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Abstract. We present a modification of the Mumford-Shah functional and its cartoon limit which facilitates the
incorporation of a statistical prior on the shape of the segmenting contour. By minimizing a single energy functional,
we obtain a segmentation process which maximizes both the grey value homogeneity in the separated regions and
the similarity of the contour with respect to a set of training shapes. We propose a closed-form, parameter-free
solution for incorporating invariance with respect to similarity transformations in the variational framework. We
show segmentation results on artificial and real-world images with and without prior shape information. In the cases
of noise, occlusion or strongly cluttered background the shape prior significantly improves segmentation. Finally
we compare our results to those obtained by a level set implementation of geodesic active contours.
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1. Introduction

Over the last years many variational approaches to im-
age segmentation have been proposed. They make use
of image information such as edges (Kass et al., 1988;
Caselles et al., 1995; Kichenassamy et al., 1995), ho-
mogeneity requirements on the statistics of the regions
being segmented (Mumford and Shah, 1989; Zhu and
Yuille, 1996; Chan and Vese, 2001; Yezzi et al., 2002)
or a combination of both (Paragios and Dériche, 2000).
However, given large amounts of noise, clutter and
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Germany.

occlusion, the information contained in the image may
not be sufficient to define a desired segmentation. Var-
ious efforts have been made to include prior informa-
tion about the shape of the objects of interest in seg-
mentation approaches (Grenander et al., 1991; Zhu and
Mumford, 1997; Wang and Staib, 1998; Kervrann and
Heitz, 1999).

Recently, statistical shape knowledge has been intro-
duced in a level set implementation of geodesic active
contours (Leventon et al., 2000): A shape model is built
over the distribution of surfaces which are obtained by
embedding the training curves as zero level sets by the
signed distance function. The surfaces are sampled at
regular intervals and a principal component analysis
is performed in this high-dimensional vector space of
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sampled surfaces. During segmentation the surfaces are
evolved by the level set equation. An additional term
is included which causes a relaxation towards the most
probable shape. The latter is determined by a sepa-
rate maximum a posteriori optimization of shape and
pose parameters. Numerical results show very promis-
ing segmentation properties for 2D and 3D medical
image data.

Our approach differs from the one of Leventon
et al. (2000) in several aspects: We incorporate sta-
tistical shape knowledge in the evolution process of
a Mumford-Shah based segmentation (Mumford and
Shah, 1989), which is not implemented as a level set
evolution. We are aware that the level set approach has
several favorable properties, the main one being the
possibility to easily handle topological changes of the
contour. On the other hand, level set approaches lead,
by virtue of the embedding, to quite high-dimensional
shape representations which is not preferable from the
statistical learning point of view. Furthermore, there
are numerous real-world applications such as silhou-
ettes of many known objects where topological shape
changes can be excluded a priori. For these reasons, and
since we will focus on the statistical learning part in our
future work, we prefer to work with low-dimensional
explicit shape representations for the time being.

We propose a modification of the Mumford-Shah
functional which allows an explicit parameterization
of the contour as a closed spline curve. In particular,
we modify the usual length constraint on the contour
in a way which simplifies the evolution equation and
which strongly improves the spline-based formulation
since it enforces an equidistant spacing of the spline
control points. This modification turns out to be vital,
since the contour normal vector becomes ill-defined as
soon as control points overlap. As a result, we obtain
the diffusion snake, a hybrid model which combines the
external energy of the Mumford-Shah functional with
the internal energy of the snakes (Kass et al., 1988).

We then build a statistical shape model on a set of
training shapes by approximating the corresponding
spline control point vectors by a Gaussian probability
distribution. At this point, we do not perform a projec-
tion into the subspace of learnt contour deformations
as is commonly done (Cootes et al., 1995; Kervrann,
1995; Wang and Staib, 1998; Leventon et al., 2000). In-
stead, we derive a shape energy with support on the full
space of possible contour deformations. This allows
to treat the shape energy term and the Mumford-Shah
energy in one single energy functional. Rather than

iterating a two-step process of contour evolution and
optimization of the shape dissimilarity, a knowledge-
driven segmentation process is obtained by gradient
descent on a single functional. The shape term in the re-
sulting evolution equation is similar to that introduced
in Leventon et al. (2000) for the level set evolution of
geodesic active contours. However, in our case the re-
laxation towards the most probable shape is weighted
by the inverse of a modified covariance matrix: Defor-
mation modes which are less familiar from the learning
process will decay faster.

Moreover, we incorporate invariance of the shape
prior with respect to similarity transformations of the
contour in the variational approach. We derive a closed-
form, parameter-free solution by aligning the evolv-
ing contour with the training shapes before applying
the statistical shape energy. Consequently, the evolv-
ing contour is restricted to a submanifold of familiar
shapes, while being free to translate, rotate and scale.

We present numerical studies of our methods in real-
world images: Segmentation results with and without
prior knowledge demonstrate the capacity of the shape
prior to compensate for missing or misleading infor-
mation due to noise, clutter and occlusion. We also
present a similar implementation of the cartoon limit
of the Mumford-Shah functional (Morel and Solimini,
1988; Mumford and Shah, 1989). Numerical results ex-
hibit interesting differences in the convergence prop-
erties of the two models. We compare segmentation
results of our spline-based Mumford-Shah implemen-
tation to those obtained by a level set implementa-
tion of geodesic active contours (Caselles et al., 1995;
Kichenassamy et al., 1995). Finally, we present two dif-
ferent numerical approximations of the diffusion pro-
cess underlying the curve evolution. This paper com-
prises and extends work which has been presented on
scientific meetings (Cremers et al., 2000, 2001).

2. Variational Integration of Shape Statistics
and Segmentation

We propose to combine image information and pre-
viously acquired shape information in one variational
framework. For a given contour C we define an energy

E(u, C) = Ei (u, C) + α · Ec(C), (1)

The functional Ei measures how well the contour
and the associated segmentation u approximate the
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input grey value information. Ec favors contours
which are familiar from a learning process. The pa-
rameter α allows to define the relative weight of the
prior.

In the following, we propose for Ei a modification
of the Mumford-Shah functional and its cartoon limit,
which facilitates a parameterization of the contour as
a closed spline curve. Shape learning and shape statis-
tics are then conveniently defined on the distribution of
spline control points.

2.1. Spline-Based Mumford-Shah Segmentation

The variational approach to image segmentation pro-
posed by Mumford and Shah (1989) consists in mini-
mizing the following energy functional:

Ei (u, C) = 1

2

∫
�

( f − u)2 dx

+ λ2 1

2

∫
�−C

|∇u|2dx + ν‖C‖. (2)

The input image f is approximated on the image plane
� by a piecewise smooth function u, which may be
discontinuous across a boundary C , its length being
denoted by ‖C‖.

We implement this functional by representing the
boundary as a closed spline curve:

C : [0, 1] → �, C(s) =
N∑

n=1

pn Bn(s), (3)

where Bn are periodic, quadratic B-spline basis func-
tions (Farin, 1997; Blake and Isard, 1998) and pn =
(xn, yn)t are the spline control points. Certainly this
parametric representation restricts the class of permis-
sible contours, not allowing open boundaries, and con-
tour splitting or merging. However, it facilitates the
generation and incorporation of a statistical prior on
the shape of the boundary, which will be done in
Section 2.2.

As is commonly done, we originally implemented
the contour length in Cremers et al. (2000) by the L1-
norm of Cs :

‖C‖ =
∫ 1

0
|Cs(s)| ds. (4)

This produces a term proportional to the curvature in
the evolution equation of the contour. However, in our

framework of spline contours this term does not restrict
the spline control points from clustering in one place.
Once control points overlap, the normal becomes ill-
defined. Since the contour is evolved along its normal,
the process becomes instable.

We therefore replace the original length norm (4) by
the squared L2-norm, to obtain the functional for the
diffusion snake

(DS) Ei (u, C) = 1

2

∫
�

( f − u)2dx

+ 1

2
λ2

∫
�−C

|∇u|2dx + νL(C), (5)

where

L(C) =
∫ 1

0
C2

s ds. (6)

The diffusion snake (5) can be considered a hy-
brid model which combines the external energy of
the Mumford-Shah functional with the internal energy
of the snakes (Kass et al., 1988). Further modifica-
tions of the Mumford-Shah functional with respect to
length and curvature measures have been considered in
Mantegazza (1993).

Minimizing the squared L2-norm (6) with respect to
C leads to an Euler-Lagrange equation of the simple
form

Css(s) = 0, for all s ∈ [0, 1]. (7)

For the quadratic B-spline curve this is equivalent to

pi = pi−1 + pi+1

2
, i = 1, . . . , N . (8)

Therefore, by minimizing (5), each control point pi

tends to be centered between its two neighbors. This is
what makes (5) well suited for our spline-based imple-
mentation. Moreover, we experimentally verified that
a sufficiently fine parameterization enables the forma-
tion of arbitrarily sharp corners.

The same modification can be performed for the car-
toon model (Morel and Solimini, 1988; Mumford and
Shah, 1989), which is obtained as λ → ∞. Replacing
the L1-norm by the L2-norm, we obtain the simplified
diffusion snake:

(SDS) Ei ({uk}, C) = 1

2

∑
k

∫
�k

( f − uk)2dx + νL(C).

(9)
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During minimization of (9), the segmented image u is
restricted to the constants {uk} which will take on the
mean grey value of the input image f on the set of
regions {�k} separated by the contour C .

2.2. From Learnt Shape Statistics to a Shape Energy

The explicit parameterization of the contour allows to
represent a set of sample shapes in a vector space and to
approximate their distribution statistically. To this end,
the images of training objects are binarized, a spline
contour is fit to the boundary and the set of training
contours is aligned with respect to similarity transfor-
mations (Goodall, 1991; Cootes et al., 1995) and cyclic
permutation of the control points.

The distribution of control point vectors

z = (x1, y1, . . . , xN , yN )t (10)

is assumed to be Gaussian. The mean control point vec-
tor µ and sample covariance matrix 	 are determined
for the training set.

The advantage of assuming a Gaussian shape prob-
ability is that the associated shape energy has the fol-
lowing favorable property: The Mumford-Shah func-
tional has by itself a non-convex dependency upon the
contour. Adding the quadratic shape energy (13) will
“convexify” the total energy. That is, given an arbitrary
input image, the total energy (1) will be convex for
sufficiently large α.

In general, 	 will not have full rank—especially if
the number of sample shapes is smaller than the dimen-
sion 2N of the underlying vector space. The associated
Gaussian probability will vanish for any shape outside
the subspace spanned by the training shapes. In order
to define a probability density with support in the full
2N -dimensional space, we artificially extend the Gaus-
sian probability to the space orthogonal to the subspace
of learnt deformations in the following way:

Let D be the diagonal matrix of the ordered non-zero
eigenvalues σ1 ≥ · · · ≥ σr > 0 of the covariance ma-
trix 	, and V the matrix of corresponding eigenvectors.
The covariance matrix is then regularized by replacing
all zero eigenvalues by an appropriate constant σ⊥ > 0:

	⊥ = V DV t + σ⊥(I − V V t ). (11)

The inverse of this matrix is well-defined, and the

corresponding probability distribution

P (z) ∝ exp

(
−1

2
(z − µ)t	−1

⊥ (z − µ)

)
(12)

is differentiable on the full space. It associates a finite
non-zero value with any shape z.

The Gaussian probability (12) corresponds to the
quadratic energy

Ec(z) = − log(P(z)) + const. = 1

2
(z − µ)t	−1

⊥ (z − µ),

(13)

which is similar to the Mahalanobis distance. Note that
this shape energy is automatically derived from a set
of binary training images.

2.3. On Regularizing the Covariance Matrix

What is the optimal value for the regularizing constant
σ⊥ in (11)? A similar regularization of the covariance
matrix was proposed by Moghaddam and Pentland
(1995), Roweis (1998), and Tipping and Bishop (1997).
However, there the underlying purpose is quite dif-
ferent. Namely Moghaddam and Pentland (1995) and
Tipping and Bishop (1997) intend to obtain a sparse
representation by replacing the smallest eigenvalues
σr+1, . . . , σ2N by a constant σ⊥. By minimizing the
Kullback-Leibler distance between the two probability
distributions—corresponding to the covariance matri-
ces with and without this replacement—they obtain an
optimal value for σ⊥, given by the mean of the replaced
eigenvalues:

σ⊥ = 1

2N − r

2N∑
i=r+1

σi . (14)

We believe this estimate not to be appropriate in
our context. The implicit assumption underlying this
derivation is that the covariance matrix estimated from
the data is the one corresponding to the true probabil-
ity distribution. This, however, is not the case since we
only have a finite—and in our case even fairly small—
number of training samples.

Based on a more intuitive explanation of the regu-
larization, we therefore propose a different estimate of
σ⊥: Given an unfamiliar shape variation (correspond-
ing to a zero eigenvalue of 	), we associate a proba-
bility with it which is not zero, but which is smaller
or equal to the probability of any shape variation
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encountered in the learning process. This is equivalent
to the bound: 0 < σ⊥ ≤ σr , where σr is the small-
est non-zero eigenvalue of 	. Lacking a more precise
estimate, we fixed

σ⊥ = σr/2, (15)

which worked well for all our experiments. Moreover,
we found in numerical experiments that the curve evo-
lution is not very sensitive to the exact value of σ⊥.

3. Energy Minimization by Gradient Descent

The total energy (1) is iteratively minimized with re-
spect to both the segmenting contour C and the seg-
mented image u.

3.1. Curve Evolution

Minimizing the diffusion snake (DS) functional (5)
with respect to the contour C (for fixed u) leads to
the Euler-Lagrange equation

∂ Ei

∂C
= [e−(s) − e+(s)] · n(s) − νCss(s) = 0

∀s ∈ [0, 1]. (16)

The terms e+ and e− denote the energy density

e+/− = ( f − u)2 + λ2(∇u)2 (17)

in the regions adjoining the contour C(s), and n denotes
the outer normal vector on the contour. For the simpli-
fied diffusion snake (SDS) (9), u is piecewise constant
and the second term in (17) disappears.

Solving the minimization problem by gradient de-
scent results in the evolution equation

∂C

∂t
= −∂ Ei

∂C
= [e+(s, t) − e−(s, t)] · n(s, t)

+ νCss(s, t) ∀s, (18)

where an artificial time parameter t has been intro-
duced.

Equation (18) can be converted to an evolution equa-
tion for the control points by inserting the definition
(3) of the contour as a spline curve. Including the

contribution of the shape energy (13), we obtain for
the coordinates of control point m:

dxm(t)

dt
=

∑
i

(B−1)mi [(e
+(si , t) − e−(si , t))nx (si , t)

+ ν(xi−1 − 2xi + xi+1)]

− α[	−1
⊥ (z − µ)]2m−1,

dym(t)

dt
=

∑
i

(B−1)mi [(e
+(si , t) − e−(si , t))ny(si , t)

+ ν(yi−1−2yi + yi+1)] − α[	−1
⊥ (z−µ)]2m .

(19)

The equation has been discretized with a set of nodes
si along the contour to obtain a set of linear differ-
ential equations. The cyclic tridiagonal matrix B con-
tains the spline basis functions evaluated at these nodes:
Bi j = Bi (s j ), where si corresponds to the maximum of
Bi .

The three terms in the respective equations in (19)
can be interpreted as follows: The first term forces the
contour towards the object boundaries, the second term
enforces an equidistant spacing of control points and
the third term causes a relaxation towards the most
probable shape. The indices 2m − 1 and 2m are sim-
ply associated with the x- and y-coordinates of control
point m in the notation of (10).

Note that the relaxation towards the most probable
shape is weighted by the inverse of the modified covari-
ance matrix, such that less familiar shape deformations
will decay faster. This interesting property arises auto-
matically due to the proposed variational integration of
the Gaussian prior.

3.2. Inhomogeneous Linear Diffusion

In order to minimize the DS (5) with respect to the
segmented image u, we rewrite the functional in the
following way:

Ei (u, C) = 1

2

∫
�

( f − u)2dx + λ2 1

2

∫
�

wc(x)|∇u|2dx

+ νL(C). (20)

The contour dependence is now implicitly represented
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by an indicator function

wc : � → {0, 1}, wc(x) =
{

0 if x ∈ C

1 otherwise
. (21)

The Euler-Lagrange equation corresponding to this
minimization problem is given by:

1

λ2

d E

du
= 1

λ2
(u − f ) − ∇ · (wc(x)∇u) = 0. (22)

This equation corresponds to the steady state of the
following diffusion process:

∂u

∂t
= ∇ · (wc∇u) + 1

λ2
( f − u), (23)

in which the contour enters as an inhomogeneous dif-
fusivity defining a boundary to the diffusion process.
This underlying diffusion process is what gave rise to
the term diffusion snake.

Two different schemes have been used to approxi-
mate the diffusion process: A simple explicit approx-
imation to the diffusion equation (23), and a more
sophisticated multigrid scheme solving the correspond-
ing steady state equation (22). Both schemes are not
straightforward because the strongly inhomogeneous
coefficient function wc has to be taken into account.
Standard implementations may easily lead to diffusion
across the discontinuity curve C and to a slowdown
of convergence, in particular in the case of multigrid
iteration. The technical details concerning these two
schemes are given in Appendix A.

In the case of the cartoon limit (SDS), the diffusion
process is replaced by an averaging process, such that
the image u takes on the mean grey values over a set
of regions:

uk = 1

|�k |
∫

�k

f dx. (24)

These are dynamically updated during the evolution of
the contour.

4. Invariance in the Variational Framework

By construction, the shape energy Ec(z) in (13) is not
invariant with respect to similarity transformations of
the shape z. Such an invariance could be introduced by

replacing Ec with the energy

Eshape(z) = min
s,Rθ ,t

Ec(s Rθ (z − t)), (25)

where minimization is done with respect to scale, ro-
tation and translation. It appears infeasible to obtain
an analytic solution (as a function of z) for the above
minimization problem. Moreover, even a numerical op-
timization (cf. Chen et al., 2001) is problematic as dis-
cussed in 5.7.

Therefore, we propose to eliminate the rotation angle
and the scale in the following way: Since the training
shapes were aligned to their mean shape µ with respect
to translation, rotation and scaling and then normalized
to unit size, we shall do the same to the argument z of
the shape energy before calculating the energy Ec. We
eliminate the translation by centering the control point
vector:

zc =
(

I2N − 1

N
T

)
z, (26)

where I2N denotes the unit matrix, N is the number of
control points, and the 2N × 2N -matrix T is given by:

T =




1 0 1 0 · · ·
0 1 0 1 · · ·
1 0 1 0 · · ·
...

...
...

...
. . .


 . (27)

Next, we eliminate rotation and scaling by aligning
with respect to the mean of the training data. The final
shape energy is then given by:

Eshape(z) = Ec(ẑ), with ẑ = Rθ zc

|Rθ zc| , (28)

where θ denotes the angle corresponding to the optimal
rotation of the control point polygon zc with respect to
the mean shape µ. We shall not go into detail about the
derivation of Rθ . Derivations can be found in Werman
and Weinshall (1995) and Dryden and Mardia (1998).
The final result is given by the formula:

ẑ = Mzc

|Mzc| , with M = IN ⊗
(

µt zc −µ × zc

µ × zc µt zc

)
,

(29)

where ⊗ denotes the Kronecker product and µ× zc :=
µt Rπ/2zc.
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In order to determine the gradient of the similarity
invariant shape energy in (28), we will denote the dif-
ferentiation of vector-valued functions f : R

n → R
m

by:

d f

dx
=




∂ f1

∂x1
· · · ∂ f1

∂xn

...
. . .

...
∂ fm

∂x1
· · · ∂ fm

∂xn


 . (30)

To incorporate the similarity invariant shape prior
into the segmentation process, we simply replace the
last term in the evolution equation (19) by the gradi-
ent on the similarity invariant shape energy (28). With
results (29) and (26), this is obtained by applying the
chain rule:

d Eshape(z)

dz
= d Ec(ẑ)

dẑ
· dẑ

dz
= d Ec(ẑ)

dẑ
· dẑ

dzc
· dẑc

dz
. (31)

The three terms in this product can be interpreted as
follows:

• The first term is the gradient of the original energy
evaluated for the aligned shape ẑ. It contains the
shape information extracted from the training set.
For the quadratic energy (13), it is given by:

d E(ẑ)

dẑ
= (	−1

⊥ (ẑ − µ))t . (32)

It causes a relaxation of the aligned shape ẑ to-
wards the mean shape µ, weighted by the inverse
of the regularized covariance matrix. This weight-
ing causes unfamiliar deformations from the mean
to decay faster.

• The second term in the product of (31) takes into ac-
count the influence of changes in the centered shape
zc onto the aligned shape ẑ. In matrix notation it is
given by:

dẑ

dzc
= M ′zc + M

‖Mzc‖ − (Mzc)(Mzc)t (M ′zc + M)

‖Mzc‖3
,

(33)

where M is the matrix defined in (29) and M ′ denotes
the tensor of rank 3 given by:

M ′ = d M

dzc
. (34)

The entries of this constant sparse tensor are given
by:

M ′
i jk = d Mik

d(zc) j

=




µ j , i = k

µ j+1, i = k + 1, i even, j odd

−µ j−1, i = k + 1, i even, j even

−µ j+1, i = k − 1, i odd, j odd

µ j−1, i = k − 1, i odd, j even

0, otherwise

. (35)

• The third term in the product of (31) accounts for the
change of the centered shape zc with the input shape
z. According to definition (26), it is given by:

dzc

dz
=

(
I2N − 1

N
T

)
. (36)

This term centers the energy gradient, as a direct con-
sequence of the translation invariance of the shape
energy. Accordingly, the force which minimizes the
shape energy has no influence on the translation of
the contour. Similarly, rotation and scaling of the
shape are not affected by the shape optimization,
due to the term (33) in the evolution equation (31).

Note that, due to the analytical minimization with
respect to similarity transformations based on the con-
trol point representation of the spline curve, no addi-
tional parameters enter the above evolution equation to
account for scale, rotation and translation. The advan-
tages of this approach over modeling explicit parame-
ters for translation, scale and rotation—cf. Chen et al.
(2001)—will be discussed in Section 5.7.

In a given segmentation task, invariance with respect
to the group of similarity transformations may be too
general. Obviously, one can—depending on the spe-
cific application—incorporate only a subgroup of the
suggested invariances, such as translation invariance.
Moreover, since there exists a similar closed form so-
lution for the optimal alignment of two polygons with
respect to the more general affine group (Werman and
Weinshall, 1995), the above approach could be ex-
tended to define a shape prior which is invariant with
respect to affine transformations. However, we will not
elaborate this possibility.
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5. Experimental Results and Discussion

In Section 5.1, we give an example of dealing with oc-
clusion in an artificial image. In Section 5.2, we show
the segmentation properties of our approach for a real-
world image in the absence of a statistical prior, and in
Section 5.3, we show how segmentation is improved by
including a prior. In Section 5.4, we then present an ex-
ample of a strongly cluttered background for which the
desired segmentation is not obtained unless the statis-
tical prior is included. The different convergence prop-
erties of the diffusion snake and its cartoon limit are
analyzed in Section 5.5. Section 5.6 offers a compari-
son to segmentation results obtained for the same im-
ages with a level set implementation of geodesic active
contours. In Section 5.7, we present results on rotation
and scale invariance and discuss the advantages of the
parameter-free implementation over other approaches.
In Section 5.8, we investigate the potential and limi-
tations of the shape prior in dealing with occlusion in
real-world images. In Section 5.9, we demonstrate the
capacity of the shape prior to cope for missing infor-
mation due to noise.

5.1. Coping with Occlusion

A common difficulty in segmentation problems is the
fact that the object of interest may be partially occluded.
In this case, the prior shape knowledge can help to re-
cover missing information. Figure 1 shows the basic
principle: Depicted are the input image (black) of an el-
lipse occluded by a bar, the initial contour, and the final
segmentation obtained with the cartoon model (SDS),
both without and with a statistical prior. The statistical
shape energy was constructed from a set of six ellipses,
as explained in Section 2.2. In order to demonstrate
more clearly the effect of the prior on the curve defor-
mation, only translation invariance was included into
the shape energy—see Section 4 for details.

Figure 1. Segmentation results for the SDS with a prior favoring
ellipse-like shapes. A number of intermediate contours (right) indi-
cates how the contour evolution is restricted to the submanifold of
familiar shapes. In the final segmentation with prior, the occluding
bar is removed.

Without a statistical shape prior, the contour seg-
ments the entire black region corresponding to the
object and the occlusion. Upon introduction of the
shape prior, however, the evolving contour is restricted
to ellipse-like shapes during the minimization process.
Figure 1, right side, shows some intermediate steps in
the contour evolution: The effective search space for
the segmenting contour is drastically reduced, and un-
familiar object features are ignored.

5.2. Segmentation Results with No Prior

In this subsection we will demonstrate the segmenta-
tion properties of the two Mumford-Shah adaptations
for closed spline curves, in the case when the prior
information is completely switched off, i.e. α = 0
in Eq. (1). The goal is to segment a hand in a given
image.

Both the diffusion snake (DS) and its cartoon limit
(SDS) differ from many segmentation functionals such
as the classical snake approach (Kass et al., 1988) in
that they do not fit a contour to the local image gradient.
It is the diffusion process or the averaging in case of
the cartoon limit, which collects grey value informa-
tion from the entire image plane. The effect is that the
contour converges to the final segmentation over larger
distances. Yet, since the functional is not defined in
terms of a pre-smoothed input image, details of the im-
age information such as the precise location of corners
and edges are preserved.

Figure 2, left side, shows a grey level image con-
taining a hand and the initial contour (dashed line).
The second image shows the final segmentation ob-
tained with the DS. Due to a large weight of the term
minimizing the length of the contour, the thumb is cut
off and the fingers are not fully segmented. If the pa-
rameter ν in (5) and (9) is decreased, the final contour
is allowed to increase in length. The resulting segmen-
tation is shown in the third image of Fig. 2 for the SDS.
The hand is approximated better. However, some of the
clutter in the background is included in the segmenta-
tion, while the fingers are still not fully segmented.
The right image shows a segmentation obtained by a
level set implementation of geodesic active contours
(see Section 5.6).

5.3. Knowledge-Driven Segmentation

In the above example—though it does not contain a
lot of clutter—the final segmentation is not quite the
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Figure 2. Segmentation with no prior. Initial contour (top left), final
segmentation for the DS, the SDS, and a level set implementation
of geodesic active contours. Depending on the size of the length
constraint, part of the background clutter will be incorporated into
the segmentation, although details such as part of the fingers are not
yet fully segmented.

desired one. The segmentations in Fig. 2 were obtained
without any statistical prior. In order to include prior
information, we constructed a shape energy upon a set
of six binarized hand images as explained in Section
2.2, the hand in Fig. 2 not being part of the training
set. Again, in order to gradually increase the model
complexity, we only included translation invariance.
The training shapes all had the same rotation and scale
as the object in the image. Results including scale
and rotation invariance will be shown separately later
on.

We then performed a gradient descent upon the full
energy (1) for the DS in Eq. (5) with the same initial
contour as in Fig. 2, left side. Figure 3 indicates the
contour evolution from the initialization (top left) to
the final segmentation (bottom right).

The statistical prior effectively restricts the contour
deformations to the subspace of learnt deformations.
However, due to the embedding of the shape proba-
bility into the full space of possible deformations, as
explained in Section 2.2, some deformation outside this
subspace is still feasible—as can be seen in the interme-
diate steps in Fig. 3. This flexibility turns out to strongly

Figure 3. Contour evolution for the diffusion snake with a statistical
shape prior. Due to the prior, the evolving contour is effectively
restricted to a submanifold of familiar shapes. In contrast to the
result without prior in Fig. 2, the background clutter is not included
in the segmentation, and the fingers are fully segmented.

improve the ability of the system to evade incorrect lo-
cal segmentations. The final segmentation is cut at the
wrist, since the training shapes were all cropped there
for simplicity.

The question of which value to assign to the length-
governing parameter ν in Eqs. (5) and (9), discussed
in Section 5.2, becomes obsolete: The effective restric-
tion of shape deformations imposed by the prior al-
lows to drop the additional length minimization term.
However, for the purpose of analyzing the effect of the
prior we kept the value of ν constant throughout these
experiments.

Segmentation results of equal quality as in Fig. 3
were obtained by including statistical shape prior in
the cartoon model.

5.4. Coping with Clutter

The scene in Fig. 2 contained little clutter. Therefore,
segmentation results were fairly close to the desired
one, even in the case when no prior knowledge was
included. Once the amount of clutter is increased, this
changes. Figure 4 shows an example of a hand in front
of a strongly cluttered background. Note that the grey
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Figure 4. Segmentation with no prior in strongly cluttered back-
ground. Initial contour (top left), segmentation results obtained by
the DS, the SDS and a level set scheme of geodesic active contours.
Due to the similar grey value properties of object and background,
none of these purely data-driven segmentation approaches produces
the desired segmentation.

value of the background is approximately the same
as that of the object of interest. Without the statis-
tical prior, none of the segmentation approaches is
able to extract the object of interest. Note that due to
the underlying diffusion process the DS converges
more locally than its cartoon limit, the SDS. This will
be discussed in more detail in Section 5.5.

Figure 5. Left and middle: Segmentation with prior in strongly cluttered environment for the modified Mumford-Shah (DS) and its cartoon
limit (SDS). Right: Corresponding energy plots (see text). Comparison with the respective images in Fig. 4 shows, that the introduction of the
shape prior drives the segmenting contour towards the desired segmentation for the DS. However, since the SDS is more strongly affected by
global grey value changes, it does not converge to the desired segmentation for the given initialization (Fig. 4, top left).

As in the previous example, we now include the
shape prior and perform a gradient descent on the total
energy (1) to obtain the segmentation shown in Fig. 5,
left side, for the case of the DS. Again, the shape in the
image was not part of the training set.

The final segmentation produced with the statistical
prior is the desired one. Small discrepancies between
the object boundary and the final contour in the area
between the fingers are probably due to the fact that
the shape prior does not fully suppress some shape
variability in that area. This could be improved with a
more elaborate alignment of the training shapes during
shape learning. However, we prefer to explicitly avoid
any shape learning that involves the calculation of land-
marks or any manual interaction such as the labeling
of correspondences.

The segmentation obtained with statistical prior in
the case of the cartoon model was not successful, as
can be seen in Fig. 5, middle. The reason for this fail-
ure to capture the object of interest will be discussed
next.

5.5. Comparing the Modified Mumford-Shah Model
and its Cartoon Limit

The full Mumford-Shah functional and its cartoon limit
differ in their contour evolution equation in that the for-
mer collects grey value information from the area sur-
rounding the contour by means of a diffusion process,
whereas the latter does this by separately averaging
over the areas which are separated by the present con-
tour. The images in Fig. 6 show that the solution for the
diffused image converges to that of the cartoon limit for
λ → ∞. In the full Mumford-Shah model the contour
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Figure 6. From the diffusion model to the cartoon limit. Original image and diffused versions for a fixed contour. With growing values of the
smoothing parameter λ, the amount of information about the local context is reduced. The contour is modeled by edgels “between pixels,” such
that all pixels belong to one of the two regions and are therefore affected by the diffusion process.

motion is affected mostly by the image information
in the neighborhood—at least for not too large values
of λ in (5). The cartoon model, however, is equally af-
fected by information in any part of the image. This ex-
plains the very different segmentation results obtained
for the image in Figs. 4 and 5—both with and without
prior.

The segmentation obtained with the cartoon model
will be affected by grey value differences on a global
scale. To analyze which effect this property has upon
the energy landscape, we calculated the value of the
DS and its cartoon limit, the SDS, for a fixed contour
which we simply translated in x- and y-direction. This
corresponds to a suppression of shape deformation. We
used the same input image as in Fig. 4. The contour
was optimally placed upon the hand boundaries and
then shifted in equidistant steps up to 30 pixels in each
direction. The resulting energies are plotted in Fig. 5,
right side, as a function of the displacement from the
optimal position. Note that the bottom of the image
corresponds to the top right side of the energy plots.
Both energies show a minimum at the optimal position
of the contour. However, the energy for the SDS (below)
is strongly slanted towards the bottom of the image.
This is caused by the global change in brightness from
the top of the image towards the bottom. This is what
drives the contour to segment the entire bottom part of
the image if no prior is given—cf. Fig. 4, bottom left.
Even in the case of added shape prior, the hand contour
is pushed to the bottom of the image in the SDS—cf.
Fig. 5, middle.

5.6. Comparison with Geodesic Active Contours
When Using No Shape Prior

In order to compare our results to another segmentation
approach, we performed a level set implementation of
geodesic active contours. We opted for this compari-
son since the level set formulation of geodesic active

contours is one of the most competitive among present
data-driven segmentation methods. For the same input
images f and the same initial contours C , we min-
imized the energy functional (Caselles et al., 1995;
Kichenassamy et al., 1995)

E f (C) =
∫ 1

0
g(|∇ fσ (C(s))|2)|Cs(s)| ds, (37)

with Gaussian-smoothed input image fσ , and metric
(Weickert, 2001)

g(s2) =
{

1, if s2 = 0
1 − exp

(− 3.315
(s/λ)8

)
, if s2 > 0 . (38)

Here λ serves as contrast parameter.
We did not include any additional terms such as bal-

loon forces since they assume a prior knowledge about
whether the object of interest is inside or outside the
initial contour. Moreover, the two segmentation ap-
proaches based on the Mumford-Shah functional do
not contain any such term either.

Our geodesic active contour implementation used
an efficient pyramid additive operator splitting (AOS)
scheme that does not require to recalculate a distance
transformation in each iteration (Weickert, 2001).

The comparison in Fig. 2 shows that the segmenta-
tion obtained by the Mumford-Shah based models and
the one obtained by the geodesic active contour model
are similar for homogeneous background. However, the
comparison with Fig. 4 indicates that in a strongly clut-
tered background the geodesic contours give a more
satisfactory approximation of the object of interest—
indicating at least its approximate location.

One should however keep in mind, that the model
formulations are conceptually very different: Whereas
the geodesic active contour model is directly gov-
erned by the gradient of the smoothed input im-
age, this is different for the Mumford-Shah model—
especially for the case of the cartoon limit, which is a
region-based rather than an edge-based segmentation



306 Cremers et al.

approach. Thus, the segmentation results in Fig. 4
indicate that the hypothesis of piecewise homogeneous
grey value is more strongly violated than the hypothesis
that the object is defined by pronounced edges.

Moreover, in the case of the geodesic active con-
tour model, the final contour is obtained as the zero
level set of a higher dimensional surface. In our model
formulation the final segmentation curve is obtained
in form of a parameterized spline curve. The latter
permits a straight-forward implementation of shape
statistics and similarity invariance and may be of ad-
vantage for further post-processing of the contour
information.

5.7. Invariance to Similarity Transformations

By construction the shape energy (28) is invariant with
respect to translation, rotation and scaling. Figure 7
shows a minimization by gradient descent from the
initial contour (top left) to the final segmentation, with
a shape prior constructed from a set of 10 binarized
hand images (bottom right). During its evolution, the
contour is effectively restricted to the subspace of fa-
miliar contours, but translation, rotation and scaling are
permitted.

Figure 7. Invariance with respect to similarity transformation. Minimization by gradient descent from the initial contour to the final segmen-
tation. Due to the closed-form solution (28), no additional parameters enter the minimization to account for scale, rotation and translation. Due
to the intrinsic alignment of the evolving contour, the relative position, scale and rotation of the training set (bottom right) are of no importance
to the knowledge-driven segmentation process.

Due to the closed-form solution for eliminating
translation, scale and rotation from the shape energy, no
additional parameters enter the minimization. A com-
monly employed alternative approach is to explicitly
model a translation, an angle and a scale and minimize
with respect to these quantities (by gradient descent or
other). In our opinion this has several drawbacks:

• The introduction of four explicit pose parameters
makes numerical minimization more complicated—
corresponding parameters to balance the gradient
descent must be chosen. In practice, this is not
only tedious, but it may cause numerical instabili-
ties if the corresponding step sizes are chosen too
large.

• The joint minimization of pose and shape parame-
ters mixes the degrees of freedom corresponding to
scale and rotation with those corresponding to shape
deformation.

• Potential local minima may be introduced by the ad-
ditional pose parameters. In a given application, this
may prevent the convergence of the contour towards
the desired segmentation.

On several segmentation tasks we could confirm these
effects by comparing the two approaches. For example,
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Figure 8. Segmentation process for the SDS with a similarity in-
variant shape prior in a strongly cluttered background. Note that
the contour initially shrinks in size, before expanding again towards
the desired segmentation. Since the shape energy is invariant with
respect to scaling, rotation and translation, the contour will in par-
ticular undergo scale changes in order to maximize the grey value
homogeneity criterion. This property induces an increased flexibility
of the evolving contour.

Figure 9. Dealing with occlusion. Contour evolution for the SDS with a similarity invariant shape prior. While the segmentation without shape
prior (bottom right) fails to capture the object of interest (for the same initialization), the statistical shape prior permits a reconstruction of the
occluded parts of the silhouette (bottom center).

for the problem presented in Fig. 7, we did not manage
to balance the minimization in a way that it would con-
verge to the desired segmentation when using the latter
approach of minimizing explicit pose parameters.

In many applications, we found the similarity in-
variance to facilitate the convergence of the evolving
contour towards the desired segmentation. Figure 8
shows the result of a segmentation process with a
similarity invariant shape prior on the same image as
in Fig. 4, however with a slightly different initializa-
tion. Interestingly, it appears to be energetically fa-
vorable for the evolving contour to initially shrink in
size (in order to fulfill the grey value homogeneity re-
quirement) before expanding again towards the correct
segmentation.

5.8. Occlusion Revisited

The main idea of introducing the shape prior is that
it is to cope for missing or misleading information.
In the case of occlusion, for example, we expect the
statistical shape prior to induce a reconstruction of the
shape silhouette in parts where the object is not visible.
This is demonstrated in Fig. 9. A partially occluded
image of a hand was segmented by the SDS with a
similarity invariant shape prior. The silhouette of the
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Figure 10. With increasing occlusion, the information contained in
the image may not be sufficient to correctly guide the segmentation
process. Therefore the final segmentation eventually degrades: In this
example, the last two fingers are not correctly segmented.

object is reconstructed according to the shape prior in
areas where it is occluded.

Naturally, the quality of the final segmentation
slowly degrades as the size of the occlusion is in-
creased. This is demonstrated in Fig. 10, which shows
segmentation results obtained for the SDS with a sim-
ilarity invariant statistical shape prior. A comparison
with Fig. 9 shows that due to the increased occlusion,
there is not sufficient information left to correctly guide

Figure 11. Segmentation of an image corrupted by noise. The input image is the one shown in Fig. 3, with 75% of the pixels replaced by grey
values sampled from a uniform distribution on the interval [0, 255]. Four frames from the gradient descent minimization indicate the contour
evolution for the cartoon model with a similarity invariant shape prior. The frame on the bottom right shows the final segmentation obtained for the
same initialization without a shape prior. By effectively suppressing unfamiliar shape deformations, the statistical prior facilitates convergence
to the desired segmentation.

the evolving contour. Such experiments demonstrate
that with increasing occlusion, the final segmentation
slowly degrades.

5.9. Dealing with Noise

A different case of missing information is given when
the image containing the object of interest is corrupted
by noise. Depending on the amount of noise, there may
be very little information to drive the evolving contour
towards the desired segmentation. Again, the statistical
shape prior can improve segmentation, because it ef-
fectively reduces the dimension of the search space in
such a way that segmentations which do not correspond
to familiar shapes are ruled out a priori.

Figure 11, top left, shows the same input image as
in Fig. 3. However, this time, 75% of the pixels were
replaced by an arbitrary grey value sampled from a uni-
form distribution over the interval [0, 255]. This means
that only one out of four pixels contains information
about the input image. Figure 11 shows four steps in
the contour evolution for the SDS with a similarity
invariant shape prior. For the given initialization, the
segmentation process with prior is able to converge to
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the desired segmentation. In contrast, for the same ini-
tialization, the segmentation process without the shape
prior fails to segment the object of interest, as shown
in Fig. 11, bottom right.

6. Summary and Conclusions

We presented an image segmentation approach which
allows the integration of statistical shape knowledge in
a single energy functional. To this end, we modified the
Mumford-Shah functional in a way which facilitates a
spline representation of the contour. We proposed to
employ the L2-norm as a measure of the contour length.
This enforces an equidistant spacing of control points
which turns out to be vital for a stable evolution of
the explicit contour. The resulting diffusion snake is
a hybrid model combining the external energy of the
Mumford-Shah functional with the internal energy of
the snake.

We extracted the contours of a set of binary exam-
ple shapes in terms of sets of spline control points in a
way which involves no manual labeling of correspon-
dences or landmark calculation. Based on a Gaussian
approximation of the shape distribution we calculated a
shape energy. By a regularization of the generally non-
invertible covariance matrix, we embedded the shape
energy from the subspace of learnt contour deforma-
tions into the full space of possible deformations. This
allows to integrate image information and statistical
prior in one variational framework. Minimization of
a single functional by gradient descent results in a
segmentation process which takes account of both the
low-level image information and the higher-level shape
dissimilarity.

We introduced invariance with respect to similar-
ity transformations of the contour into the variational
approach. To this end, we proposed a closed-form,
parameter free integration on the basis of the spline
control point representation. Essentially, the statistical
energy is applied to the contour upon alignment with
respect to the training shapes. The resulting energy can
be minimized by gradient descent and no additional
parameters need to be introduced to account for trans-
lation, scale and rotation.

We presented a thorough experimental study of the
segmentation properties of our approach with and with-
out prior knowledge in the case of real-world images.
We showed how the statistical prior can help to deal
with noise, occlusion and clutter. Moreover we pre-
sented results obtained for the so-called cartoon limit,

both with and without clutter. Finally we compared our
results to a level set implementation of geodesic active
contours.

We included sections on the numerical implemen-
tation of the diffusion process underlying the curve
evolution, both a simple explicit scheme and a more
sophisticated multigrid implementation.

Current work focuses on models of nonlinear shape
probability density beyond the Gaussian approxima-
tion (Cremers et al., 2002), and on extensions to dif-
ferent low-level segmentation cues such as motion
(Cremers and Schnörr, 2002).

Appendix: A. Implementation of the Diffusion
Process

In the following, we will present two different schemes
to approximate the diffusion process which is under-
lying the evolution of the diffusion snake (see Section
3.2): A simple explicit approximation to the diffusion
equation

∂u

∂t
= ∇ · (wc∇u) + 1

λ2
( f − u), (39)

and a more sophisticated multigrid scheme solving the
corresponding steady state equation

1

λ2
(u − f ) − ∇ · (wc∇u) = 0. (40)

Let us start with the explicit scheme.

A.1. A Simple Numerical Scheme

We approximate equation (39) by finite differences. Let
τ > 0 denote the step size in t direction and let uk

i be
an approximation to u(x, t) in some pixel i at t = kτ .
In a similar way, wk

i and fi serve as approximations
to wc(x, t) and f (x), respectively. Moreover, let N (i)
denote the 4-neighborhood of pixel i . If we assume
square pixels of size 1, a consistent discretization of
(39) is given by

uk+1
i − uk

i

τ

=
∑

j∈N (i)

√
wk

jw
k
i

(
uk

j − uk
i

) + 1

λ2

(
fi − uk+1

i

)
. (41)

The proposed discretization of the indicator function
wc prevents diffusion across the curve C .



310 Cremers et al.

Assuming that uk
i and its neighbors {uk

j | j ∈ N (i)}
are already known from the k-th iteration step, we can
solve this equation explicitly for the unknown uk+1

i :

uk+1
i =

(
1 − τ

∑
j∈N (i)

√
wk

jw
k
i

)
uk

i + τ
∑

j∈N (i)

√
wk

jw
k
i uk

j + τ
λ2 fi

1 + τ
λ2

. (42)

This constitutes our simple iteration scheme for all pix-
els i and all iteration levels k.

Let us now investigate its stability. Equation (42)
computes uk+1

i as a weighted average of uk
i , its four

neighbors {uk
j | j ∈ N (i)}, and fi . Note that the weights

sum up to 1. Stability of this process can be guaranteed
if all weights are nonnegative. Negative weights, how-
ever, can only appear in the first term, if τ is chosen too
large. Since

0 ≤
√

wk
jw

k
i ≤ 1, (43)

we end up with the stability restriction

τ ≤ 1

4
. (44)

In this case we have a convex combination which guar-
antees that

min
j

(
f j , uk

j

) ≤ uk+1
i ≤ max

j

(
f j , uk

j

) ∀i, k. (45)

By initializing u0
j := f j and iterating over k, this sim-

plifies to the discrete maximum-minimum principle

min
j

f j ≤ uk
i ≤ max

j
f j ∀i, k. (46)

This guarantees that the filtered image remains within
the bounds of the original image.

A.2. A Multigrid Scheme for Diffusion Snakes

In the following, we will detail a multigrid scheme for
solving the steady state Eq. (40). We discretize Eq. (40)
by finite differences to obtain a linear system with nat-
ural (homogeneous Neumann) boundary conditions:

Au = f, and ∂n u = 0 on ∂�. (47)

The contour is represented by edgels “between pixels”
(micro-edges), such that all image pixels are affected
by the diffusion process.

Solving Eq. (47) with standard solvers like Gauss-
Seidel or Jacobi takes a long time, as low frequen-
cies in the error vanish slowly. Therefore, we propose

a multigrid implementation, which consists in recur-
sively transferring the problem from a grid with size h
to a coarser grid of size 2h, and solving there to obtain
a good initialization for the solution on the fine grid.

A.2.1. Hierarchical Representation at Multiple
Scales. Standard implementation of some numerical
multigrid scheme, like the one in Terzopoulos (1983),
may in our case easily lead to a poor implementation of
the steady state diffusion Eq. (40) due to the strongly
inhomogeneous term wc. The hierarchical representa-
tion of this term at multiple scales is even more difficult.
For the diffusion snake to work, smoothing across the
curve C must be prevented at all scales.

Let v be an approximation to the solution u. Denote
the error by e = u −v, and the residual by r = f − Av.
With these notations we obtain for every grid h the
following equivalence:

Ahuh = f h ⇔ Aheh = rh . (48)

In order to solve the latter problem on the fine grid h,
we transfer the residual rh and the matrix Ah to the
coarser grid 2h, solve

A2he2h = r2h (49)

for e2h , interpolate back to the fine grid and add eh

to the fine grid solution vh . This idea is recursively
extended to more than two grids, which leads to dif-
ferent multigrid cycles, some of which are depicted in
Fig. 12. We found that w-cycles showed the best per-
formance in our experiments.

A.2.2. Interpolation, Restriction and Coarse Grid
Representation. Starting with the matrix Ah , we need
to construct appropriate prolongation operators P and
restriction operators R, which define the transition from
the coarse to the fine grids and vice versa. For this pur-
pose we introduce the stencil notation, where the sten-
cils shown in Fig. 13 represent the action of the operator
A on a pixel and its 3 × 3-neighborhood. This notation
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Figure 12. Schematic diagrams of multigrid cycles. An elegant recursive definition of different multigrid cycles can be found in Briggs et al.
(2000).

allows to intuitively understand the effect of the oper-
ator A at a given location. The effect of the boundary
conditions imposed by the contour and the image edges
is given by the zeros in the stencils in Fig. 13.

The implementation of the contour as a diffusion bor-
der prohibits any restriction or prolongation across this
border. We therefore use matrix-dependent prolonga-
tion and restriction operators, as described in Wesseling
(1992). Similar approaches were proposed in Alcouffe
et al. (1981), Dendy (1982), and de Zeeuw (1990).

In the following, we will define the prolongation op-
erator, which performs the transition from the coarse
grid 2h to the fine grid h. According to Wesseling
(1992), two constraints have to be fulfilled for the pro-
longation operator in the one-dimensional case:

uh
2i = [P]2h

i,0 · u2h
i = u2h

i , (50)

(APu2h)2i+1 = 0, (51)

where the first lower index at the stencil denotes the
pixel number and the second lower index denotes the
position within the stencil, which can be −1, 0 or 1 for
left, middle and right in the 1D case.

The first constraint ensures, that all coarse grid points
are transfered directly to the finer grid, the second one

Figure 13. Stencils for diffusion snakes. Each stencil defines the
action of operator A at a given pixel location, where the zeros denote
the effect of a diffusion boundary. Displayed are (from left to right,
top to bottom) the stencils [A](0,0), [A](i,0), [A](M,0), [A](0, j), [A](i, j),
[A](M, j), [A](0,N ), [A](i,N ), [A](M,N ).

ensures, that the prolongation operator is adapted to the
matrix A. The odd pixels of the finer grid can then be
obtained from Eq. (51):

uh
2i+1 = − [A]h

(2i+1),−1 · u2h
i + [A]h

(2i+1),1 · u2h
i+1

[A]h
(2i+1),0

.

(52)

A similar solution for the prolongation P is obtained in
the two-dimensional case (Wesseling, 1992). The sten-
cils for the restriction correspond to the prolongation
stencils, normalized so that they sum up to 1. Further
details can be found in Tischhäuser (2001).

With these definitions of prolongation P and restric-
tion R from the matrix Ah , we construct the coarse grid
matrix A2h by using Galerkin coarsening:

A2h = RAh P. (53)

To avoid a full matrix multiplication, we exploit
the stencil notation as done in the efficient algorithm
CALRAP (Wesseling, 1992). Given A2h , we can then
construct prolongation and restriction for the next
coarser level and so on.

A.2.3. Results of the Multigrid Implementation.
Figure 14 shows that using multigrid methods for solv-
ing the linear system (47) leads to a performance gain
of several orders of magnitude compared to the use of
standard algorithms. Using a w-cycle with three de-
scending v-cycles and one step for presmoothing and
postsmoothing on each level, one reaches the level of
precision of a standard computer in only a few multi-
grid steps.

Analogous to the performance of standard solvers
for the common model problems, we found the compu-
tation time of the multigrid implementation to be fairly
independent of the size of the smoothing parameter λ.
This proves the robustness of our hierarchical scheme
with respect to the strongly inhomogeneous diffusivity
wc. Moreover, the additional storage requirements are
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Figure 14. Comparison of different multigrid implementations and
the symmetric Gauss-Seidel as a standard solver. The error is defined
in logarithmic scale as log10 ‖e‖2. The numbers of presmoothing,
postsmoothing and v-cycles on each level are given in brackets.

not restrictive in our application. Further details can
be found in Tischhäuser (2001).
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