3.13, bottom right, as a function of the displacement from
the optimal position. Note that the bottom of the input image corresponds to
the top right side of the energy plots. Both energies show a minimum at the
optimal position of the contour. However, the energy for the SDS (below) is
strongly slanted towards the bottom of the image. This is caused by the global
change in brightness of the input image from the top towards the bottom. It is
in fact this global change in brightness which drives the contour to segment the
entire bottom part of the image if no prior is given — see Figure 3.13, bottom
row. Even in the case of added shape prior, the hand contour is pushed to
the bottom of the image for the SDS. Stated in other words: The model of
piecewise smooth grey value is more robust to grey value variations on a global
scale than the model of piecewise constant grey value.
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Figure 3.15: Invariance with respect to similarity transformation. Mini-
mization by gradient descent from the initial contour (top left) to the final
segmentation. Note that due to the closed-form solution (3.23), no addi-
tional parameters enter the minimization to account for scale, rotation and
translation. Due to the intrinsic alignment of the evolving contour, the
relative position, scale and rotation of the training set (bottom right) is of
no importance to the knowledge-driven segmentation process.

3.6.5 Invariance to Similarity Transformations

By construction the shape energy (3.23) is invariant with respect to translation,
rotation and scaling. Figure 3.15 shows a minimization by gradient descent
from the initial contour (top left) to the final segmentation (bottom right),
with a shape prior constructed from a set of 10 binarized hand images. During
its evolution the contour is effectively restricted to the subspace of familiar
contours, but translation, rotation and scaling are permitted.

The bottom right image in Figure 3.15 shows the training set of aligned
hand shapes. The relative location, size and rotation of the training shapes is
of no importance to the segmentation process, because the evolving contour is
intrinsically aligned with the mean of the training shapes. Due to this closed-
form solution for eliminating translation, scale and rotation from the shape
energy, no additional parameters enter the minimization. This prevents addi-
tional local minima and facilitates the minimization. On several segmentation
tasks we were able confirm these effects by comparing the two approaches of
optimizing explicit pose parameters and proposed implicit optimization. For
example, for the problem presented in Figure 3.15, we did not manage to bal-
ance the minimization in a way that it converged to the desired segmentation
by optimizing explicit pose parameters.
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Contour evolution from initial to final with similarity invariant shape prior.

Further evolution upon switching off the statistical prior.

Figure 3.16: Segmentation of a partially occluded hand with and without
shape prior in the simplified diffusion snake. The similarity invariant sta-
tistical shape prior permits a reconstruction of the hand silhouette in places
where it is occluded (top row). Upon switching off the prior, the shape of
the segmenting contour is no longer constrained and the contour evolution
will simply maximize the homogeneity of the grey value in the separated
regions (bottom row).

3.6.6 Dealing with Occlusion

The main idea of introducing the shape prior is that it is able to compensate
for missing or misleading information. In the case of occlusion, for example,
we expect the statistical shape prior to induce a reconstruction of the shape
silhouette in parts of the image where the object is not visible.

This is demonstrated by the images in Figure 3.16, which show a hand
covered by an artificially added occlusion. The top row shows the contour
evolution from the initial to the final contour for the SDS with a similarity
invariant shape prior. Note that the final contour correctly segments the hand
in spite of the large occlusion. To further demonstrate the influence of the shape
prior on the final segmentation, we simply switched off the prior by setting the
weighting parameter α=0 in the total energy (3.31).

The bottom row in Figure 3.16 indicates the contour evolution without the
statistical prior: The evolving contour simply separates light and dark regions,
such that the object of interest is “lost”, although the contour was optimally
initialized. Of course, even with a statistical prior, the quality of the final
segmentation slowly degrades as the size of the occlusion is increased. This is
shown by a comparison with a larger and darker occlusion in Figure 3.17.
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Initial No prior With prior No prior With prior

Figure 3.17: Increased occlusion. For two occlusions of different size and
grey value, we compared segmentation results starting with the same ini-
tialization (left image), without and with statistical prior. We performed
a gradient descent on the total energy (3.31) for the SDS (2.24) and the
similarity invariant shape energy (3.23). The shape prior drastically im-
proves segmentation results. However, depending on the initialization, the
size and grey value of the occlusion, there may not be sufficient information
left to correctly guide the contour evolution.

3.6.7 Dealing with Noise

A different case of missing information is given when the image containing the
object of interest is corrupted by noise. Depending on the amount of noise, there
may be very little information to drive the evolving contour towards the desired
segmentation. Again, the statistical shape prior can improve segmentation,
because it effectively reduces the dimension of the search space in such a way
that segmentations which do not correspond to familiar shapes are ruled out a
priori.

Figure 3.18, top left, shows the same input image as in Figure 3.12. However,
this time, 75% of the pixels were replaced by an arbitrary grey value sampled
from a uniform distribution over the interval [0, 255]. This means that only one
of four pixels contains information about the input image. Figure 3.18 shows
four steps in the contour evolution for the SDS with a similarity invariant shape
prior. For the given initialization the segmentation process with prior is able to
converge to the desired segmentation. In contrast, for the same initialization,
the segmentation process without the shape prior fails to segment the object of
interest, as shown in Figure 3.18, bottom right.
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Input Initial Intermediate 1

Intermediate 2 Final with prior Final without prior

Figure 3.18: Segmentation of an image corrupted by noise. The input
image is the one shown in Figure 3.12, with 75% of the pixels replaced by
grey values sampled from a uniform distribution on the interval [0, 255].
Four frames from the gradient descent minimization indicate the contour
evolution for the SDS with a similarity invariant shape prior. The frame
on the bottom right shows the final segmentation obtained for the same
initialization without a shape prior. By effectively suppressing unfamil-
iar shape deformations, the statistical prior facilitates convergence to the
desired segmentation.



Chapter 4

Nonlinear Shape Statistics in

Segmentation

4.1 Limitations of the Linear Model

In Section 3.3 we presented a model of shape statistics which is based on the
assumption that the training shapes {zi ∈ R

2N} are distributed according to a
Gaussian probability density. Although this assumption tends to be fairly good
in practice, it will fail as soon as the training set presents more complicated
shape variation, which cannot be captured by second order statistics. This case
occurs if several objects are included in the training set, or if one wants to
“learn” the various silhouettes associated with different views of a 3D object.
In this case one expects to find several clusters in shape space corresponding
to the stable views of an object. Moreover, each cluster may by itself be quite
non-Gaussian.

A standard way to verify the Gaussian hypothesis is to perform statistical
tests such as the χ2-test. In the following, we want to demonstrate the “non-
Gaussianity” of a set of sample shapes in a different way, which gives a better
intuitive understanding of the limitations of the Gaussian hypothesis in the
context of shape statistics.

As an example, we again use a training set {zi ∈ R
2N} of hand shapes, but

this time it contains nine views of a right hand and nine views of a left hand,
aligned as detailed in Section 3.1.4. Figure 4.1, left side, shows the training
shapes projected onto the first two principal components and the level lines of
constant energy1 for the Gaussian model (3.17). Note that if the training set
were Gaussian distributed, then all projections should be Gaussian distributed
as well. Yet in the projection in Figure 4.1, left side, one can clearly distinguish
two separate clusters containing the right hands (+) and the left hands (•). The
images on the right of Figure 4.1 show sampling along the first three principal

1In this chapter, high dimensional data sets and the estimated energies will generally be
visualized by projections onto the linear principal components, because these capture (by
definition) the largest variation. Yet, it should be noted that in our case this projection
suppresses 198 out of 200 dimensions. The depicted level lines only give a rough visualization
of how the distribution of sample shapes is approximated, because the energy is determined
in the plane spanned by the two principal components.

69
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Projected
training shapes

1st p.c. 2nd p.c. 3rd p.c.

Figure 4.1: Left image: Training set containing 9 right hand (+) and 9
left hand (•) shapes in a projection onto the first two principal components.
The estimated Gaussian model is visualized by shading and level lines of
constant energy (3.17). Right images: Sampling up to two standard
deviations along the first three principal components from the mean.

components from the mean, similar to what is shown in Figure 3.4 for the
single-sided hand set.

As suggested by the level lines of constant energy, the first principal com-
ponent — i.e. the mayor axis of the ellipsoid — corresponds to the deformation
between right and left hands. This morphing from a left hand to a right hand is
visualized in more detail in Figure 4.2. It shows that the Gaussian model tends
to mix shapes belonging to different classes. Obviously the Gaussian model
does not accurately represent the distribution of training shapes. In fact, ac-
cording to the Gaussian model, the most probable shape is given by the mean
shape, which is shown in the central image in Figure 4.2. Yet everyone would
agree that this shape is not a valid hand. So in general, sampling along the
different eigenmodes around the mean shape can give an intuitive feeling for
the quality of the Gaussian assumption.

Figure 4.2: Sampling along the first principal component for a set con-
taining right and left hands. Shapes of different classes are mixed in the
Gaussian model. Note that according to the Gaussian model the mean
shape (central image) is the most probable shape.

Once the training shapes are no longer Gaussian distributed, as in the above
example, one needs to go beyond the linear models. We have chosen to introduce
such nonlinearities in terms of Mercer kernels. Previous work in this field will
be reviewed in the next two sections.
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4.2 Mercer Kernel Methods

Based on the Mercer theorem [130, 49, 69], it is shown in [23] that for any con-
tinuous symmetric kernel k(., .) of a positive integral operator, one can construct
a mapping φ into a space Y where k acts as a scalar product, i.e.:

k(x, y) = (φ(x), φ(y)) . (4.1)

Conversely one can easily show that, given a continuous mapping φ, the equa-
tion (4.1) defines a continuous symmetric kernel of a positive integral operator.
Such kernels are called Mercer kernels. In general, a given Mercer kernel k
corresponds to an entire family of mappings φ.

This property of Mercer kernels can be exploited to model nonlinear trans-
formations to a feature space in any algorithm for which the nonlinearity φ only
appears in terms of scalar products. It is possible to model a whole family of
nonlinearities by choosing a specific kernel. Moreover, the Mercer kernel ap-
proach permits to elegantly model nonlinear mappings into feature spaces Y
of large (even infinite) dimension because the mapping φ is never evaluated
explicitly.

The Mercer kernel approach has been extensively studied in such fields as
feature extraction, classification or regression estimation (cf. [1, 180, 161, 27]).
In this work, however, we intend to make use of it to construct a shape dissim-
ilarity measure. For this purpose, we will employ the Mercer kernel approach
to estimate the distribution of a set of sample points upon a nonlinear mapping
φ to a feature space Y .

Our approach constitutes an extension of kernel PCA [164] to a probabilis-
tic framework and was first proposed in [50]. More recently, it has also been
suggested in [175].

4.3 Kernel Principal Component Analysis

In this section, we will introduce some notations2 and briefly review results of
kernel PCA [164], which is a particular Mercer kernel method.

4.3.1 Notation

Let χ = {zi}i=1,...,m be a set of sample vectors zi ∈ R
n. Let

φ : R
n → Y

be a (possibly nonlinear) map into a generally higher-dimensional feature space
Y . Denote the mean of the mapped sample vectors by

φ0 :=
1

m

m
∑

i=1

φ(zi), (4.2)

2The following notations and the derivation of kernel PCA are based on [164]. We deviate
only in so far as to incorporate the centering of the mapped training data into the derivation.
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and the sample covariance matrix in Y by

Σ̃ :=
1

m

m
∑

i=1

φ̃(zi)φ̃(zi)
t, (4.3)

where the notation
φ̃(z) := φ(z) − φ0 (4.4)

was introduced to account for centering with respect to the mapped sample
vectors in Y . We define the centered kernel by

k̃ : R
n × R

n→ R, k̃(x, y) := (φ̃(x), φ̃(y)). (4.5)

Inserting definitions (4.4) and (4.2), it can be expressed in terms of the original
kernel function (4.1):

k̃(x, y) = k(x, y) − 1

m

m
∑

k=1

(k(x, zk) + k(y, zk)) +
1

m2

m
∑

k,l=1

k(zk, zl). (4.6)

Moreover, we define the m×m kernel matrix K by:

Kij := k(zi, zj) = (φ(zi), φ(zj)), i, j = 1, . . . , m, (4.7)

and the centered kernel matrix K̃ by

K̃ij := k̃(zi, zj) = (φ̃(zi), φ̃(zj)), i, j = 1, . . . , m. (4.8)

From equation (4.6) it follows that

K̃ = K − KE − EK + EKE, where Eij =
1

m
∀ i, j = 1, . . . , m. (4.9)

4.3.2 PCA in Feature Space

The eigenvalues λk > 0 and eigenvectors vk ∈ Y \ {0} of the sample covariance
matrix Σ̃ can be expressed in terms of the mapped sample vectors as follows.

Due to the definition of the covariance matrix, its eigenvectors vk are part
of the subspace F ⊂ Y spanned by the centered mapped sample vectors:

vk =

m
∑

i=1

αk
i φ̃(zi). (4.10)

It will now be shown, that the expansion coefficients αk
i are related to the

eigenvectors of the centered kernel matrix K̃. Since the eigenvectors vk are
part of the subspace F , the eigenvalue equation Σ̃vk = λkvk is equivalent to its
respective projections onto the centered sample points:

φ̃(zj)
t Σ̃ vk = λk φ̃(zj)

t vk, ∀j = 1, . . . , m.

Using the centered kernel matrix K̃, one obtains:

m
∑

i,`=1

K̃j`K̃`i αk
i = mλk

m
∑

i=1

K̃ji α
k
i , ∀j = 1, . . . , m,
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or in matrix notation with αk = (αk
1 , . . . , α

k
m)t:

K̃2αk = mλkK̃αk.

The solutions of this equation are given by the solutions of the eigenvalue equa-
tion

K̃αk = mλkα
k.

Let λ̃k be the eigenvalues of K̃ and α̃k the corresponding normalized eigenvec-
tors. Then the eigenvectors of the sample covariance matrix Σ̃ are given by
λk = m−1λ̃k, and the eigenvector vk is given by (4.10) with a coefficient vector

αk = λ̃
−1/2
k α̃k. The latter normalization enforces the eigenvectors vk to have

unit length.
For a given input vector z, one obtains the nonlinear principal components

(associated with the sample vectors zi ∈ χ under the mapping φ) by projection
onto the eigenvectors V k in (4.10):

(

V k, φ̃(z)
)

=

m
∑

i=1

αk
i

(

φ̃(zi), φ̃(z)
)

=

m
∑

i=1

αk
i k̃(zi, z). (4.11)

With the relation (4.6), these nonlinear principal components can now be de-
termined in terms of the Mercer kernel k corresponding to the mapping φ.

4.3.3 Feature Space Eigenmodes for Different Kernels

Rather than choosing an appropriate nonlinear mapping φ, one chooses an
appropriate kernel function k which corresponds to an entire family of possible
nonlinearities via the identity (4.1).

Common choices of the kernel function are the Gaussian kernel

k(x, y) =
1

(2πσ2)
n
2

exp

(

−|x − y|2
2σ2

)

, x, y ∈ R
n, (4.12)

where the normalizing factor was introduced for future purposes, the homoge-
neous and inhomogeneous polynomial kernels

k(x, y) = (xty)d, k(x, y) = (xty + 1)d, (4.13)

where the degree d is a positive integer, and the sigmoid kernel

k(x, y) = tanh
(

a(xty) + b
)

, (4.14)

with parameters a and b.
In the following, we will visualize the first few kernel principal components

of a data set in R
2, for the Gaussian kernel with two values of σ and the

homogeneous polynomial kernel with three different degrees d.
Figure 4.3 shows the data set consisting of random samples from three

clusters in the domain [−1, 1]2, and theprojections onto the first few kernel
principal components for three homogeneous polynomial kernels with degrees
d = 1, d = 2 and d = 4, respectively. The case d = 1 is equivalent to a linear
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1st 2nd

1st 2nd 3rd

1st 2nd 3rd 4th 5th

Figure 4.3: Projections onto the first kernel principal components for
the homogeneous polynomial kernel (4.13). The degrees are d = 1 (top),
d = 2 (middle) and d = 4 (bottom). Note that the case d = 1 is identical
with the linear principal component analysis.

principal component analysis, which means that linear PCA can be considered
as a specific case of kernel PCA. For a given test point, these projections can
be used to determine its class membership.

Figure 4.4, top, shows projections onto the first 6 kernel principal compo-
nents for the Gaussian kernel (4.12) with a width of σ = 0.5. The various
projections each separate different clusters or subdivide the individual clusters.
Therefore a given sample point can be classified according to its projections
onto the various kernel principal components.

The width σ of the Gaussian kernel (4.12) represents the spatial scale at
which clusters are separated. Similar projections onto the kernel principal com-
ponents for a Gaussian kernel of smaller width σ = 0.1 are shown in Figure 4.4,
bottom. Again the clusters are separated by projections onto the feature space
eigenvectors. Yet the absolute value of the projection decreases more rapidly
with the distance from the data clusters.

In contrast to the projections for the polynomial kernel, the clusters for
the Gaussian kernel correspond to extremal values of the respective projec-
tions. This indicates that the Gaussian kernel is more adapted to the problem
of clustering and modeling data dissimilarity measures. A more mathematical
explanation for the advantages of such stationary (or translation-invariant) ker-
nel functions will be given in Appendix C, where we relate the Mercer kernel
approach to classical methods of density estimation.
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1st kernel p.c. 2nd kernel p.c. 3rd kernel p.c.

4th kernel p.c. 5th kernel p.c. 6th kernel p.c.

1st kernel p.c. 2nd kernel p.c. 3rd kernel p.c.

4th kernel p.c. 5th kernel p.c. 6th kernel p.c.

Figure 4.4: Projection onto the first 6 kernel principal components for
the Gaussian kernel (4.12) with σ = 0.5 (top) and σ = 0.1 (bottom).
The value of the projection (4.11) onto the respective kernel principal com-
ponent is visualized by level lines and shading, where dark and light areas
correspond to the extrema of each projection. Note that the various kernel
principal components separate the clusters and subclusters. A given point
in input space can now be classified according to these projections: The
three clusters can be separated by the first two projections, whereas the
other projections permit a further subdivision of the clusters.
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At this point, however, we will not go into detail about the meaning of
the different choices of the kernel function. In fact, we will only consider the
Gaussian kernel (4.12) in the following.

As we have seen, kernel PCA can be employed for classification and feature
extraction (cf. [163, 194]). In the following, we will make use of it to construct
a dissimilarity measure between shape vectors after mapping them to a feature
space Y with a nonlinear function φ.

4.4 Probabilistic Modeling in Feature Space

In the following, we will model the distribution P of the mapped sample vectors
in the feature space Y . As in all Mercer kernel methods, the mapping φ will be
modeled implicitly by a kernel function k, for which we will use the Gaussian
kernel (4.12). In particular, we will derive the energy E = − logP + const. We
will discuss the relation to kernel PCA and present a heuristic estimate for the
kernel width σ. A more detailed study of the proposed energy and its relation
to classical methods of density estimation is postponed to Appendix C, so as
not to break the flow of the argument.

4.4.1 The Feature Space Gaussian

Just as in the linear case — see the discussions in Section 3.3 — the kernel
PCA approach can be extended to a probabilistic framework.

Let χ = {zi ∈ R
n} be a set of training shapes, where n = 2N , N being

the number of spline control points. Assume they are aligned with respect
to similarity transformations and cyclic permutation of the control points, as
discussed in Section 3.1.4. In analogy to the Gaussian model in R

n presented
in Section 3.3, we now assume that the mapped training shapes are distributed
according to a Gaussian density in the feature space Y . Figure 4.5 shows a
schematic drawing of the original space and the mapping to the feature space
Y . The linear subspace spanned by the mapped training vectors is denoted by
F , its orthogonal complement in Y is denoted by F .

The energy associated with this Gaussian probability density in feature
space is given by:

Eφ(z) = φ̃(z)t Σ−1
φ φ̃(z) , (4.15)

where φ̃(z) = φ−φ0, where φ0 is given by the mean of the mapped vectors. As in
the linear case, this shape energy is a quadratic function — see equation (3.17).
This time, however, it is not quadratic in the input vector z, but quadratic in
the mapped vector φ(z). As we will see later on, the respective estimates in the
original space are fundamentally different.

As discussed in the linear case — see Section 3.3 — the estimated covariance
matrix Σ̂ is generally not invertible, since the mapped sample vectors only span
a linear subspace F in Y . We therefore revert to a regularized covariance matrix
Σφ, where the zero eigenvalues are replaced by a constant λ⊥:

Σφ = V Λ V t + λ⊥

(

I − V V t
)

. (4.16)
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Figure 4.5: Schematic diagram of the nonlinear mapping φ of the training
shapes from the original shape space R

n to a generally higher-dimensional
space Y = F

⊕

F . The probabilistic distance of a mapped point φ(z) to
the mapped training points can be decomposed into a distance from the
feature space F (DFFS) and a distance in the feature space (DIFS).

The diagonal matrix Λ contains the nonzero eigenvalues λ1 ≥ · · · ≥ λr of Σ̂,
and V is the matrix of the corresponding eigenvectors v1, . . . , vr.

Inserting (4.16) splits energy (4.15) into two terms:

Eφ(z) =
r
∑

k=1

λ−1
k

(

vk, φ̃(z)
)2

+ λ−1
⊥

(

|φ̃(z)|2 −
r
∑

k=1

(

vk, φ̃(z)
)2

)

. (4.17)

With expansion (4.10), we obtain the final expression for our energy:

Eφ(z) =
r
∑

k=1

(

m
∑

i=1

αk
i k̃(zi, z)

)2

·
(

λ−1
k − λ−1

⊥

)

+ λ−1
⊥ · k̃(z, z) . (4.18)

As in the case of kernel PCA, the nonlinearity φ only appears in terms of the
kernel function. This allows to specify an entire family of possible nonlinearities
by the choice of the associated kernel function. In the following, we will use
the Gaussian kernel (4.12) for k, the centered kernel k̃ being given by equation
(4.6). For a justification of this choice, we refer to Appendix C.

4.4.2 Relation to Kernel PCA

Just as in the linear case — see Section 3.3 and [131] — the regularization
(4.16) of the covariance matrix causes a splitting of the energy into two terms
(4.17), which can be considered as a distance in feature space3:

DIFS =
r
∑

k=1

λ−1
k

(

vk, φ̃(z)
)2

, (4.19)

3We want to point out, that in order to adhere to the corresponding literature, the term
“feature space” is used inconsistently: Sometimes it refers to the full space Y , whereas some-
times it refers to the subspace F ⊂ Y , which is spanned by the mapped training vectors.
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and a distance from feature space:

DFFS = λ−1
⊥

(

|φ̃(z)|2 −
r
∑

k=1

(

vk, φ̃(z)
)2
)

. (4.20)

Both of these distances4 are visualized in Figure 4.5.

For the purpose of pattern reconstruction in the framework of kernel PCA,
it was suggested to minimize a reconstruction error [162], which is identical
with the DFFS. This approach is based on the assumption that the entire
plane spanned by the mapped training data corresponds to acceptable patterns.
However, we believe that this is not a valid assumption: Already in the linear
case, moving too far along an eigenmode will produce patterns which have
almost no similarity to the training data, although they are still accepted by
the hypothesis. Moreover, the distance DFFS is not based on a probabilistic
model. In contrast to that, energy (4.18) is derived from a Gaussian probability
distribution. It minimizes both the DFFS and the DIFS.

4.4.3 On the Regularization of the Covariance Matrix

A regularization of the covariance matrix in the case of kernel PCA — as done
in (4.16) — was first proposed in [50] and has also been suggested more recently
in [175] under the name of probabilistic feature–space PCA.

The choice of the parameter λ⊥ is not a trivial issue. As discussed in Section
3.3.2, such regularizations of the covariance matrix have been proposed for the
linear case. There [131, 176], the constant λ⊥ is estimated as the mean of the
replaced eigenvalues by minimizing the Kullback-Leibler distance of the two
densities corresponding to the sample covariance matrix and its regularized
version. However, we believe that this is not neccessarily the optimal choice
of the regularization constant λ⊥. The Kullback-Leibler distance is supposed
to measure the error with respect to the correct density, which means that the
sample covariance matrix calculated from the training data is assumed to be
the correct one. Yet this is not the case because the number of training points
is limited. For essentially the same reason this approach does not extend to the
nonlinear case considered here5: Depending on the type of nonlinearity φ, the
covariance matrix is potentially infinite-dimensional such that the mean over
all replaced eigenvalues will be zero for any finite number of training samples.

As in the linear case, we therefore propose to choose

0 < λ⊥ < λr,

which means that unfamiliar variations from the mean (in feature space) are
less probable than the smallest variation observed on the training set. We fix
λ⊥ = λr/2 in all practical applications.

4In precise terminology DIFS and DFFS are squared distances.
5In [175], λ⊥ = 0.252 is fixed arbitrarily, which deviates from the choice (3.18), which the

same authors proposed in the linear case.
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4.4.4 On the Choice of the Hyperparameter σ

The last parameter to be fixed in the proposed energy (4.18) is the hyperpa-
rameter σ in the definition of the Gaussian kernel (4.12). Let µ be the average
distance between two neighboring data points:

µ2 :=
1

m

m
∑

i=1

min
j 6=i

|zi − zj |2 . (4.21)

In order to get a smooth energy landscape, we propose to choose σ in the order
of µ. In practice we used

σ = 1.5 µ

for most of our experiments. We chose this somewhat heuristic measure for the
following favorable properties: µ is insensitive to the distance of clusters as long
as each cluster contains more than one data point, it scales linearly with the
data points, and it is robust with respect to perturbation of the data points.

If outliers the training set contains outliers, i.e. clusters with only one sam-
ple, one could refer to the more robust L1-norm or more elaborate robust esti-
mators in (4.21). Alternatively it could be estimated by cross validation. Since
the optimal estimation of the kernel width σ is not the focus of our contribu-
tion, we will not elaborate on these issues. A further justification for the above
choice of the kernel width will be given at the end of Appendix C.2.

4.5 Density Estimate for Silhouettes of 3D Objects

Figure 4.6: Density estimate (4.15) for artificial 2D data. Distributions
of variable shape are well estimated by the Gaussian hypothesis in feature
space. We used the kernel (4.12) with σ = 1.5 µ.

Although energy (4.15) is quadratic in the space Y of mapped points, it is
generally not convex in the original space, showing several minima and level
lines of essentially arbitrary shape. Figure 4.6 shows artificial 2D data and the
corresponding lines of constant energy Eφ(z) in the original space. These indi-
cate that the Gaussian in feature space fundamentally differs from a Gaussian
in the original space: The proposed energy can capture distributions corre-
sponding to several clusters of data points — which may be the case if several
objects are included in the training set. Moreover, each individual cluster does
not need to be ellipsoidal, as must be the case for the model of mixtures of
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Gaussians. For an explanation of this behavior, we refer to Appendix C.

Since the input dimension of the data does not play an important role in the
derivation of the energy (4.18), we expect to find a similar capacity to model
arbitrary point distributions in higher dimensions as well.

In our application, we automatically fit a closed quadratic spline curve
around each object in a set of binarized views. All spline curves have N=100
control points, set equidistantly. The corresponding polygons defined by the
control points z = (x1, y1, . . . , xN , yN ) are aligned with respect to translation,
rotation, scaling and cyclic permutation — see Section 3.1.4. The resulting
data was then used to determine the density estimate Eφ(z) in (4.18).

For the visualization of the density estimate and the training shapes, all
data was projected onto two of the principal components ea and eb of a linear
PCA. Note that due to the projection, this visualization only gives a very rough
sketch of the true distribution in the 200-dimensional shape space. The energy
level lines are determined for the plane spanned by these two eigenvectors, i.e.
for the points z = λaea +λbeb, with different values of λa and λb. Therefore, the
correspondence of data points and energy level lines is only true up to variation
in the remaining eigenvector components.

Aligned contours Simple Gaussian Mixture model
Feature space

Gaussian

Figure 4.7: Model comparison. Density estimates for a set of left (•) and
right (+) hands, projected onto the first two principal components. From
left to right: Aligned contours, simple Gaussian, mixture of Gaussians,
Gaussian in feature space (4.15). Both the mixture model and the Gaussian
in feature space capture the two-class structure of the data. However, the
estimate in feature space is unsupervised and produces level lines which are
not necessarily elliptical.

Figure 4.7 shows density estimates for a set of right hands and left hands.
The estimates correspond to the hypotheses of a simple Gaussian and a mixture
of Gaussians in the original space, and a Gaussian in feature space. Although
both the mixture model and our estimate in feature space capture the two
distinct clusters, there are several differences: Firstly, the mixture model is
supervised — the number of classes and the class membership must be known
— and secondly, it only allows level lines of elliptical shape, corresponding to
the hypothesis that each cluster by itself is a Gaussian distribution. The model
of a Gaussian density in feature space does not assume any prior knowledge
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Two objects Aligned contours

Projection onto 1st and
2nd principal comp.

Projection onto 2nd and
4th principal comp.

Figure 4.8: Density estimate for views of two 3D objects. The training
shapes of the duck (white +) and the rabbit (black •) form distinct clusters
in shape space which are well captured by the energy level lines shown in
appropriate 2D projections.

and produces level lines which capture the true distribution of the data even in
the case that it does not correspond to a sum of hyperellipsoids.

This is demonstrated on a set of training shapes which correspond to differ-
ent views of two 3D objects. Figure 4.8 shows the two objects, their contours
after alignment and the level lines corresponding to the estimated energy den-
sity (4.15) in appropriate 2D projections. In particular, the projection on the
second and fourth principal component shows that the clusters associated with
the two objects do not overlap.

To demonstrate how the width σ of the kernel function (4.12) influences the
estimated density, Figure 4.9 shows the projected density plots of the energy
(4.18) for several values of σ. The set of training shapes contains four right
and four left hands. With decreasing granularity σ, the formation of more and
more clusters is facilitated.
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Figure 4.9: Influence of the kernel width on the energy. The figures
show the training set of four right and four left hands and the estimated
energy (4.18) for decreasing values of the kernel width σ. The kernel width
determines the spatial scale for the cluster formation.

4.6 Nonlinear Shape Statistics in Segmentation

In the previous sections, we have constructed a shape prior based on a nonlinear
mapping φ of the training shapes to a feature space Y and the hypothesis that
the mapped training vectors are distributed according to a Gaussian density in
this feature space Y .

In this section, we will combine this nonlinear shape prior with the diffusion
snakes introduced in Sections 2.4 and 2.5. The resulting segmentation approach
will drive the contour to segment a given input image by taking into account
both the image information and the statistical shape knowledge defined via the
Gaussian in feature space.

Let {zi} be a set of training shapes, aligned as discussed in Section 3.1.4.
We propose to minimize the total energy given by:

E(z) = Eimage (u, Cz) + α Eφ(ẑ), (4.22)

where the image energy is (in our case) given by the simplified diffusion snake
(2.24), and Eφ is the nonlinear shape energy (4.15) associated with the Gaussian
model in feature space. The argument ẑ denotes the control point vector z after
optimal alignment with respect to the mean of the training data:

ẑ =
Rθ zc

|Rθ zc|
,
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where Rθ denotes the optimal rotation of the centered control point polygon zc

with respect to the mean shape z̄. This prior alignment of the argument of Eφ

provides invariance of the shape prior with respect to similarity transformations
— see Section 3.4.2 for details.

As in Sections 2.5 and 3.5, we minimize the total energy (4.22) by gradient
descent to obtain a segmentation of a given input image, which at the same
time maximizes the grey value homogeneity in the regions separated by the
contour, and minimizes the shape dissimilarity measure, defined in terms of the
feature space energy Eφ and the intrinsic alignment with respect to similarity
transformations.

The gradient descent equations for the control point (xm, ym) are given by:

dxm(t)

dt
=

N
∑

i=1

(

B−1
)

mi

[ (

e+(si, t)−e−(si, t)
)

nx(si, t) + ν (xi−1−2xi+xi+1)
]

− α

[

dEφ(ẑ)

dẑ

dẑ

dz

]

2m−1

,

dym(t)

dt
=

N
∑

i=1

(

B−1
)

mi

[ (

e+(si, t)−e−(si, t)
)

ny(si, t) + ν (yi−1−2yi+yi+1)
]

− α

[

dEφ(ẑ)

dẑ

dẑ

dz

]

2m

. (4.23)

They extend the contour evolution equations in (2.30) by the last term, which
maximizes the similarity of the evolving contour with respect to the set of
training shapes.

The three terms in each of the equations in (4.23) can be interpreted as
follows (cf. Section 3.5):

• The first term forces the contour towards the object boundaries, by max-
imizing a homogeneity criterion in the adjoining regions, which compete
in terms of their energy densities e+ and e−.

• The second term enforces an equidistant spacing of control points, thus
minimizing the length measure (2.21). This prevents the formation of
cusps during the contour evolution.

• The last term in (4.23) maximizes the similarity of the evolving contour
with respect to the set of training shapes. It consists of two components:
The first one,

−dEφ(ẑ)

dẑ
, (4.24)

is the negative gradient on the energy (4.18) evaluated at the aligned
vector ẑ. It forces the aligned contour to descend into the nearest mini-
mum of the feature space energy — as depicted in the energy plots of the
previous section. The second component,

dẑ

dz
,
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arises due to the similarity invariant formulation of the energy. It accounts
for the rotation, translation and scaling of the contour, as explained in
Section 3.4.2.

For completeness, we will present the formulas for the gradient (4.24) of the
kernel energy (4.18). It is given by:

dEφ(z)

dz
= 2

r
∑

k=1

(

m
∑

i=1

αk
i k̃(zi, z)

)(

m
∑

j=1

αk
j

dk̃(zj , z)

dz

)

(

λ−1
k −λ−1

⊥

)

+ λ−1
⊥ k̃(z, z)

dk̃(z, z)

dz
.

The two gradients of the centered kernel function (4.6) are given by:

dk̃(zj , z)

dz
= k(z, zj)

(zj − z)

σ2
− 1

M

M
∑

l=1

k(zl, z)
(zl − z)

σ2

dk̃(z, z)

dz
= − 2

M

M
∑

l=1

k(zl, z)
(zl − z)

σ2
,

for the case of the Gaussian kernel (4.12).

4.7 Numerical Results

In this section, we present a number of experimental results obtained by com-
bining the diffusion snakes with the nonlinear shape prior, as detailed in the
previous section.

In contrast to the linear shape prior, the nonlinear one permits the forma-
tion of several local minima corresponding to different objects or different stable
views of a 3D object. Therefore, we generally iterate the gradient descent with-
out the prior until stationarity of the contour first. Then we align the obtained
contour to the mean of the training shapes with respect to similarity trans-
formation and renumbering of the control points, before we include the prior
and iterate until convergence. This guarantees that a maximum of information
is extracted from the image before the prior “decides” which of the respective
minima is the appropriate one. Obviously, the performance of this approach
is rather sensitive to the initial alignment of the segmenting contour before
the introduction of the prior. If the occlusion of a given object is too large,
then the contour may be aligned incorrectly and the prior will fail to improve
the segmentation. In this case, global optimization schemes might represent a
remedy. However, they have not been evaluated in this work. On the other
hand, local minimization schemes have several advantages: Firstly, they tend
to be much faster — especially for optimization problems of high dimension.
With 100 control points and variables ui for the mean grey value in each region,
we work in more than 200 dimensions. Secondly, the local method works well
in applications such as tracking, where the segmentation of one image frame
is generally a good initialization for segmenting the next frame. This will be
demonstrated in Section 4.7.4.
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(a) (b) (c) (d)

Figure 4.10: Linear versus nonlinear shape prior. (a) Aligned silhou-
ettes of three training shapes. (b) Mean shape. (c) Density plot for the
Gaussian model in shape space. (d) Density plot for the Gaussian model
in feature space. Both density plots contain the path of the segmenting
contour corresponding to the segmentation processes shown in Figures 4.11
and 4.12, respectively.

4.7.1 Linear versus Nonlinear Shape Prior

In the first example, we compare segmentation results obtained with the linear
shape prior, as explained in Section 3.5, to those obtained with the nonlinear
shape prior. For simplicity, we will only use three training shapes. The aligned
training shapes and the respective mean contour are shown in Figure 4.10, (a)
and (b). The mean shape corresponds to a morphing of the three shapes. Since
these are fairly different, the mean shape does not resemble any of the individual
shapes. This by itself is an indication that the Gaussian model in shape space
is not an adequate probabilistic model for the given training set. The three
training shapes and the estimated energies are shown in Figure 4.10 for the
linear model (c), and for the nonlinear one (d).

Figure 4.11 shows segmentation results obtained for a partly occluded image
of one of the objects. We first iterated the segmentation process without a prior
until stationarity of the contour (top right image). Starting with this initial-
ization we aligned the contour with respect to the training set and iterated the
segmentation process, once with the linear prior (middle row) and once with
the nonlinear prior (bottom row). The linear prior tends to pull the segmenting
contour towards the mean of the training shapes, which is the most probable
shape in the Gaussian model — see Figure 4.10, (c). In contrast, the nonlin-
ear shape energy comprises three minima corresponding to the three different
objects. Therefore, upon introduction of the nonlinear prior, the segmenting
contour is drawn into the nearest minimum corresponding to the object of in-
terest. In contrast to the linear prior, the nonlinear one permits a segmentation
of the object of interest which ignores the prominent occlusion.

Figure 4.12 shows that a similar result is obtained with the same prior
for an image of another object from Figure 4.10. In particular, the bottom
row shows the similarity invariance of the prior: Upon introduction of the
prior, the contour initially rotates, which seems to be energetically favorable
in the beginning. Without presenting further evidence, we note that similar
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Contour evolution without prior.

Evolution upon introduction of the linear prior.

Evolution upon introduction of the nonlinear prior.

Figure 4.11: Segmentation of a partly occluded image of the first object
from figure 4.10. While the linear prior tends to pull the contour towards
the mean shape, the nonlinear one clearly associates the contour with one
of the training objects. The paths of the two contour evolutions with the
linear and the nonlinear prior are shown in a projection into the respective
energy plots in Figure 4.10, (c) and (d).

segmentation properties can be demonstrated for partly occluded images of the
third object in the training set.

In order to visualize the effect of the prior on the segmentation process,
we projected the path of the evolving contour into the energy density plots in
Figure 4.10, (c) and (d). While the linear prior draws the contour towards the
center of the distribution (i.e. towards the mean shape), the nonlinear prior
drives the contour towards the nearest of several local minima. This property
permits to encode shapes of different classes in a single nonlinear shape prior.
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Contour evolution without prior.

Evolution upon introduction of the linear prior.

Evolution upon introduction of the nonlinear prior.

Figure 4.12: Segmentation of a partly occluded image of the second object
from Figure 4.10. In contrast to the linear prior, the nonlinear one does not
mix the 3 objects, such that a reconstruction of each of them is possible.
The projected contour paths in Figure 4.10, (c) and (d), show that the linear
prior draws the contour towards the center of the three objects, whereas the
nonlinear one draws it to one the nearest one of the three learned shapes.
Note that we used the same priors as in Figure 4.11.

4.7.2 Encoding Several Training Objects

The following example is an application of our method which shows how the
nonlinear shape prior can encode a number of different alphabetical letters and
thus improve the segmentation of these letters in a given image.

We want to point out that there exists a vast number of different methods
for optical character recognition. We do not claim that the present method is
optimally suited for this task, and we do not claim that it outperforms existing
methods. The following results only show that our rather general segmentation
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(a) (b) (c)

Figure 4.13: (a) Original image region of 200 × 200 pixels. (b) Subsam-
pled to 16 × 16 pixels. (c) Subsampled image upon bilinear smoothing.

(a) (b) (c)

Figure 4.14: (a) Aligned training shapes. (b) Projection onto the first
and third (linear) principal component. (c) Mean shape.

approach with the nonlinear shape prior can be applied to a large variety of
very different tasks.

A set of 7 letters and digits were segmented (several times) without any
shape prior in an input image as the one shown in Figure 4.13, (a). The obtained
contours were used as a training set to construct the shape prior. Figure 4.14
shows the set of aligned contours and their projection into the plane spanned
by the first and third principal component (of a linear PCA). The clusters
are labeled with the corresponding letters and digits. Again, the mean shape,
shown in 4.13, (c), indicates that the linear model is not an adequate model for
the distribution of the training shapes.

In order to generate a realistic task, we subsampled the input image to a
resolution of 16× 16 pixels, as shown in Figure 4.13, (b). Such a low resolution
is a common problem in digital image processing. We then presmoothed the
subsampled image by bilinear filtering as shown in Figure 4.13, (c).

Given such an input image, we initialized the contour, iterated the segmen-
tation process without prior until stationarity and then introduced either the
linear or the nonlinear shape prior. Figure 4.15 shows segmentation results
without prior, with the linear prior and with the nonlinear prior. Again, the
convergence of the segmenting contour towards one of the learnt letters is visu-
alized by appropriate projections onto the first two linear principal components
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 4.15: Initial contour (a), final segmentation without prior (b), seg-
mentation upon introduction of the linear prior (c), and final segmentation
with the nonlinear prior (d). Appropriate projections of the contour evo-
lution with nonlinear prior into the space of contours show the convergence
of the contour towards one of the learnt letters (e).

of the training contours.6

(a) (b) (c)

(a) (b) (c)

Figure 4.16: Initial contour (a), final segmentation without prior (b), and
final segmentation upon introduction of the nonlinear prior (c). With a sin-
gle nonlinear prior, a number of fairly different shapes can be reconstructed
from the subsampled and smoothed input image.

Figure 4.16 shows results of the segmentation approach with the same non-

6For better visibility, the projection planes were shifted along the third principal compo-
nent, so as to intersect with the cluster of interest.
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linear shape prior, applied to two more shapes. Again, the nonlinear shape
prior improves the segmentation results. This demonstrates that one can en-
code information on a set of fairly different shapes into a single shape prior.

4.7.3 Generalization to Novel Views

Essentially, in all of the above examples, the nonlinear shape prior merely per-
mitted a reconstruction of the training shapes. Although our approach is far
more elaborate, one could argue that for the above tasks a simple template
matching approach would be sufficient.

The power of the proposed shape prior lies in the fact that not only it can
encode several very different shapes, but also that the prior is a statistical prior.
This means that it has the capacity to generalize and abstract from the fixed
set of training shapes. The consequence is that — as in the case of the linear
prior — the respective segmentation process with the nonlinear prior is able to
segment novel views of an object which were not present in the training set.
This aspect of the nonlinear statistical shape prior will be demonstrated in the
following examples.

The training set consists of 9 right hands and 9 left hands, which are shown
in Figure 4.7. Figure 4.17 shows the results of a segmentation process without
and with the nonlinear shape prior. Due to the nonlinear prior the occlusion
is ignored and the silhouette of the hand is reconstructed in areas where it is
occluded. The last image shows the training shapes and the estimated shape
energy (4.18) in a projection onto the first two principal components (of a
linear PCA). Compared to the linear shape energy, shown in Figure 4.7, second
image, one can clearly distinguish the two valleys corresponding to the right
and left hands. Moreover, the path of the segmenting contour is projected (as
a white line) into the density plot. The final segmentation — indicated by a
white box — is clearly different from all the training shapes (black crosses).
The nonlinear prior does not simply pull the segmenting contour towards one
of the training shapes. Instead it pulls the contour towards the valleys of the
estimated distribution, i.e. the shaded areas in Figure 4.17, right side. This
clearly demonstrates the statistical nature of the proposed shape prior.

Similar results can be obtained for the segmentation of different views of
the two 3D objects presented in Figure 4.8. Given a set of training views of
these two objects, we determined the nonlinear shape energy plotted in Figure
4.8, right side. Figure 4.18 shows results obtained by a gradient descent on the
energy (4.22), first with no prior knowledge (α=0), and then with the nonlinear
prior (α > 0). A comparison shows that for views of both objects, the same
prior permits to deal with the background clutter, which — in the absense of a
prior — is included in the segmentation.

4.7.4 Tracking 3D Objects with Changing Viewpoint

The previous example demonstrated that it is possible to encode the appear-
ance of a given 3D object in terms of the silhouettes associated with different
2D projections. However, in the results of Figure 4.18, one can see small errors
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Initial Contour
Segmentation
without prior

Segmentation
with prior

Projected
density estimate

Figure 4.17: Generalization to novel views. Segmentation of a partially
occluded hand. The training set contains 9 right and 9 left hand shapes.
The training shapes and the estimated energy are shown in a projection onto
the first two eigenmodes of a linear PCA (right). The white line indicates
the path of the evolving contour upon introduction of the nonlinear shape
prior. Note that the final contour does not correspond to any of the training
shapes.

Without prior With prior Without prior With prior

Figure 4.18: Encoding several 3D objects in a single prior. The training
set contains several views of the two objects. It is shown together with
the estimated energy density in Figure 4.8. The segmentation results show
that the nonlinear prior permits to suppress most of the clutter which is
included if no prior is used.

2 views of a rabbit binarized aligned contours

Figure 4.19: Example views and binarization used for estimating the
shape density.
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Initial contour No prior With prior

Figure 4.20: Begin of the tracking sequence. Initial contour, segmentation
without prior, and segmentation upon introduction of the nonlinear prior
on the segmenting contour.

of the final segmentation with prior (around the ears of the rabbit, for exam-
ple). They indicate that the number of training shapes may not have been
sufficiently large for this application. The next example will indeed confirm
this presumption.

We will apply the nonlinear shape statistics in an example of tracking an
object in 3D with a prior constructed from a large set of 2D views. We bina-
rized 100 views of a rabbit — two of them and the respective binarizations are
shown in Figure 4.19. For each of the 100 views we automatically extracted
the contours and aligned them with respect to translation, rotation, scaling and
cyclic reparameterization of the control points — see Figure 4.19, right side.
We calculated the density estimate (4.15), which generates the nonlinear shape
prior in equation (4.22).

In a film sequence we moved and rotated the rabbit in front of a cluttered
background. Moreover, we artificially introduced an occlusion afterwards. We
segmented the first image by the simplified diffusion snake model until con-
vergence, before the shape prior was introduced. The initial contour and the
segmentations without and with prior are shown in Figure 4.20. Afterwards we
iterated 15 steps in the gradient descent on the full energy for each frame in
the sequence.7 Some sample screen shots of the sequence are shown in Figure
4.21. Note that the viewpoint changes continuously during the sequence.

The training silhouettes and the estimated shape energy are shown in two
different 2D projections in Figure 4.22. The path of the evolving contour during
the entire sequence corresponds to the white curve. In this projection, the curve

7The gradient of the shape prior in (4.23) has a complexity of O(rmn), where n is the
number of control points, m is the number of training silhouettes and r is the eigenvalue cutoff.
For input images of 83 kpixels and m=100, we measured an average runtime per iteration step
of 96 ms for the prior, and 11ms for the cartoon motion on a 1.2 GHz AMD Athlon. This
permitted to do 6 iterations per second. Note, however, that the relative importance of the
cartoon motion increases with the size of the image: For an image of 307 kpixels the cartoon
motion took 100 ms per step. Note, however, that we did not put much effort into runtime
optimization.
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Figure 4.21: Sample screen shots from the tracking sequence.

follows the distribution of training data well, interpolating in areas where no
training silhouettes are present. Note that the intersection of the white curve
in the center of Figure 4.22, left side, is only due to the projection on 2D. The
results show that — given sufficient training data — the shape prior is able
to capture fine details such as the ear positions of the rabbit in the various
views. Moreover, it generalizes well to novel views not included in the training
set and permits a reconstruction of the occluded section throughout the entire
sequence.

Projection onto 1st and 2nd
principal component

Projection onto 2nd and 4th
principal component

Figure 4.22: Tracking sequence visualized. Training data (•), estimated
energy density and the contour evolution (white curve) in appropriate 2D
projections. The evolving contour — see Figures 4.20 and 4.21 — is re-
stricted to the valleys of low energy induced by the training data.



94 CHAPTER 4. NONLINEAR SHAPE STATISTICS IN SEGMENTATION

4.8 Concluding Remarks

The previous examples showed that one can model the distribution of a set of
training shapes, after an appropriate nonlinear transformation φ, by a Gaussian
density in the feature space Y . Although conceptually this may appear to be a
minor modification of the original Gaussian model presented in Section 3.3, the
strong nonlinearity is able to generate a fundamentally different shape energy.
It permits to model multimodal distributions of essentially arbitrary shape, thus
generalizing the simple hyperellipsoid associated with the multivariate Gaussian
distribution. Compared to the model of mixtures of Gaussians, it is not limited
to a sum of hyperellipsoids. Moreover, no prior clustering or classification of
the different training shapes is necessary. Rather than specifying explicitly the
number of clusters (as generally done in the case of the mixture model), a single
granularity parameter, given by the kernel width σ, induces a spatial scale and
thereby implicitly determines the number of clusters for a given training set. In
several segmentation tasks, we were able to confirm that the resulting nonlinear
shape prior can simultaneously encode the silhouettes corresponding to several
objects, or the appearance of a real world 3D object in terms of its various 2D
projections. Combined in a variational segmentation approach, it can capture
even small details of shape variation without mixing different views. Moreover,
it is a statistical prior in the sense that it permits the segmentation of views of
an object which were not part of the training set. Appropriate 2D projections
demonstrate how the evolving contour is drawn to the valleys of the statistical
distribution induced by the training shapes.

From a Bayesian perspective, the crucial task underlying the construction
of a shape prior is to optimally estimate the probability density function from
a limited number of sample shapes. Therefore it may be of interest to study
shape priors based on other methods of density estimation such as the Parzen
estimator [151, 144]. Moreover, a more general investigation of the relation
between such distances in feature space as the one proposed in equation (4.15)
and classical methods of density estimation seems to be promising. Although
by far not exhaustively, we will investigate this latter question in Appendix C.



Chapter 5

Shape Statistics in Motion

Segmentation

In the present chapter, we will extend the Mumford-Shah model to the problem
of motion segmentation. In particular, we will present a spline based implemen-
tation which segments two consecutive frames of an image sequence not with
respect to the image intensity, but rather with respect to the motion informa-
tion. Essentially the variational approach consists in approximating the true
image motion by a model of piecewise homogeneous motion, where homogene-
ity is defined in terms of parametric motion models for each of the segmented
regions. We will show that in analogy to the grey value case, one can extend
the variational approach by a statistical shape prior which measures the dissim-
ilarity of the segmenting contour with respect to a set of training contours. The
resulting segmentation process is derived by gradient descent on a single energy
functional, which simultaneously updates the parametric motion models in the
separate regions and the position of the motion discontinuity represented by the
contour. Combined with the shape prior, the variational approach deforms the
contour in such a way as to maximize both the homogeneity of motion in each
region, and the similarity of the contour with respect to a statistically encoded
set of training shapes.

5.1 Introduction and Related Work

Based on the Mumford-Shah model and its cartoon limit, we presented in Sec-
tion 2.4 two spline-based segmentation approaches, namely the diffusion snake
(DS) and the simplified diffusion snake (SDS), which evolve a spline contour
so as to maximize the homogeneity with respect to the grey values in each
segmented region. While the DS measures the homogeneity by approximat-
ing with a function of piecewise smooth grey value, the SDS approximates the
image with a function of piecewise constant grey value.

However, in many real world scenarios, the object of interest may not be
easily discriminated from the background by its intensity appearance. Then a
segmentation approach which is purely based on the grey value information (of
a single frame) may fail, as shown in Figure 5.1. In particular, for biological

95
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Figure 5.1: Segmentations by image intensity in difficult lighting condi-
tions. Due to shadows and similar grey value information of object and
background, the segmentation by piecewise constant grey value with the
simplified diffusion snake fails to capture the object of interest — in this
case the rabbit or the duck.

vision systems such as the human vision, the motion information of an object
is an important cue. In the following we will therefore extend the homogeneity
measure of the Mumford-Shah functional to motion. In particular, we will
present two modifications of the diffusion snake which approximate the motion
information contained in an image sequence (given in terms of two consecutive
images) by a model of piecewise constant or piecewise affine flow fields.

Discontinuity-preserving motion estimation by variational models and re-
lated partial differential equations have a long tradition in computer vision. In
some approaches, the motion discontinuities are modeled implicitly in terms of
appropriate (non-quadratic) regularizers [137, 158, 15, 128, 113, 188]. Other
approaches pursue separate steps of variational motion estimation on disjoint
sets with a shape optimization procedure [157, 160, 73, 141].

For the case of grey value segmentation, there exist some region-based vari-
ational approaches with explicit discontinuities, as discussed in Chapter 2, and
extensions to color and texture segmentation [204]. The Mumford-Shah func-
tional (2.11) has been adapted to the problem of motion segmentation in [137],
however there the author again prefers an implicit model of the discontinuity
by reverting to approximations in terms of Γ-convergence as studied in [7].

In contrast, the following variational approach to motion segmentation is
based on an explicit contour description. It has several favorable properties:
Firstly, the gradient descent on a single energy functional jointly solves the prob-
lems of segmentation and estimation of piecewise affine motion fields. Moreover,
as in the case of grey value segmentation, the explicit representation of the con-
tour permits to incorporate a statistical prior on the shape of the segmenting
contour.

Prior knowledge in terms of motion models was incorporated in motion
estimation and motion segmentation by [140, 141]. In contrast to this approach,
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we focus on prior knowledge with respect to shape and thus directly address
the problem of determining accurate motion boundaries in a generative way.
Deformable shape models were combined with motion segmentation in [107].
However, there the authors did not propose a variational integration of motion
segmentation and shape prior. Rather they optimize a small number of shape
parameters by simulated annealing, which — unlike our approach — cannot be
applied to more general shape priors (such as the contour length).

5.2 Variational Motion Segmentation

Let f(x, t) be an image sequence which is assumed to be differentiable. We
assume moreover that the intensity of a moving point is constant throughout
time. Then we obtain a continuity equation given by the classical optic flow
constraint:

d

dt
f(x, t) =

∂

∂t
f + wt∇f = 0, (5.1)

where w = dx
dt denotes the local velocity. Given two consecutive images f1 and f2

from this sequence, we can approximate1 ∂
∂tf ≈ (f2−f1) and ∇f ≈ 1

2∇(f1+f2).

We propose to segment the image plane into areas Ri of parametric motion
wi = wi(ξi) by minimizing the energy functional

E(ξ, C) =
∑

i

∫

Ri

(

f2 − f1 +
wt

i

2
∇(f1+f2)

)2

dx + ν Ec(C) (5.2)

simultaneously with respect to both the contour C, which separates the regions
Ri, and the parameters ξ = {ξi} which define the motion in region Ri. Possible
motion models will be detailed in Section 5.3. The term Ec represents an
internal shape energy, such as the length of the contour or a more elaborate
shape dissimilarity measure, as detailed in the previous chapters.

With the extended velocity vector v =
(

w
1

)

and the spatio-temporal structure
tensor [14]

S = (∇3f)(∇3f)t, with ∇3f =

(

∇f
∂
∂tf

)

,

the energy (5.2) can be rewritten as

E(ξ, C) =
∑

i

∫

Ri

(

vt
i S vi

)

dx + ν Ec(C). (5.3)

In practice, the homogeneity term shows a bias towards velocity vectors
of large magnitude. As proposed in [72], we therefore perform an isotropy
compensation of the structure tensor by replacing S with S − λ3 I, where λ3 is
the smallest eigenvalue of S, and I is the 3×3 unit matrix.

1The discretization of spatial and temporal derivatives implys that velocities are measured
in pixels per frame.
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5.3 Piecewise Homogeneous Motion

The proposed motion energy (5.3) can be interpreted as an extension of the
Mumford-Shah model (2.11) to the problem of motion segmentation. Rather
than measuring the grey value homogeneity, it measures the homogeneity with
respect to parametric motion models in the respective regions. In the following
we will focus on the two cases of constant motion (2 parameters) and affine
motion (6 parameters). However, depending on the application other motion
models can also be used, provided that the extended velocity vector is linear in
the parameters. Examples are a 4-parameter model to describe Euclidean trans-
formations (translation, rotation and scaling) or an 8-parameter model, which
(in contrast to the affine one) permits to model rigid motion under perspective
projection (rather than orthographic projection).

However, a larger number of parameters does not neccessarily improve the
proposed method. Although a higher degree of freedom for the estimated mo-
tion fields permits more flexibility for modeling the image motion, the functional
(5.6) can expected to also have more local minima, which poses problems to
a local minimization scheme. Essentially the local minima are due to the fact
that the motion of a given image patch may be explained by several, rather dif-
ferent choices of parameters (if the number of parameters is large). In several
applications, we were able to confirm this difficulty.

For the model of piecewise constant motion, the extended velocity vector
for region Ri is given by:

vi = Tξi =







1 0 0

0 1 0

0 0 1






(ai, bi, 1)

t, (5.4)

where ai and bi denote the velocity in x- and y-direction. For the model of
piecewise affine motion, the velocity at a point (x, y) is given by:

vi = Tξi =







x y 1 0 0 0 0

0 0 0 x y 1 0

0 0 0 0 0 0 1






(ai, bi, ci, di, ei, fi, 1)

t, (5.5)

with 6 parameters defining an affine motion in region Ri.

Inserting these parametric motion models into the motion energy (5.3), we
get:

E(ξ, C) =
∑

i

ξt
i Qi ξi + ν Ec(C), (5.6)

where

Qi =

∫

Ri

T tST dx =

(

Q̄i qi

qt
i γi

)

.

Depending on the model, the submatrix Q̄i and the vector qi have the dimension
2 for the constant motion model and 6 for the affine model, respectively.
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5.4 Motion Competition

The motion energy (5.6) has to be simultaneously minimized both with respect
to the evolving contour and with respect to the motion parameters {ξ̄i}, where

ξi =
(

ξ̄i

1

)

is defined with respect to the chosen motion model — see equations
(5.4) and (5.5).

Minimization with respect to ξ̄i results in the linear equation:

Q̄i ξ̄i = −qi.

Due to the well-known aperture problem, the symmetric square matrix Q̄i may
not be invertible. In this case, we need to impose an additional constraint.
Choosing the solution ξ̄i of minimal length, amounts to applying the pseudo-
inverse Q̄†

i (cf. [72]):

ξ̄i = −Q̄†
i qi. (5.7)

Using Green’s theorem, minimization of (5.6) with respect to the contour
C results in the evolution equation (cf. Section 2.5):

dC

dt
= −dE

dC
=
(

e− − e+
)

n − ν
dEc

dC
. (5.8)

The last term minimizes the internal shape energy which will be treated in the
next section. The superscripts j = +/− denote the two regions to the left
and to the right of the respective contour point (in the sense of the contour
parameterization), and n is the normal on the contour pointing out of the
region R+.

The adjacent regions compete for the contour in terms of the associated
energy densities2

ej = vt
j S vj . (5.9)

This motion competition enforces regions of homogeneous optic flow, thus sep-
arating regions moving at different velocities wj .

For comparing different motion hypotheses, it is suggested in [72] to nor-
malize the cost function in (5.9) by replacing

ej = vt
j S vj with

vt
j S vj

||vj ||2 trS

in the evolution equation (5.8).3

5.5 Contour Evolution

As in the previous chapters, we will implement the motion competition algo-
rithm by an explicitly represented contour:

C : [0, 1] → Ω, C(s) =
N
∑

n=1

pn Bn(s), (5.10)

2In the equivalent probabilistic interpretation, this energy density represents the log-

likelihood of the probability that a given location is part of one or the other motion region.
3Although this modification is not strictly derived by minimizing energy (5.6), it tends to

slightly improve the contour evolution.
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with spline control points pn = (xn , yn)t and periodic quadratic B-spline basis
functions Bn. This permits a relatively fast numerical optimization. Moreover,
it facilitates the incorporation of a statistical shape prior on the control point
vector z = (x1, y1, . . . , xN , yN )t, as explained in Chapters 3 and 4.

For the internal shape energy Ec, we will use the contour length measure
(2.21) and the similarity invariant shape prior (3.23) with the linear Gaussian
model (3.17). As in the case of grey value segmentation, the motion segmenta-
tion can also be combined with a nonlinear shape prior based on the Gaussian
in feature space, as introduced in Section 4.4. For the time being, we have not
done this.

As in the case of the corresponding grey value model, the curve evolution
(5.8) can be converted to an evolution equation for the spline control points by
inserting the definition (5.10) of the contour as a spline curve. The equation
is discretized with a set of nodes si along the contour, where si is chosen as
the point where the respective spline basis function Bi attains its maximum.
Including the contribution of the internal shape energy, we obtain for the control
point (xm, ym):

dxm(t)

dt
=

N
∑

k=1

(

B−1
)

mk

(

e+(sk, t) − e−(sk, t)
)

nx − ν

(

dEc

dz

)

2m−1

,

dym(t)

dt
=

N
∑

k=1

(

B−1
)

mk

(

e+(sk, t) − e−(sk, t)
)

ny − ν

(

dEc

dz

)

2m

,

(5.11)

where nx and ny denotes the x- and y-coordinates of the normal vector, and
the indices 2m−1 and 2m refer to the components of the given vector z which
are associated with the control point (xm, ym). The cyclic tridiagonal matrix
B contains the spline basis functions evaluated at the nodes: Bij = Bi(sj).

The two terms in (5.11) can be interpreted as follows:

• The first term forces the contour towards the boundaries of the homo-
geneous motion fields by minimizing the motion inhomogeneity in the
adjoining regions, measured in terms of the energy density (5.9).

• The last term minimizes the internal shape energy — in our case the
length of the contour (2.21), a shape dissimilarity measure of the form
(3.23), or a linear combination of both.

5.6 Experimental Results

Given two consecutive images of a motion sequence4, we minimize the total
energy (5.6) by iterating the contour evolution equation (5.11) in alternation
with an update of the motion estimation (5.7) in the adjoining regions.

4All figures will only show the first of the two consecutive images. With displacements of
at most 5 pixels for an image of size 2562, the differences between the two frames are almost
imperceivable if they are put next to eachother.
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Initial contour Final contour
Estimated flow
field (closeup)

Binarized image

Figure 5.2: Initial and final contour obtained by gradient descent on the
functional (5.6) with the model (5.4) of piecewise constant motion for a
moving apple on a differently moving background. A zoom of the esti-
mated motion field corresponding to the final contour shows that the two
separated motion fields are fairly similar. A binarization of the first input
image indicates that a segmentation of the apple based on the hypothesis
of piecewise constant intensity would fail.

5.6.1 Intensity-based versus Motion-based Segmentation

The first example in Figure 5.2 shows an artificial sequence of an apple which
is translated, with the background translated at a different velocity and in a
different direction. This can be considered a simplified synthetic analogue with
the case of a moving object and a moving camera. The Initial and the final
contour show how the two differently moving regions are separated during the
minimization. The final flow field estimation shows the two different motion
fields which were estimated.

Although inspired by a grey value segmentation approach, the proposed
motion segmentation is substantially different from grey value segmentation in
that it segments the image plane into regions of constant motion rather than
constant grey value. Segmenting the previous example of the apple sequence
based on the hypothesis of piecewise constant grey value would entirely fail as
can be seen from the corresponding binarized image in Figure 5.2, last image:
About half of the apple has disappeared although the background structure is
still quite prominent.

The completely different properties of grey value and motion segmentation
are also demonstrated on the example in Figure 5.3, where the rabbit is moving
with respect to the background. Due to the difficult lighting conditions in this
example, the image grey value is not a good cue for segmentation and therefore
segmentation based on grey value constancy fails — see Figure 5.3, bottom
right image. The segmentation based on motion constancy (with the same
initialization) gives a better result, as portrayed by a number of intermediate
steps in Figure 5.3, which were taken during the gradient descent sequence on
functional (5.6) with the model (5.4) of piecewise constant motion.
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Initial contour Intermediate 1 Intermediate 2

Intermediate 3 Final segmentation Grey value only

Figure 5.3: Motion segmentation versus grey value segmentation. Con-
tour evolution for model (5.6) of piecewise constant motion (5.4) and final
contour for model (2.24) of piecewise constant intensity (bottom right).
Due to the difficult lighting conditions, the image intensity is not a reliable
cue for segmentation.

Initial (affine) Affine motion Constant motion Constant intensity

Figure 5.4: Model comparison. Initial contour and final segmentations ob-
tained by gradient descent on the functional (5.6) for the models of piecewise
affine motion (5.5), piecewise constant motion (5.4), and for the correspond-
ing model of piecewise constant intensity. The input images show a duck
figure rotated on a newspaper. Note that the affine motion model captures
the rotation and thereby correctly segments the duck, whereas the model
of constant motion only captures those parts which show approximately
constant motion. The segmentation by intensity is completely misled by
background clutter and the difficult lighting conditions.
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5.6.2 Piecewise Constant versus Piecewise Affine Motion

The previous examples showed, that in cases where the object motion is differ-
ent from the background motion, a segmentation by piecewise constant motion
is successful, even though the object is not easily discriminated from the back-
ground by its appearance.

Yet, as in the case of piecewise constant grey value, segmentation by piece-
wise constant motion can only be successful as long as the corresponding hy-
pothesis applies to the given image (sequence). If instead the object is rotating
or moving towards the camera such that the motion field is divergent, then
the assumption of piecewise constant motion is violated and the corresponding
segmentation approach will fail. In this case, a model based on piecewise affine
motion should be more successful.5 This is demonstrated in Figure 5.4. The
figure of the duck is rotating on a static newspaper. Even for the human eye
the duck is hardly discernible, due to similar intensities of object and back-
ground and the lighting conditions. For the same initial contour (first image),
we performed a gradient descent on the functional (5.6) for piecewise affine
motion (5.5) and piecewise constant motion (5.4), and on the functional (2.24)
for a segmentation by piecewise constant intensity. For the motion segmenta-
tion the respective contour and the estimated flow field were superimposed on
the image. The segmentation by piecewise affine motion not only successfully
segments the object, but also captures the rotatory motion and correctly de-
termines the center of rotation. In contrast, the model of piecewise constant
motion only segments a part of the object which complies with the assump-
tion of constant motion. The segmentation by constant intensity is completely
misled by the background clutter and effects of shading, as shown by the last
image of Figure 5.4.

5.6.3 Convergence over Large Distances

The examples of the rabbit in Figure 5.3 and the duck in Figure 5.4 show
a central property of our approach: Since it is a region-based approach, the
contour tends to converge over fairly large distances. This aspect is highlighted
by the example of a moving bus in an otherwise static scene in Figure 5.5.

During the gradient descent minimization both the contour and the estimate
of the flow field are improved simultaneously. The flow fields estimated for the
initial and the final contour are shown in the last two images of Figure 5.5. Note
that the final estimate of the motion of the bus is strongly improved compared
to the initial one.

5.6.4 Moving Background

A central difficulty in motion estimation is the case of separating differently
moving regions. In practical applications, this problem arises if the camera
itself is moving. Commonly [140, 15] the camera motion is eliminated by de-
termining the dominant motion in a robust estimation framework [98] first and

5Apart from scaling, rotation and translation, the affine model also encompasses shearing,
which permits to model 3D rotation of planar objects under orthographic projection.
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Figure 5.5: Convergence over large distances. Contour evolution for two
images of a moving bus. The estimated flow field corresponding to the
initial and final contour are shown in a close-up. The estimated object
motion is gradually improved during the contour evolution.

then subtracting the latter. However, the assumption that the moving back-
ground fills the dominant part of the image plane may not always be valid.6

The variational approach (5.6) does not rely on any assumptions about the
size of the segmented motion fields. In fact, examples such as the moving bus
sequence in Figure 5.5 show that the object motion does not even have to fill the
dominant part of the initially enclosed area for the minimization to converge
correctly. This property is due to the fact that both the contour evolution (5.8)
and the motion estimation (5.7) were derived by minimizing a single energy
functional. It is in fact the non-robust estimation of the motion inside and
outside the contour which defines the driving force for the contour via the
energy densities e+ and e− in the evolution equation (5.8). In the example in
Figure 5.5, a robust estimation of the motion inside the initial contour would,
for example, estimate a zero velocity and the contour would not evolve towards
the bus.

The following examples show that similar convergence properties of our
method can be observed if both the object and the background are moving.
Figure 5.6 shows a snapshot of a segment of wallpaper in which a circular
area in the center was artificially rotated in one sense and the background in
the opposite sense, as shown by the ground truth motion field in Figure 5.6,
bottom right. The initial contour was placed in a location where less than half
of its inside area overlapped the motion inside the circular area. The contour
evolution indicates how the two affine motion fields are progressively separated
during the energy minimization. Not only does the final segmentation match

6In [15], for example, it is stated that the robust estimation of the background motion
works well on an artificial sequence (involving translatory motion only) if the background
motion takes up at least 60% of the image plane.
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Wallpaper Shot Initial contour Intermediate 1

Intermediate 2 Final segmentation True motion field

Figure 5.6: Separating two affine motion fields by gradient descent on
the functional (5.6) for the piecewise affine motion model (5.5). The input
sequence shows a wallpaper with a circular area in the center rotated in one
sense, and the background rotated in the opposite sense, as indicated by
the true motion field on the bottom right. During energy minimization the
estimated motion fields are continuously improved, the two motion fields
are separated, and the circular area is correctly segmented. Note that the
circular area cannot be detected based on grey value information.

the rotated area exactly, but also the estimated motion reflects the ground
truth well. Note that this example demonstrates the fundamental difference
between the proposed motion segmentation and the corresponding grey value
segmentation approach introduced in Chapter 2: The rotated section of the
wallpaper does not differ from the rest of the image by its grey value information
— see Figure 5.6, top left.
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Figure 5.7: Example from the well-known Avengers sequence. Energy
minimization for the model of piecewise constant motion for the example
of a moving car captured by a moving camera. Despite large and not
exclusively translatory motion and little grey value structure of car and
street, the final segmentation is rather good. Note that the discrepancy
between car and street is due to the shadow moving with the car.

Figure 5.7 shows an example of a moving car from the well-known Avengers
sequence.7 The car performs a more or less translatory motion. Due to the
camera motion, the background also performs a motion which (apart from a
zoom) is mostly translatory. Several steps in the energy minimization process
show, that the contour converges towards the object boundaries and that the
two motion fields are progressively separated. Minor discrepancies between the
final contour and the object boundaries probably have several reasons: Firstly,
the motion hypothesis of piecewise constant motion is only a rough approxima-
tion of the true motion. Secondly, the car motion in this sequence is fairly large
(around 4 pixels in most areas). And thirdly, both the white car and the grey
street have little grey value structure. Discrepancies between car and street are
also due to the shadow moving with the car.

5.6.5 Motion Segmentation with a Statistical Shape Prior

In cases of ambiguous motion information, e.g. due to missing or misleading
information, the proposed motion segmentation may fail to converge to the
correct result. If the object of interest is known, one may solve this problem by
introducing some prior knowledge into the segmentation approach.

In the next example, the object of interest is a moving hand, performing
a more or less translatory motion. As explained in Sections 3.3 and 3.4, a
statistical shape energy was derived from a set of 10 hand shapes, none of
which corresponds to the hand in the image sequence.

7We thank P. Bouthemy and his group for providing us with the image data from the
Avengers sequence.
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Initial Evolution without prior Prior “on”

Further evolution with prior Initial flow Final flow

Figure 5.8: Effect of the statistical shape prior for a hand moving to the
bottom left. The statistical shape prior is introduced upon stationarity
after the fourth frame. Initial and final estimates of the flow field show the
improved separation of the two motion fields. The final segmentation is cut
at the wrist, because the training shapes were all cut there for simplicity.

We will demonstrate the effect of this shape prior on the motion segmenta-
tion process by introducing the shape energy in two different ways.

Switching on the Shape Prior During the Contour Evolution

First we minimize the energy (5.6) without any shape prior (α=0) until station-
arity — see Figure 5.8, fourth image. Then we apply the cyclical permutation
of spline control points which — given the optimal similarity transformation —
best aligns the present contour with the mean of the training contours — see
Section 3.1.4. Finally, we switch on the shape prior (α > 0) and minimize the
total energy (5.6) until convergence — see Figure 5.8, eighth image.

The result shows that the shape prior improves segmentation in areas where
the motion information is not strong enough to drive the segmentation process
— such as in the area between the fingers.

The estimated flow fields corresponding to the initial and the final con-
tour show that the energy minimization separates the regions corresponding
to different motion. During the contour evolution the corresponding motion
estimation is gradually improved.

Contour Evolution in the Familiar Subspace

Rather than introducing the shape prior during the evolution, it can be incorpo-
rated from the very start. For the same example sequence, a contour evolution
with the shape prior is shown in Figure 5.9. The evolution of the estimated,
piecewise constant flow field associated with the contour evolution shows that
the estimate of the object motion progressively improves during the contour
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Figure 5.9: Motion segmentation with statistical shape prior. During
the contour evolution (top row, from left to right) the motion estimates
(bottom) are progressively updated. Compared to the example in Figure
5.8, the shape prior is incorporated from the very start.

evolution — see Figure 5.9, bottom row. In particular, the final segmentation
clearly separates the static background from the moving hand shape. Due to
the shape prior, the contour is restricted to the subspace of familiar contours
throughout the evolution process.

Statistical Shape Prior in Piecewise Affine Motion Segmentation

The previous examples demonstrated the effect of the shape prior on the seg-
mentation process associated with the piecewise constant motion model. Figure
5.10 shows an example of a statistical shape prior favoring hand shapes in a
segmentation process with the model (5.5) of piecewise affine motion.

Again the contour is restricted to the submanifold of familiar shapes. It
evolves so as to separate differently moving regions while at the same time
complying with the prior shape knowledge. The segmenting contour and the
estimated piecewise affine flow field are superimposed on one of the two input
images. While the initially estimated affine flow fields inside and outside the
contour are fairly similar, they are progressively separated during the contour
evolution. In the final image, the static background and the rotatory hand
motion are well captured.

5.6.6 Dealing with Occlusion

In the above examples of a moving hand, the statistical shape prior improved
the convergence towards the desired segmentation — see Figure 5.8.

In a final example, we go one step further and artificially perturb the motion
information by partially occluding the moving hand with a static structured ob-
ject. Figure 5.11 shows the initial and the final contour obtained by minimizing
the total energy (5.6) without any shape prior (α=0). Note that the contour
separates moving from non-moving regions, given the constraint that no split-
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Figure 5.10: Knowledge-driven motion segmentation. Gradient descent
evolution for the functional (5.6) with the piecewise affine motion model
(5.5) and a statistical prior (3.23) favoring hand shapes. The input sequence
is a rotating hand in front of a static background. During the contour
evolution the estimated motion fields are continuously improved, while the
statistical prior restricts the contour to the submanifold of familiar shapes.

ting of the contour is permitted. For a comparison, the right image shows a
similar segmentation obtained with a larger number of 400 control points. It
shows that all moving regions are segmented at a higher spatial resolution.

Figure 5.12 shows a contour evolution obtained with a statistical shape prior
on the same sequence of a moving hand partly occluded by a static bar. Due
to the shape prior, the occlusion is ignored although it is not in accordance

Initial contour Final (100 points) Final (400 points)

Figure 5.11: Motion segmentation without shape prior for a moving hand
occluded by a static object. Note that the contour separates moving and
non-moving regions. A contour splitting is not permitted. The image on
the right shows the final segmentation for a spline curve of 400 rather than
100 control points, which permits a higher spatial resolution.
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Initial Intermediate 1 Intermediate 2

Intermediate 3 Intermediate 4 Final

Figure 5.12: Motion segmentation with statistical shape prior for a mov-
ing hand occluded by a static object. Note that in this example it appears
energetically favorable for the contour to decrease in size during the first it-
eration steps (2nd and 3rd image). Compared to the segmentation without
shape prior in Figure 5.11, center, the effect of the occlusion is compensated
by the statistical prior.

with the hand motion. The shape prior permits a reconstruction of the hand
silhouette in areas which do not comply with the motion model.

5.7 Concluding Remarks

In this chapter, we presented an extension of the Mumford-Shah model to the
problem of motion segmentation. In particular, we detailed an implementation
analogous to the diffusion snake which permits to segment the image into piece-
wise homogeneous motion fields. We presented results for the segmentation of
piecewise constant and piecewise affine motion fields. We demonstrated by sev-
eral examples, that the motion segmentation and the corresponding grey value
segmentation are fundamentally different. In particular, objects which can-
not be discerned from the background by their appearance can be segmented
satisfactorily due to their relative motion.

We proposed two internal shape energies:

• The first one is a purely geometric prior on the length of the contour
which is commonly used for modeling elastica such as the classical snake.
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It induces a rubber-band like behavior of the segmenting contour and
prevents the formation of cusps during the evolution. This shape regular-
ization permits to handle ambiguities in the motion information due to
noise. Moreover, it compensates for missing motion information, induced
for example by the well-known aperture problem, which essentially states
that motion information cannot be obtained in directions of constant grey
value.

• The second internal energy is a statistical shape energy. Just as in the grey
value case, the minimization of this shape dissimilarity measure effectively
restricts the evolving motion discontinuity set to a submanifold of familiar
shapes. We showed that this facilitates the segmentation of more complex
moving shapes. Moreover, it permits to compensate for misleading motion
information such that occlusions of the moving object are ignored.

Compared to other approaches, both the evolution of the segmenting con-
tour and the estimation of the affine motion are derived from a single energy
functional. This means that neither is there any heuristic method to displace
the contours, nor do we need to revert to elaborate robust estimators to elimi-
nate the (dominant) motion. The approach involves no prior spatial or temporal
smoothing of the image sequence. All derivatives are determined by finite differ-
ences. Due to the explicit representation of the contour, the algorithm is fairly
fast. For example, the contour evolution for the Avengers sequence shown in
Figure 5.7 took less than 15 seconds to converge on a 300 MHz SUN Ultra 10.8

Real-time implementations are therefore conceivable.
The proposed approach can be extended and improved in several ways:

• Due to the linearization in the optic flow constraint (5.1), the approach
cannot cope with large motion. This can be solved by a multiscale imple-
mentation for the motion estimates in each region, as done for example
in [128].

• For the internal shape energy one can choose more elaborate shape dissim-
ilarity measures such as the one introduced in Chapter 4. As in the case
of grey value segmentation this would permit to segment several classes
of more complex shapes on the basis of their relative motion.

8The evolution for the piecewise affine model is somewhat slower, because matrix averaging
and matrix inversion are done for a larger matrix (of size 6 × 6 rather than 2 × 2). Again, no
particular emphasis has been put on runtime optimization.
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Chapter 6

Conclusion

6.1 Summary

Variational Combination of External and Internal Information

The central topic of this work is the integration of low-level segmentation cues
and high-level shape dissimilarity measures in a variational framework. Segmen-
tations of a given grey value input image f (or image sequence) are obtained
by minimizing the total energy

E(u, C) = Eext(u, C) + αEint(C) (6.1)

simultaneously with respect to a segmenting contour C and with respect to a
piecewise homogeneous approximation u of the image intensities (or the image
motion).

Diffusion Snakes

In Chapter 2, we propose to use the external energy Eext of the Mumford-
Shah functional [136] and its cartoon limit, which aim at approximating the
input image f by a piecewise smooth (or piecewise constant) function u. For
the internal energy Eint we use the length measure which is typical for curves
known as elastica, such as the classical snakes. Due to the underlying diffusion
process in the energy minimization we named these hybrid models diffusion
snakes.

We experimentally verify several properties of the diffusion snakes:

• The two problems of image smoothing and optimal contour placement are
separated by the two variables u and C in the Mumford-Shah functional.
This permits a smoothing of the input image which does not destroy
valuable information such as the precise location of edges and corners. The
resulting segmentation process can therefore reconstruct the silhouette of
an object in a noisy input image without blurring its edges or corners.

• Due to the region-based formulation of the external energy, the contour
converges over fairly large distances during the minimization, although
there are no balloon-type forces in the functional which would produce
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an artificial expansion or contraction of the contour. As shown in exam-
ple segmentation processes, the contour can therefore both expand and
contract for the same parameter choice.

• The internal energy of the elastica generates a rubber-band like behavior
of the contour. This prevents the formation of cusps during the evolution
of the spline control points.

• The implementation of the segmenting contour as an explicit spline curve
and the local optimization by gradient descent permit a relatively fast
numerical implementation. Therefore the proposed method is amenable
to real-time implementations.

Linear Shape Statistics for Diffusion Snakes

In Chapter 3, we extend the diffusion snake functionals by an internal energy
which incorporates a statistical prior on the shape of the segmenting contour.
This prior is based on the assumption that the control point vectors associ-
ated with a set of training silhouettes are distributed according to a Gaussian
probability density.

We present a method of automatically extracting and aligning a set of train-
ing shapes, where alignment is done simultaneously with respect to similarity
transformations and with respect to renumbering of the control points. We
propose to regularize the covariance matrix in order to obtain a Gaussian prob-
ability distribution which is nonvanishing in the full space of spline contours.
We discuss advantages and disadvantages of this approach over subspace meth-
ods such as principal component analysis. In particular, we suggest a choice
of the regularizing constant which differs from that proposed in probabilisitic
principal component analysis [131, 176]. We argue that due to this regular-
ization, sensible shape priors can be constructed even from very small training
sets.

We discuss various methods to incorporate invariance with respect to cer-
tain transformations of the shape into the prior. In particular, we present a
closed-form variational integration of similarity invariance on the basis of the
control point polygons. By aligning the evolving contour to the training set
before applying the shape energy, we obtain a variational approach which is
entirely parameter-free. In contrast, the local optimization of explicit pose pa-
rameters requires additional tuning of associated gradient descent parameters,
and introduces additional local minima and possible numerical instabilities.
In segmentation tasks we confirm the improved convergence obtained by the
closed-form integration of invariance.

Numerical experiments demonstrate several properties of the resulting seg-
mentation process:

• Increasing the weight of the shape prior results in a progressive suppres-
sion of unfamiliar shape deformations during the segmentation process.

• Due to the shape prior, the evolving contour is effectively restricted to a
submanifold of familiar shapes.
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• The successive application of shape priors constructed from different train-
ing sets permits to parse a given input image into its constituent compo-
nents.

• The statistical shape prior compensates for various cases of missing or
misleading low-level information, thereby enabling the segmentation of

– objects in front of a cluttered background,

– partially occluded objects and

– objects in images which are corrupted by noise.

• Due to the variational integration of similarity invariance, the evolving
contour is entirely free to translate, rotate and expand or shrink, while
its shape is always restricted to the domain of familiar shapes.

Nonlinear Shape Statistics Based on Mercer Kernels

In Chapter 4, we introduce a novel statistical shape prior which is based on the
assumption that the training shapes are distributed according to a Gaussian
density after a nonlinear mapping to an appropriate feature space. Due to the
strong nonlinearity, this differs considerably from the former assumption of a
Gaussian distribution in the original space. The nonlinearity is modeled im-
plicitely in terms of Mercer kernels [130, 49]. The resulting model constitutes an
extension of kernel principal component analysis [164] to a probabilistic frame-
work. It was first proposed in [50] and has more recently also been suggested
in [175]. The corresponding nonlinear shape energy contains a single scale
parameter, namely the width of the Gaussian kernel σ, which determines the
granularity of the model. An automatic estimate of this parameter is presented.

Expressed in the original space, the shape dissimilarity measure can encode
arbitrary sets of training shapes. These may form several clusters and banana-
or ring-shaped distributions. Numerical experiments demonstrate several prop-
erties of the resulting segmentation process:

• Like the linear prior, the nonlinear one suppresses unfamiliar deformations
of the evolving contour during the segmentation process.

• In contrast to the linear prior, the nonlinear one can encode in an entirely
unsupervised manner shapes of different classes, such as those correspond-
ing to different objects or to different views of a 3D object. The segmen-
tation process permits a precise reconstruction of occluded or cluttered
versions of very different simultaneously encoded shapes.

• On the one hand, the prior does not mix shapes of different classes, but
on the other hand, it is still a statistical prior in the sense that it can
generalize to novel views which were not contained in the training set.
This is demonstrated by appropriate 2D projections of the training shapes,
the evolving contour and the estimated density. The balancing between
not mixing different classes and generalizing to novel views is determined
by the kernel width σ.
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• The nonlinear shape prior is capable of encoding the 3D structure of an
object in terms of the silhouettes associated with several 2D views of the
object. Incorporated into the segmentation process, it permits to recon-
struct in detail the silhouette of a partially occluded 3D figure, viewed
from various angles in a tracking experiment with cluttered background.

Motion Competition

Having evaluated different statistical shape dissimilarity models for the internal
energy Eint, we present a modification of the external energy Eext in Chapter 5.
Rather than measuring the piecewise homogeneity of the grey value in a set of
regions — as done by the Mumford-Shah functional — we propose to measure
the homogeneity of motion in the respective regions. Compared to most other
methods of motion segmentation, both the evolution of the motion boundary
and the estimation of the motion vectors for each region are derived by min-
imizing a single energy functional. The obtained contour evolution equation
shows that neighboring regions compete in terms of the respective motion en-
ergy densities. We therefore named the resulting segmentation process motion
competition.

The motion information is determined on the basis of the spatio-temporal
derivatives which are obtained from two consecutive images of an image se-
quence, with no prior smoothing of the input images being neccessary. Motion
homogeneity in the separate regions can be defined in terms of various para-
metric motion models. In our application we detail this for the segmentation
of the image plane into regions of piecewise constant or piecewise affine motion.
As in the case of grey value segmentation, we implement the boundary as a
closed spline curve. This permits to easily introduce a statistical prior on the
shape of the segmenting motion boundary.

Experimental results show several properties of the proposed method:

• The motion segmentation process differs fundamentally from the corre-
sponding grey value segmentation process. Numerous examples show that
objects may be segmented on the basis of their relative motion, although
they are not easily (or even not at all) distinguishable from the background
by their appearance. In examples of rotating objects, we show that the
model of piecewise constant motion permits to segment those parts which
correspond to the hypothesis of constant motion, whereas the model of
piecewise affine motion permits a segmentation of the complete object.
In contrast, the model of piecewise constant grey value may completely
fail, for example due to difficult lighting conditions or similar grey values
of object and background.

• Minimization of a single energy functional results in the combined op-
timization of the motion boundary and the motion parameters of each
region. The motion estimates are gradually improved, while the contour
separates the two different motion fields.

• The method permits to segment differently moving regions, as in the case
of a moving object captured by a moving camera. Real-world applications
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show that the method is fairly robust to deviations from the parametric
model hypothesis, to weak grey value structure and to fairly large motion
vectors of several pixels.

• Due to the region-based formulation, the contour converges over fairly
large distances to the final segmentation.

• As in the case of grey value segmentation, the introduction of a statis-
tical shape prior effectively restricts the evolving motion boundary to a
subspace of familiar shapes. The prior compensates for missing motion
information, as due to the aperture problem. In particular, we show that
the shape prior enables the segmentation of a moving object even if part
of the motion information is occluded by a static object.

6.2 Limitations and Future Work

Improvements on the Shape Metric

A central property of statistical priors is their capacity to generalize and ab-
stract from a finite (possibly very small) set of training samples. In our model,
this generalization arises by an interpolation (or morphing) between different
training shapes. How “sensible” these interpolated shapes are strongly de-
pends on the metric of the underlying vector space. In our model, the metric
is rather simple: It is given by the Euclidean distance of the control point
polygons associated with two contours, after alignment with respect to simi-
larity transformation and renumbering of control points. This metric permits
fast implementations and works fairly well in most of the applications we have
tried.

However, the alignment process will fail to associate corresponding parts as
soon as the contour of one of two given objects is stretched or shrunk in one
particular area. For example, if a given training shape of a hand is missing
one finger, then the equidistant placement of a fixed number of control points
during shape acquisition will result in a higher control point density along the
remaining fingers, such that a minimization of the control point distance will
not permit an alignment of corresponding points. This and other limitations of
the simple shape metric are well known from the literature. Numerous results
on refined and sometimes highly elaborate shape distances have been proposed
— see [9, 196, 78, 116] and the discussion in Section 1.4.

As soon as these distances can be embedded in a Hilbert space structure,
the statistical shape models discussed in Chapters 3 and 4 can be applied.
One would expect a better generalization capacity, such that the appearance
of a given object could be learnt with fewer training samples. In fact, recently
Rhodri et al. [60] proposed to jointly solve the problems of shape alignment
and statistical learning. There the correct correspondence of contour points is
determined by maximizing the “compactness” of the resulting statistical shape
model in a minimum description length approach.

Unfortunately most of the more elaborate shape metrics require a costly op-
timization e.g. by dynamic programming. Since the shape distance and the cor-
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responding alignment are a central part not only of the training phase but also
of the knowledge-based segmentation, the entire segmentation process would be
drastically slowed down. In the future, we will therefore evaluate how a more
elaborate shape alignment and shape metric can be efficiently integrated in a
statistical shape prior for segmentation. In particular, we will need to evaluate
whether the closed-form variational integration of similarity invariance intro-
duced in Section 3.4.2 can be extended to more elaborate distance measures.

Implicit Contour Representations

Closely related to the issue of shape alignment and shape metrics is the ques-
tion of whether the contour should be represented explicitly or implicitly. As
discussed in Section 1.3, both representations have their advantages and draw-
backs. Some work on statistical shape models for segmentation with implicit
contours has been done (cf. [120, 36, 154]).

However, although implicit contours permit to segment several objects in a
given image, to our knowledge this has not been done with a statistical shape
prior. Moreover, the issues of shape learning and shape alignment are more
straight-forward if the contour is given explicitly. We will therefore evaluate
how far the methods of alignment, similarity invariance and the variational
integration of statistical shape priors can be adapted to implicit contour repre-
sentations.

Extending the Variational Framework

The goal of the present work was to model the interaction of external visual
input and an internally represented, previously acquired statistical model of
shape. A segmentation process which takes into account both the external
input and the internal knowledge about “permissible” shape variations was
obtained by minimizing a joint functional of the form (6.1). As pointed out
in the introduction, this variational approach is equivalent to the Bayesian
framework of maximum a posteriori estimation.

In Chapters 3, 4 and 5, we showed that minimization of the total energy
(6.1) produces a compromise between the segmentation induced by the image
information and the one favored by the shape prior. There is no decision process
incorporated: The question of whether there really is a hand (or a rabbit or
letter) in a given image is never answered.

The variational integration of shape prior and image information facilitates
the mathematical modeling, as the segmentation problem is reduced to mini-
mizing functionals which tend to have few local minima. In various examples,
we demonstrated that the statistical prior can strongly improve segmentation
results. Yet, the proposed fusion of prior knowledge and external information
appears different from the way humans tend to incorporate prior knowledge.
The latter seems to be far more based on decisions, such as dynamically mak-
ing and rejecting hypotheses about which object is or is not present in a given
image — as can be verified on the Dalmatian in Figure 1.2. Moreover, if some
part of the object of interest is occluded, then the occluding section should
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not impose a bias on the segmenting contour by drawing it to one side or the
other. Essentially one would prefer a segmentation process in which the region
homogeneity constraint or the prior shape information can be locally switched
off or decreased for certain parts of the segmenting contour. Ideally, such a
process should be derived from a probabilistic model which captures the inter-
dependence of the internal shape prior and the external image information.

Similarly, one should model the fusion of several low-level segmentation cues:
As pointed out in the introduction, human observers tend to choose a sensible
low-level cue for segmentation — e.g. the intensity information for the human
silhouette, the texture information for the zebra, or the motion information for
the car (cf. Figure 1.1). In Chapter 5, we introduced the cue of motion homo-
geneity into the Mumford-Shah functional. We compared segmentation results
for the models of piecewise constant intensity, piecewise constant motion and
piecewise affine motion. However, a central question remains unanswered: How
should a machine decide which low-level cue is applicable? One way to avoid
this decision is to retain all the distinct segmentations obtained by multiple
cues, as suggested by Tu and Zhu in [178]. Yet a human observer tends to focus
on a segmentation obtained by only one of the possible cues, rejecting the other
ones. For example, humans tend to inspect the grey value segmentation of the
moving rabbit in Figure 5.3, bottom right, for a while, before “understanding”
why this corresponds to a consistent segmentation of the given image. In fu-
ture work, we will therefore focus on more elaborate probabilistic models for
the fusion of multiple low-level cues and the statistical shape information.

Region-based Statistical Priors

The Mumford-Shah based segmentation process results from minimizing a func-
tional with respect to both the segmenting contour C and an approximation u
of the input image. In this work, we introduced statistical priors of different
complexity on the segmenting contour C into the variational approach.

A straight-forward generalization of this idea is to also introduce a statistical
prior on the second variable in the functional, namely the region information
u. One would expect this to drastically improve the resulting segmentation
process, since the contour itself only contains very shallow information about
an object of interest. Although priors on the contour can strongly improve the
segmentation of hands, the silhouettes of a rabbit etc., they would be of little
help for segmenting objects such as faces, which are not primarily defined in
terms of their outline.

Appearance-based methods for the task of object recognition have been
extensively studied (cf. [94]). Statistical models for grey level appearance, with
a focus on faces, have been proposed among others by Kirby and Sirovich [109].
Combinations of contour and region information have been proposed by Cootes
and Taylor [43]. However, the latter approach is based on a parameter fitting
process which fits a model to certain image features. In future work, we will
instead focus on introducing statistical region or appearance information into
region-based variational segmentation methods based on the diffusion snakes.
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Appendix A

Effects of the Spline Distance

Approximation

Both the alignment process of Section 3.1.4, and the linear statistical model
introduced in Section 3.3 are based on the Euclidean distance (3.8), i.e. on
the identification of a given contour with its control point polygon. In Section
3.1.2 we argued that the spline distance (3.4) is a more precise measure of the
distance between two shapes. Although the effect of working with this more
exact distance measure is negligible in practice, we will show for completeness
how alignment and linear statistics can be derived on the basis of the spline
distance (3.4) and the associated scalar product (3.7).

For the alignment of a set of training shapes we will again employ the
simpler complex notation of Section 3.1.4. The distance (3.9) to be minimized
is replaced by

D2(z, ẑ) = (z − αẑ + β)∗ B (z − αẑ + β),

where B is the matrix (3.6) of spline basis overlaps. Setting the corresponding
derivatives to zero, one can solve for the minimizing parameters to obtain:

β = 0, α =
ẑ∗ B z

ẑ∗ B ẑ
.

As proposed in [11], PCA can also be performed on the basis of this spline
distance and the associated scalar product (3.7). The sole modification is that
the sample covariance matrix has to be multiplied with the metric matrix A
defined in (3.5), otherwise one can proceed as before.

This is most easily seen by transforming the input data to a Euclidean space
according to

z′ = A1/2 z,

Then the sample mean z̄ and the sample covariance matrix Σ transform to:

z̄′ = A1/2 z̄ and Σ′ = A1/2 Σ A1/2.

We can perform a sampling similar to (3.14) along the eigenmodes (principal
components) associated with the transformed covariance matrix. Transformed
back to the control point representation we obtain:

z(α1, . . . , αr) = A−1/2

[

z̄′ +
r
∑

i=1

αi

√

λ′
i e

′
i

]

, (A.1)
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where {λ′
i, e

′
i} denotes the eigensystem of Σ′:

Σ′ e′i = λ′
i e

′
i.

With ei := A−1/2 e′i this is equivalent to

ΣA ei = λ′
i ei, (A.2)

and the sampling (A.1) is given by

z(α1, . . . , αr) = z̄ +
r
∑

i=1

αi

√

λ′
i ei. (A.3)

This expression is the same as the one obtained in (3.14), except that now
according to equation (A.2), {λ′

i, ei} is the eigensystem of the matrix (ΣA).
However, in practice (for 100 control points), the modification induced by

the spline distance have a negligible effect on the eigenmodes. Sampling along
the eigenmodes of the matrix (ΣA) produces a shape variation which cannot be
distinguished from the one obtained with the simpler Euclidean distance shown
in Figure 3.4.

Moreover, for the case of the full Gaussian model, working with the spline
distance (3.4) does not modify the shape energy given in (3.17). Expressed in
the transformed coordinates the energy reads:

E′(z′) =
1

2
(z′ − z̄′)t Σ′−1

⊥ (z′ − z̄′)

=
1

2
(z − z̄)tA1/2 A−1/2Σ−1

⊥ A−1/2 A1/2(z − z̄)

=
1

2
(z − z̄)t Σ−1

⊥ (z − z̄) = E(z).

More generally, any probabilistic model for the linearly transformed sample
points z′ always implies a corresponding model for the control point vectors z.
This connection justifies the identification of each shape with its control point
vector z, both for the linear statistics in Section 3 and the nonlinear shape
statistics introduced in Section 4.



Appendix B

A Multigrid Scheme for

Diffusion Snakes

In the case of the full Mumford-Shah model we need to determine the diffusion
process which is underlying the contour evolution. The present section gives de-
tails on the implementation of a multigrid scheme for solving the corresponding
steady state equation

1

λ2

dE

du
=

1

λ2
(u − f) − ∇ · (wc(x)∇u) = 0. (B.1)

Discretizing this equation by finite differences, we obtain a linear system with
Neumann boundary conditions:

Au = f, and ∂nu = 0 on ∂Ω.

The contour is represented by edgels “between pixels” (micro-edges), such that
all image pixels are affected by the diffusion process.

Solving this equation with standard solvers like Gauss-Seidel or Jacobi takes
a long time, as low frequencies in the error vanish slowly. Therefore we propose a
multigrid implementation, which consists in recursively transfering the problem
from a grid with size h to a coarser grid of size 2h, and solving the corresponding
problem on the coarser grid to obtain an improved initialization for the solution
on the fine grid.

Standard implementations of numerical multigrid schemes like the one in
[171], may easily lead to a poor implementation of the steady state diffusion
equation (B.1) due to the strongly inhomogeneous term wc. The hierarchical
representation of this term at multiple scales is even more difficult. For the
diffusion snake to work, smoothing across the curve C must be prevented at all
scales.

Let v be an approximation to the solution u. Denote the error by e = u−v,
and the residual by r = f −Av. With these notations we obtain for every grid
h the following equivalence:

A
huh = fh ⇐⇒ A

heh = rh.
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h

2h

4h

8h

h

2h

4h

8h

h

2h

4h

8h

v–cycle w–cycle full multigrid

Figure B.1: Schematic diagrams of multigrid cycles. An elegant recursive
definition of different multigrid cycles can be found in [26].

In order to solve the latter problem on the fine grid h, we transfer the residual
rh and the matrix A

h to the coarser grid 2h, solve

A
2he2h = r2h

for e2h, interpolate back to the fine grid and add eh to the fine grid solution
vh. This idea is recursively extended to more than two grids, which leads to
different multigrid cycles, some of which are depicted in Figure B.1. We found
that w-cycles showed the best performance in our experiments.

Interpolation, Restriction and Coarse Grid Representation of A
h

Starting with the matrix A
h, we need to construct appropriate prolongation

operators P and restriction operators R, which define the transition from the
coarse to the fine grids and vice versa. For this purpose we introduce the
stencil notation, where the stencils shown in Table B.1 represent the action of
the operator A on a pixel and its 3 × 3–neighborhood. This notation allows
to intuitively understand the effect of the operator A at a given location. The
effect of the boundary conditions imposed by the contour and the image edges
is given by the zeros in the stencils in Table B.1.

The implementation of the contour as a diffusion border prohibits any re-
striction or prolongation accross this border. We therefore use matrix-depen-
dent prolongation and restriction operators, as described in [191]. Similar ap-
proaches were proposed in [3, 65, 202].

In the following, we will define the prolongation operator, which performs
the transition from the coarse grid 2h to the fine grid h. According to [191],
two constraints have to be fullfilled for the prolongation operator in the one-
dimensional case:

uh
2i = [P ]2h

i,0 · u2h
i = u2h

i , (B.2)

(APu2h)2i+1 = 0, (B.3)

where the first lower index at the stencil denotes the pixel number and the
second lower index denotes the position within the stencil, which can be −1, 0
or 1 for left, middle and right in the 1D case.

The first constraint ensures, that all coarse grid points are transfered directly
to the finer grid, the second one ensures, that the prolongation operator is
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[A]0,0 =
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Table B.1: Stencils for diffusion snakes. Each stencil defines the action of
operator A at a given pixel location, where the zeros denote the effect of a
diffusion boundary.

adapted to the matrix A. The odd pixels of the finer grid can then be obtained
from equation (B.3):

uh
2i+1 = −

[A]h(2i+1),−1 · u2h
i + [A]h(2i+1),1 · u2h

i+1

[A]h(2i+1),0

.

A similar solution for the prolongation P is obtained in the two-dimensional case
[191]. The stencils for the restriction correspond to the prolongation stencils,
normalized so that they sum up to 1. Further details can be found in [177].

With these definitions of prolongation P and restriction R from the matrix
A

h, we construct the coarse grid matrix A
2h by using Galerkin coarsening:

A
2h = RA

h
P .

To avoid a full matrix multiplication, we exploit the stencil notation as done
in the efficient algorithm CALRAP [191]. Given A

2h, we can then construct
prolongation and restriction for the next coarser level and so on.
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Appendix C

From Feature Space Distances to

Classical Methods of Density

Estimation

In recent years the feature spaces induced by Mercer kernels have become a
popular framework for classification and regression estimation, giving rise to
methods such as Support Vector Machines and kernel PCA. In Section 4.4, we
derived an extension of kernel PCA to a probabilistic framework by modeling
the distribution of a set of sample vectors upon a nonlinear mapping φ from
the original space R

n to a feature space Y . We assumed that the data upon
mapping to the generally higher-dimensional space Y are distributed according
to a Gaussian probability density. We then used the associated energy (given
by the negative logarithm of the probability) as a dissimilarity measure. It is a
Mahalanobis type distance in the feature space Y :

Eφ(z) =
(

φ(z) − φ0

)t
Σ−1

φ

(

φ(z) − φ0

)

. (C.1)

We implicitely chose a particular family of nonlinear mappings φ by specifying
the scalar product of two mapped points in the space Y in terms of the Mercer
kernel

k(x, y) =
1

(2πσ2)
n
2

exp

(

−||x − y||2
2σ2

)

, x, y ∈ R
n. (C.2)

Due to the strong nonlinearity, the obtained energy expressed in the original
space is no longer quadratic. In fact, numerical experiments showed that the
associated level lines of constant energy can have essentially arbitrary form.
Figure 4.6 demonstrates that one can model distributions consisting of several
clusters which by themselves can be ring- or banana-shaped.

Although by no means exhaustive, the following sections will specify some
relations between distances in feature space and classical methods of density
estimation. We will show that the Euclidean distance in feature space is equiv-
alent to a Parzen estimator in the original space (up to normalization). We
then analyze the Mahalanobis distance (C.1) in the original space and point
out similarities to traditional methods in the field of density estimation.
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C.1 Relation to the Parzen Estimator

Density estimation deals with the approximation of an unknown density from
a set of iid random sample vectors. Generally one distinguishes parametric and
nonparametric density estimation. This terminology is somewhat misleading,
since in practice one determines certain parameters for both approaches. Fol-
lowing [165], we shall therefore call an estimator nonparametric, iff the influence
of any given sample vector on the estimated density is relevant on a local scale
only. Conversely, for a parametric estimator, a given sample vector may have a
global influence on the estimated density.

A typical representative of a nonparametric estimator is the Parzen estima-
tor [74, 2, 151, 144, 29]:

Eparzen(x) =
1

mσn

m
∑

i=1

K

(

x − xi

σ

)

, (C.3)

where χ = {xi}i=1,...,m is the set of sample vectors xi ∈ R
n, and K is a Borel

measurable kernel function, which is nonnegative and integrates to 1. The width
σ of the kernel is typically chosen as a function of the sample size m and of the
data set χ. The Parzen estimator (C.3) has been extensively studied, results
on consistency, stability and the rate of convergence have been obtained. For
an overview we refer to [66, 167].

By the following proposition, we present a different interpretation of the
Parzen estimator, namely we prove that — apart from normalization — the
Parzen estimator is equivalent to the Euclidean distance E = − logP associated
with a spherical distribution (isotropic Gaussian) P in an appropriate feature
space.

Proposition 1 Let χ = {xi}i=1,...,m be a set of sample vectors xi ∈ R
n, let

k : R
n × R

n → R be a translation-invariant (or stationary) Mercer kernel:

k(x, y) =
1

σn
K

(

x − y

σ

)

, (C.4)

with a function K which is positive and integrates to 1, and a constant σ>0. Let
φ : R

n → Y be an associated mapping of the sample vectors xi ∈ χ to a feature
space Y . Let P be the isotropic (spherical) Gaussian probability distribution in
Y estimated from the mapped sample vectors.

Then the corresponding energy E = − log (P) (Euclidean distance in feature
space) is equivalent to a Parzen estimator in the original space R

n (up to scaling
and an additive constant).

Proof: The isotropic Gaussian probability estimate in Y for the set of mapped
sample vectors is given by

P (φ) ∝ exp

(

−|φ − φ0|2
2ρ2

)

,
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where φ0 denotes the sample mean of the mapped vectors (4.2) and ρ the
sample variance. The corresponding energy — up to scaling and a constant —
is quadratic in φ:

Ẽ (φ) = |φ − φ0|2 .

Using the Mercer identity k(x, y) = (φ(x), φ(y)), this energy can be expressed
as a function in the original space:

E(x) = Ẽ (φ(x)) = k(x, x) − 2

m

m
∑

i=1

k(x, xi) +
1

m2

m
∑

i,j=1

k(xi, xj). (C.5)

With (C.4) we obtain the final result:

E(x) = const. − 2

mσn

m
∑

i=1

K

(

x − xi

σ

)

. (C.6)

Up to scaling and a constant, this is the Parzen estimator (C.3). 2

Remarks: Under the above assumptions, the existence of the mapping φ
in Proposition 1 is guaranteed by the Mercer theorem. The scale and the
additive constant shall not be further investigated, because they are irrelevant
in many applications of density estimation, such as clustering or minimizing the
above energy as a dissimilarity measure. If desired, they can be numerically
determined: Evaluation at positions far from the data set gives the additive
constant. Upon subtraction of this constant, the scale can be determined by
numerical integration.

Note that the correspondence to feature space estimators is not produced
by a standard probability density transformation which holds for invertible
functions φ:

P(x) = P (φ(x)) |det Dφ(x)| .
In our approach the feature space enters by a generally nonlinear and non-
invertible mapping φ. And the correspondences are defined directly in terms
of the associated energies as proposed in (C.5). Yet, this correspondence to
feature space density estimates leads to a new interpretation and a possible
generalization of the classical Parzen estimator.

Recently, a similar link between a spherical distribution in feature space
and a Parzen-like estimator was established in [13]. There, the authors propose
to estimate the smallest enclosing sphere in feature space for a given set of
mapped data points. The differences are mainly the following: Our approach
is a probabilistic one. Therefore the center φ0 of the sphere in our model
corresponds to the mean of the mapped data points and consequently we obtain
a Parzen estimator in the original space. The smallest enclosing sphere [13, 163]
does not correspond to a probabilistic approach such that the respective center
φ0 is generally not identical with the mean of the mapped data and consequently
the estimator obtained in [13] is generally not the same as the Parzen estimator.
In fact, it is a Parzen estimator if and only if the center of the sphere conincides
with the mean of the mapped sample vectors.
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Figure C.1: Schematic diagram of the mapping to the feature space Y =
F
⊕

F and the estimated Gaussian, where F is the subspace spanned by
the mapped sample vectors.

C.2 Remarks on the Anisotropic Gaussian

Motivated by this connection between a spherical distribution in the feature
space Y and the Parzen estimator in the original space, we will investigate the
generalization from the spherical distribution in feature space to an ellipsoidal
one, shown in the schematic diagramm of Figure C.1. More precisely, we will
investigate the energy corresponding to the feature space density

P (φ) ∝ exp

(

−1

2
φ̃ t Σ−1 φ̃

)

, (C.7)

where φ̃ := φ − φ0 denotes centering in the feature space Y , with φ0 being the
mean of a set of mapped sample vectors as defined in (4.2). As discussed in
Section 4.4, we will regularize the sample covariance matrix Σ̃ in the feature
space Y , defined in (4.3), by replacing the zero eigenvalues with a small positive
constant λ⊥:

Σ = V Λ V t + λ⊥

(

I − V V t
)

= Σ̃ + λ⊥

(

I − V V t
)

, (C.8)

where Λ denotes the diagonal matrix of ordered nonzero eigenvalues λ1, . . . , λr

of Σ̃ and V the matrix of corresponding eigenvectors V1, . . . , Vr. The regulariz-
ing constant is chosen in the range λ⊥ ∈ (0, λr). For a detailed discussion, we
refer to Section 3.3.

Proposition 2 Let χ = {xi}i=1,...,m be a set of sample vectors xi ∈ R
n, let

k : R
n × R

n → R be a Mercer kernel with properties as required in Proposition
1. Let φ : R

n → Y be an associated mapping of the sample vectors xi ∈χ to a
feature space Y .
Let P be the anisotropic (ellipsoidal) Gaussian probability distribution (C.7)
estimated from the mapped sample vectors, with the sample covariance matrix
regularized as in (C.8).

Then the corresponding distance (or energy) E = − log (P), expressed in
the original space R

n, is (up to scaling and a constant) given by

E(x) = A(x) + B(x),
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such that:

(i) A > 0 is given by the Parzen-like estimator (C.6),

(ii) B(x) < 0 ∀x ∈ R
n,

(iii) |B(x)| ≤ |A(x)| ∀x ∈ R
n,

Proof: As in the isotropic case, the energy associated with (C.7) is quadratic
in Y . Up to scale and an additive constant, it is given by

Ẽ(φ) = λ⊥φ̃ t Σ−1
φ φ̃,

where φ̃ denotes centering with respect to the mapped sample vectors as intro-
duced in (4.4), and rescaling by λ⊥ was done for simplicity. Using definition
(C.8), we get

Ẽ(φ) = φ̃ t
(

λ⊥V Λ−1V t + (I − V V t)
)

φ̃.

Expressed in the original space R
n, this reads:

E(x) = Ẽ (φ(x)) =
r
∑

k=1

λ⊥

λk

(

Vk, φ̃(x)
)2

+ |φ̃(x)|2 −
r
∑

k=1

(

Vk, φ̃(x)
)2

.

Separating isotropic and anisotropic components we obtain:

E(x) = |φ̃(x)|2 +
r
∑

k=1

(

λ⊥

λk
− 1

)

(

Vk, φ̃(x)
)2

. (C.9)

Denote the first term by A(x) and the last one by B(x). We immediately see
that A > 0 is given by the Parzen-like estimator in (C.6). It corresponds to
the largest sphere which can be fit in the regularized ellipsoid shown in the
schematic diagramm of Figure C.1.

Since λ⊥ ≤ λk, k = 1, . . . , r, we have B < 0. Moreover, the absolute value
of B is bounded by A:

|B(x)| ≤
r
∑

k=1

∣

∣

∣

∣

1 − λ⊥

λk

∣

∣

∣

∣

(

Vk, φ̃(x)
)2

≤
r
∑

k=1

(

Vk, φ̃(x)
)2

≤ |φ̃(x)|2 = A(x)

This concludes the proof. 2

This connection to the Parzen estimator justifies the use of stationary kernel
functions k such as the Gaussian kernel (C.2), rather than any of the other
kernels presented in Section 4.3.3. Moreover, it also justifies the estimation of
the kernel width σ by similar methods as used for the Parzen estimator — see
Section 4.4.4. In the case of the Parzen estimator, more elaborate estimates
have been proposed, based on asymptotic expansions such as the parametric
method [62], heuristic estimates [181, 166], or maximum likelihood optimization
by cross validation [68, 37]. See [66] for an overview.
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Figure C.2: Effect of various feature space eigenmodes on the estimated
density. Five data points are indicated by big dots (•). The dashed line
shows the isotropic component (Parzen-like estimate). The dotted line
shows the anisotropic component given by the second part of equation (C.9)
for increasing number r of eigenmodes. The solid line gives the sum of
isotropic and anisotropic components.

C.3 Numerical Analysis of the Anisotropic Gaussian

In Section C.2 we showed that due to the regularization (C.8) of the covariance
matrix the energy corresponding to a Gaussian density in feature space splits
into an isotropic and an anisotropic component given by the two terms in equa-
tion (C.9). We showed that, expressed in the original space, the isotropic part
corresponds to a Parzen-like estimate.

The anisotropic component, i.e. the second term in (C.9), energetically
favors positions x which — via the nonlinear mapping φ — correspond to large
eigenmodes in the feature space Y .

To visualize the effect of these eigenmodes on the estimated density, Figure
C.2 shows the isotropic component and the contribution of the first r feature
space eigenmodes to the estimated density for r = 1, . . . , 4 for a set of five 1D
data points — see (C.9). The kernel width was fixed to σ = µ with µ as defined
in (4.21).

Qualitatively, the effect of the anisotropic component in the given example
can be described as follows: The Parzen estimator (isotropic component shown
by the dashed line in Figure C.2, right side) tends to favor areas with more
data points such as the central part of the data distribution and the right side
where two data points are closer. The anisotropic component (dotted line in
Figure C.2, right side) compensates this effect in such a way that the estimated
density is fairly constant in the area of data points (solid line in Figure C.2,
right side).

A similar effect can be observed in two-dimensional examples. Figure C.3
shows 9 data points which are equidistantly distributed on a semiellipse, the
isotropic and the anisotropic components of the density estimate and the sum
of both. Note that the two components are balanced in such a way that the
arc-like structure is well captured by the total estimate (bottom right), even
with a very small number of sample points. The kernel width was fixed to
σ = 1.5µ for the 2D-examples, with µ as defined in (4.21).

Figure C.4 shows a small number of data points arranged along the figure of
a cross. Again the isotropic and anisotropic components are balanced in such a
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Figure C.3: Effect of anisotropic component for 2D data. Nine data points
distributed on an arc (top left), isotropic component of density estimate (top
right), anisotropic component (bottom left), and total estimate (bottom
right). Note that the structure of the elliptical arc is well captured even
though the number of data points is quite small. For better visibility, all
energies were inverted.

way that the cross-like structure is well captured by the total estimate (bottom
right). Note that, compared to the Parzen estimate, this generalized Parzen
estimate produces ridges of fairly constant height, even though the number of
sample points is small.

Figure C.5 shows the example of a set of 2D points which were randomly
sampled along two spirals (left). Middle and right image show the Parzen and
the generalized Parzen for appropriate values of the kernel width σ. Note that
the spiral structures are more pronounced by the generalized Parzen.

C.4 Relation to Other Approaches

A number of generalizations of the original Parzen estimator (C.3) have been
proposed. Although the generalization proposed in this paper is derived from
completely different considerations — namely from correspondences to simple
parametric density estimates in appropriate feature spaces — we will show that
in the case of the Gaussian kernel (C.2), there are certain similarities of the
final expression to other extensions of the Parzen estimator.
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Figure C.4: Effect of anisotropic component for 2D data. Data points
distributed on a cross (top left). The Parzen estimator (top right) tends
to favor the intersection of the two structures. The anisotropic compo-
nent (bottom left) compensates this in such a way that the total estimate
(bottom right) is fairly constant along the cross-like structure. For better
visibility, all energies were inverted.

Sample vectors Parzen Generalized Parzen

Figure C.5: Sample vectors randomly distributed on two spirals (left),
corresponding estimates of Parzen (middle) and generalized Parzen
(right) for appropriate values of the kernel width σ.
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To this end, we will express the energy (C.9) in terms of the kernel function
(C.4). Using the expansion (4.10) of the feature space eigenvectors Vk and the
definition of φ̃ in (4.4), we get:

E(x) =
(

φ̃(x)
)2

+

r
∑

k=1

(

λ⊥

λk
− 1

)

(

Vk, φ̃(x)
)2

=
(

φ̃(x)
)2

+

r
∑

k=1

(

λ⊥

λk
− 1

)

(

m
∑

i=1

αk
i

(

φ̃(xi), φ̃(x)
)

)2

= (φ(x)−φ0)
2 +

r
∑

k=1

(

λ⊥

λk
− 1

)

(

m
∑

i=1

αk
i

(

(φ(xi)−φ0), (φ(x)−φ0)
)

)2

.

Using the definition of φ0 in (4.2) and the Mercer identity (4.1), we obtain:

E(x) = k(x, x) − 2

m

m
∑

i=1

k(x, xi) +
1

m2

m
∑

i,j=1

k(xi, xj)

+
r
∑

k=1

(

λ⊥

λk
−1

)





m
∑

i=1

αk
i



k(x, xi)−
1

m

m
∑

s=1

(k(xi, xs)+k(x, xs))+
1

m2

m
∑

s,t=1

k(xs, xt)









2

.

This final result is of the form:

E(x) =

m
∑

i=1

ai kσ(x, xi) +

m
∑

i,j=1

bij kσ̃

(

x,
xi + xj

2

)

+ const., (C.10)

with coefficients {ai}i=1,...,m and {bij}i,j=1,...,m which are determined from the
sample vectors. In (C.10), we indicated the width of the kernel by an index.
Moreover, we used the fact that for the Gaussian kernel (C.2), the product of
two kernels will again give a kernel, which is centered in the middle of these
two kernels and of a smaller width σ̃ = σ/

√
2:

kσ(x, xi) kσ(x, xj) =
1

σ2n
e−

1

2σ2 [(x−xi)
2+(x−xj)

2]

= kσ̃

(

x,
xi + xj

2

)

1

(2σ̃)n
e
− 1

2σ̃2

(

xi−xj

2

)2

.

Conceptually, the generalized Parzen estimator (C.10) differs from the orig-
inal Parzen estimator (C.3) in three ways: First, the kernels in (C.10) do not
necessarily have the same weights. Secondly, additional kernels are located at
the respective center of each pair of sample points. And thirdly, we have kernels
of two different widths σ and σ̃.

These three modifications to the original Parzen estimator have been sepa-
rately proposed. Kernels of variable width were introduced in [24]. Kernels of
different weight and center locations differing from the sample vectors appear,
for example, as a maximum likelihood estimate for the Convolution Sieve pro-
posed in [82, 80]. For the case of 1-D data {xi}i=1,...,m, they obtain an estimate
of the form

Econv.sieve(x) =
m̃
∑

i=1

pi
1

σ
K

(

x − yi

σ

)

,
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with weights pi and kernel centers yi which are strictly contained in the interval
(mini xi, maxi xi). The values pi and yi are then determined in an optimization
procedure. Similarly, in our case of n-dimensional data, the centers of all kernels
in estimate (C.10) are strictly contained in the convex hull spanned by the
sample vectors.

Note that although these three modifications were previously proposed, they
arise quite naturally when extending the spherical density estimate in feature
space to an ellipsoidal one.
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PCA pattern reconstruction via approximate pre-images. In L. Niklas-
son, M. Boden, and T. Ziemke, editors, ICANN, pages 147–152, Berlin,
Germany, 1998. Springer.

[163] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller,
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