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1.1 Variational Methods, Partial Differential Equations
and Convexity

Digital images are discrete and hence it appears quite intuitive to
revert to a spatially discrete representation and Markov random fields
for modeling and solving problems in image processing and computer
vision. Such discrete graphical representations of the computational
domain have become very popular due to a multitude of highly effi-
cient combinatorial algorithms for solving problems like shortest paths
or minimum cuts on graphs that have been emerging since the 1950’s.

Nevertheless, the world that is captured in digital images is not
spatially discrete, and ideally algorithms to process images should be
independent of the choice of the underlying grid on which they are sam-
pled. Unfortunately, for many of the classical graph algorithms this is
not the case. For example, when searching the shortest path from the
lower left corner to the upper right corner of a unit square, the clas-
sical algorithm of Dijkstra for computing shortest paths will give a
distance of 2 when applied to a regular 4-connected grid, although the
Euclidean distance is clearly

√
2. The algorithm is not consistent in

the sense that the numerical error does not go to zero when increasing
the resolution of the graph. In fact, this concept of continuum limit is
rarely considered in graph theoretic approaches.

This chapter is focused on describing recent developments in the
theory of variational methods and partial differential equations which
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make these a powerful alternative to Markov random field approaches
for solving a variety of computer vision problems. While Markov
random fields are inherently based on a discrete graph representa-
tions, variational methods are based on a representation of images
as continuous-valued functions I : Ω → Rn on spatially continuous
domains Ω ⊂ Rd. Similarly solutions to respective vision problems such
as image segmentation or stereo and multiview reconstruction can be
represented by respective functions on continuous domains.

A solution u to a given computer vision problem is determined by
minimizing an appropriate functional E(u). A necessary condition for
optimality of E is given by the Euler-Lagrange equation which simply
states that the variation of E with respect to u must vanish.

The last decades have brought about a number of break-throughs
in the application of variational methods for computer vision, among
others the variational approach of Horn and Schunck [12] for computing
optical flow fields from pairs of images, the segmentation methods of
Kass et al. [14] and of Mumford and Shah [23] with respective level
set formulations of Caselles et al. [4], of Kichenassamy et al. [15] and
of Chan and Vese [7], and level set formulations for 3D reconstruction
from multiple views pioneered by Faugeras and Keriven [10].

Unfortunately, none of the above variational methods are based on
convex functionals. As a consequence, solutions will merely correspond
to local minima of the respective functional and typically depend on
appropriate initializations. Since there exists no reliable procedure to
compute configurations with any kind of optimality guarantee, the
practical usefulness of such approaches is limited.

This chapter will provide a variety of recently developed convex
relaxation techniques which allow to cast respective computer vision
problems in terms of convex functionals. As a consequence, one can
compute globally optimal solutions (or solutions with bounded optimal-
ity) that are independent of the initialization. Experimental comparison
shows that the resulting PDE-based solutions typically require less
memory, are substantially faster and provide more accurate solutions
for the underlying vision problem than corresponding state-of-the-art
graph-theoretic algorithms.

Central ideas presented in this book chapter were developed in vari-
ous conference and journal papers, in particular [6, 22, 3, 21, 18, 5, 26,
30, 24]. The reader is referred to these works for further details.
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1.2 Image Segmentation and Minimal Partitions

1.2.1 Classical Variational Approaches

One of the first areas of application for variational methods was that
of image segmentation, where the goal is to partition the image plane
into a set of meaningful regions. Among the most influential varia-
tional approaches were the approaches of Kass et al. [14], of Blake and
Zisserman [1], and of Mumford and Shah [23]. They are complemen-
tary in the sense that the former (often called edge-based segmentation
method) aims at identifying boundaries in the image that are supported
by strong intensity gradients, whereas the latter two approaches (often
called region-based segmentation methods) aims at identifying regions
of smooth (or homogeneous) intensity.

Kass et al. [14] suggested to compute a segmentation of an image
I : Ω → R on the domain Ω ⊂ R2 in terms of a boundary C by
minimizing a functional of the form

E(C) =

∫
C

−|∇I(C(s))|2 + α|Cs(s)|2 + β|Css(s)|2 ds (1.1)

where the first term favors the boundary to lie in areas of strong inten-
sity gradient, whereas the last two terms (weighted by parameters α
and β) impose a certain regularity of the boundary.

Mumford and Shah [23] suggested to compute a piecewise smooth
approximation u of the intensity function I by minimizing the func-
tional

E(U,C) =

∫
Ω

(u− I)2 dx + λ

∫
Ω−C
|∇u|2 dx + ν|C|. (1.2)

While the first term imposes pointwise similarity of the approximation
u with the input image I, the second term (weighted by λ) imposes
smoothness of u everywhere except at the boundary C, the length of
which is penalized with a weight ν. In the limit λ → ∞ one obtains
the case of a piecewise constant approximation.

One of the central algorithmic challenges addressed in this chapter
is how to minimize such types of functionals. While parametric bound-
ary representations [9] or implicit level set representations [7, 4, 15]
typically only find locally optimal solutions with little or no optimal-
ity guarantees, recently developed convex relaxation schemes provide
solutions which are either optimal or within a bound of the optimum.
Some of these developments shall be detailed in the following.
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1.2.2 A General Variational Formulation

Let I : Ω → R be a gray value input image on the domain Ω ⊂ Rd.
Among a variety of variational approaches to image segmentation, let
us consider the following rather general model:

min
Ωi

{
1

2

k∑
i=0

Perg(Ωi; Ω) +
k∑
i=0

∫
Ωi

fi(x) dx

}
,

such that
k⋃
i=0

Ωi = Ω, Ωs ∩ Ωt = ∅ ∀s 6= t ,

(1.3)

Minimizing (1.3) partitions the domain Ω ⊂ Rd into k + 1 pairwise
disjoint sets Ωi. The first term imposes regularity of solutions. It mea-
sures the perimeter of the set Ωi with respect to a metric defined by the
nonnegative function g(x).1 The second term is the data term which is
based on non-negative weight functions fi : Ω→ R+.

Model (1.3) includes as a special case the piecewise constant
Mumford-Shah functional [23] discussed above, which arises when
choosing

fi(x) = (I(x)− ci)2
,

which is the squared difference of the input image I to some mean
intensity ci. More generally, one can choose

fi(x) = − logPi (I(x))

as the negative log likelihood for observing a certain intensity or color
value [33, 16, 8]. Model (1.3) also includes as a special case edge-based
segmentation approaches such as the geodesic active contours [4, 15]
where a spatially inhomogeneous metric favors boundaries passing
through areas of strong gradient by choosing for example

g(x) =
1

1 + |∇I(x)|
.

1. For simplicity we will only consider isotropic metrics. The approach is easily
generalized to anisotropic metrics where boundaries favor certain orientations.
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(a) Two label case (b) Three label case

Figure 1.1 (a) One binary function θ is used to partition the image domain Ω
into two regions. (b) Two binary functions θ1 ≥ θ2 are used to partition the image
domain Ω into three regions.

The discrete analogue of (1.3) is the Potts model [27] which is known
to be NP hard. Several algorithms have been proposed to approxi-
mately minimize the Potts model. While the discrete problem can be
tackled using iterated binary optimization via α-expansion [2] or roof
duality relaxation [11, 28], such algorithms tend to exhibit a grid bias
(metrication errors) in representing the continuous perimeters in (1.3).
In the continuous domain, popular methods are based on level set meth-
ods [7, 4, 15] or parametric boundary representations [9]. The most
crucial drawback of these methods is, that there is no guarantee to find
globally optimal solutions.

1.2.3 Convex Representation

In the following, the k + 1 regions Ωi in (1.3) are represented by a
labeling function u : Ω → {0, . . . , k}, where u(x) = l if and only if
x ∈ Ωi. One can equivalently represent this multilabel function by k

binary functions ~θ(x) = (θ1(x), . . . , θk(x)) defined by

θi(x) =

{
1 if u(x) ≥ l
0 otherwise

, (1.4)

representing its upper level sets. In turn, the labeling function u can
be recovered from these functions via the relation

u(x) =
k∑
i=1

θi(x) . (1.5)
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Figures 1.1(a) and 1.1(b) show examples of partitionings with one or
two binary functions θi.

A one-to-one correspondence between multilabel functions u(x)

and vectors ~θ = (θ1, . . . , θk) of binary functions is guaranteed by

constraining ~θ to the ordered set

B =
{
~θ : Ω→ {0, 1}k, 1 ≥ θ1(x) ≥ . . . ≥ θk(x) ≥ 0, ∀x ∈ Ω

}
. (1.6)

How can one rewrite the optimization problem (1.3) in terms of the
binary functions θi? Let us start with the simple case of two regions
(k = 1), where the region Ω1 is defined by a single binary function θ1.
The perimeter of the set Ω1 is given by the weighted total variation of
θ1:

Perg(Ω1; Ω) =

∫
g|Dθ1| = sup

|ξ1|≤g

∫
ξ1Dθ1 = sup

|ξ1|≤g
−
∫
θ1div ξ1dx, (1.7)

where Dθ denotes the distributional derivative of θ. For differentiable
functions θ it is simply given by Dθ = ∇θ dx. For binary-valued func-
tions θ ∈ BV (Ω) it is a surface measure supported on the boundary of
the set {θ = 1}. The second equality in (1.7) expresses this boundary
length using the dual vector field ξ1 : Ω→ R2. These dual vector fields
in fact play the role of the flow in the analogous graph cut approaches
and Fenchel duality leads to a spatially continuous version of the Min
Cut / Max Flow equivalence. We can now use standard LP-relaxation
and let θ1 ∈ [0, 1], then the coarea formula will ensure that the relaxed
problem has the same solutions as the initial one.

The extension of this formulation to the case of multiple regions in
(1.3) is not straight-forward. Simply summing the total variations of
each function θi – as done in the analogous level set formulation of
Chan and Vese [7] – would imply that certain boundaries are counted
more than once: For the example shown in Figure 1.1(b), the boundary
between Ω0 and Ω2 would be counted twice.

This ’overcounting’ of boundaries can be elegantly supressed by

appropriate constraints that couple the dual variables ~ξ = (ξ0, . . . , ξk).
Proposition 1.1
The optimization problem (1.3) is equivalent to the problem:

min
~θ∈B

max
~ξ∈K

{
k∑
i=0

−
∫

Ω

θidiv ξi dx+

∫
Ω

(
θi(x)− θi+1(x)

)
fi(x) dx

}
, (1.8)
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with a set ~ξ = (ξ0, . . . , ξk) of dual vector fields ξi : Ω→ R2, constrained
to the set

K =
{
~ξ : Ω→ Rd×k,

∣∣∣∣∣ ∑
i1≤i≤i2

ξi(x)

∣∣∣∣∣ ≤ g(x), ∀x ∈ Ω, 1≤ i1≤ i2≤k
}
. (1.9)

PROOF. For a proof the reader is referred to [5].

The constraints on the dual variables ξi(x) in (1.9) assure that each
interface is counted exactly once. For the three-region case shown
in Figure 1.1(b), for example, the above constraint implies that
|ξ1(x) + ξ2(x)| ≤ 1. This assures that the transition between Ω0 and Ω2

is counted once only. Interestingly this coupling constraint ties nicely
into the subsequent convex optimization technique.
Proposition 1.2
The set K defined in (1.9) is convex.

PROOF. For any two functions ~ξ, ~ξ′ ∈ K and any α ∈ [0, 1] we have

that α~ξ + (1− α)~ξ ∈ K :

∣∣∣∣∣ ∑i1≤i≤i2
αξi(x) + (1− α)ξ′i(x)

∣∣∣∣∣ ≤ α
∣∣∣∣∣ ∑i1≤i≤i2

ξi(x)

∣∣∣∣∣+(1−α)

∣∣∣∣∣ ∑i1≤i≤i2
ξ′i(x)

∣∣∣∣∣ ≤ g(x).

(1.10)

1.2.4 Convex Relaxation

Unfortunately, the overall optimization problem (1.8) is non-convex
because the set B defined in (1.6) is not convex. We therefore propose a
convex relaxation which allows the functions θi to take on intermediate
values between 0 and 1. To this end the set B in the optimization
problem (1.8) is replaced by the convex set:

R =
{
~θ : Ω→ [0, 1]k, 1 ≥ θ1(x) ≥ . . . ≥ θk(x) ≥ 0, ∀x ∈ Ω

}
. (1.11)

For k = 1 this formulation turns out to be equivalent to the two-region
problem considered by Chan et al. [6] for which we have the following
optimality guarantee:
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Proposition 1.3
Let θ1 be the optimum of the relaxed (convex) version of (1.8) for k = 1
with B replaced by R. Then threshold the solution θ1 at any value s ∈
(0, 1) will provide a global solution of the original non-convex labeling
problem (1.8).

PROOF. For a proof, the reader is referred to [6].

While this thresholding theorem does not extend to the general prob-
lem of more than two regions (k > 1), one can prove the following
optimality bound.
Proposition 1.4

Let ~θ∗ ∈ R be the solution of the relaxed version of (1.8) and let
1{~θ∗≥s} ∈ B be a thresholded binary version for any s ∈ [0, 1]. Fur-

thermore, let ~θ′ ∈ B be the true global minimizer of the binary problem
(1.8). Then one can provide the following bound on the energy of the
computed solution.∣∣∣E(1{~θ∗≥s})− E(~θ′)

∣∣∣ ≤ ∣∣∣E(~θ∗)− E(1{~θ∗≥s})
∣∣∣ . (1.12)

PROOF. The bound follows directly, because in terms of their energies

the optimal binary solution ~θ lies between the relaxed solution ~θ∗ and
the thresholded one 1{~θ∗≥s}:

E
(
~θ∗
)
≤ E

(
~θ′
)
≤ E

(
1{~θ∗≥s}

)
. (1.13)

In many real world experiments this bound is actually zero or near
zero, such that for these examples solutions are essentially optimal.

1.2.5 Experimental Segmentation Results

The convex relaxation framework for image segmentation introduced
above is closely related to the theory of minimal surfaces. Figure 1.2
shows examples of minimal surface problems where the data term
in (1.3) is switched off and the three or four colors are imposed as
boundary constraints.

Figure 1.3 shows image segmentations computed with the proposed
convex relaxation technique for model (1.3) with 4 and 8 labels,
respectively.
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Input 3-label solution Input 4-label solution

Figure 1.2 Three and four label solutions for predescribed boundary colors com-
puted for the round area in the center with model (1.3) and no data term. The
proposed relaxation scheme allows to accurately approximate triple junctions that
are known to be the analytically optimal configurations of the respective minimal
partition problems.

Input 4-label segmentation 8-label segmentation

Figure 1.3 Image segmentations computed using the convex relaxation of model
(1.3) with 4 and 8 labels.

1.3 Stereo Reconstruction

Characteristic for the segmentation model in (1.3) is that transitions
in the labeling function u : Ω → {0, . . . , k} are penalized in a manner
that is independent of the size of transition. In stereo reconstruc-
tion, where u(x) denotes the depth at a given image point x ∈ Ω,
one may want a penalty which favors spatially smooth depth fields.
Moreover a data term f(u, x) will favor different depth values for dif-
ferent points, for example based on the normalized cross-correlation of
respective patches in either of the two input images. For a simple linear
smoothness constraint, the resulting optimization problem is given by:

min
u:Ω→{0,...,k}

∫
Ω

f(u(x), x) dx+

∫
g(x)|Du|, (1.14)
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Due to the data term f , functional (1.14) is not convex. Yet, it turns
out that one can replace this nonconvex approach with a corresponding
convex one relying once more on the representation of the multi-label
function u in terms of a vector of binary functions θi – see equation
(1.4).
Proposition 1.5
The minimization problem (1.14) is equivalent to the minimization
problem

min
~θ∈B

{
k∑
i=0

∫
Ω

g|Dθi|+
∫

Ω

f(i, x) (θi(x)− θi+1(x)) dx

}
. (1.15)

PROOF. For a complete proof the reader is referred to [5, 26].

Moreover, one can compute optimal solutions to the original problem
(1.14) by means of convex relaxation and thresholding.
Proposition 1.6
The minimization problem (1.15) can be solved globally by relaxation to
a convex problem (replacing the domain B by its convex hull R defined
in (1.11), solving the convex problem and thresholding the solution.

PROOF. For a complete proof the reader is referred to [5, 26].

The above relaxation approach thus allows to optimally solve the
original non-convex multi-label problem (1.14) by reducing it to the
convex problem (1.15). A formulation with a continuous label space was
developed in [26]. It shows that the proposed solution amounts to an
anisotropic minimal surface problem. Using appropriate combinations
of the convex constraints imposed in approaches (1.8) and (1.15) one
can generalize this formulation to truncated linear potentials.

1.3.1 Experimental Stereo Results

The convex relaxation approach introduced above can be seen as the
spatially continuous analogue of the discrete algorithm proposed by
Ishikawa [13]. Figure 1.4 shows a comparison of stereo reconstructions
computed with the proposed approach compared to respective results
obtained with Ishikawa’s graph cut formulation obtained with 4- and
8-connected neighborhoods. Closeups show that the proposed spatially
continuous solution does not exhibit any grid bias (metrication errors).
Experimental comparisons shows that in comparison to discrete graph
cut methods the proposed continuous shape optimization techniques
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Ishikawa 4-connected Ishikawa 8-connected convex formulation

Figure 1.4 Absence of grid bias /metrication error in stereo reconstructions. In
contrast to the spatially discrete approach of Ishikawa [13] (shown here for 4- and
8-connected neighborhood), the continuous solution based on convex relaxation does
not favor solutions aligned to the underlying grid, such as 90 degree or 45 degree
angles visible in the close-ups.

1 of 2 images depth reconstruction after consistency check

Figure 1.5 Depth reconstruction (brightness coded) compute from two aerial
images of 1500 × 1400 pixels. While the center image shows the global minimum
of the functional (1.14) computing using convex relaxation, the image on the right
shows the same solution after consistency check which eliminates occlusion areas
and areas of indepdently moving objects like the cars (colored in red).

typically provide more accurate solutions while requiring substantially
less memory and lower computation times – see [17] for a detailed study.

Due to substantially reduced memory requirements, the algorithm
can be applied to higher resolution image data. Figure 1.5 shows
the depth reconstruction computed with the convex relaxation tech-
nique for a pair of aerial images of resolution 1500 × 1400 pixels. The
brightness-encoded depth values clearly show fine scale details such as
trees, cars, lamp posts and chimneys.
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1.4 Multiple View Reconstruction

The reconstruction of three-dimensional shapes from a collection of
calibrated images is among the classical challenges in computer vision.
Rather than estimating point correspondences among pairs of images
and triangulating these, a popular alternative for computing stereo-
based reconstructions from multiple views pioneered by Faugeras and
Keriven [10] is to directly compute a reconstruction as minmal weighted
surfaces S in the volume Ω ⊂ R3 based by solving the optimization
problem

min
S

∫
S

ρ(x) dA(x), (1.16)

where ρ : (Ω ⊂ R3) → [0, 1] is a photoconsistency measure. Based on
the assumption of a Lambertian surface, ρ(x) takes on small values if
the projection of voxel x into pairs of images gives rise to similar color
observations (i.e. the voxel is likely to be on the surface), while high
values of ρ(x) indicate that the colors observed in pairs of images are
very different (i.e. the voxel x is likely not to be on the surface). Thus
minimizing (1.16) gives rise to maximally photoconsistent surfaces.

The functional (1.16) has two important drawbacks: Firstly it is
not convex such that computing good quality surfaces is not straight-
forward. Secondly, the global minimum of (1.16) is evidently the empty
set which has zero energy while any other solution clearly has non-
negative energy. In practice this latter drawback can be alleviated by
either reverting to local optimization techniques such as the level set
method [10] or by constraining the search space to some band around
the visual hull [31].

Two alternative methods to remove the above problems shall be
sketched in the following.

Solution 1: Volumetric photoconsistencies.

One can extend the functional by additional volumetric integrals over
the interior int(S) and exterior ext(S) of the surface S:

min
S

∫
S

ρ(x)dA(x) +

∫
int(S)

ρint(x)dx+

∫
ext(S)

ρext(x)dx, (1.17)
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Figure 1.6 Stereo-based multiview reconstruction via convex relaxation. Two of
33 input images of resolution 1024×768 and three views of the reconstructed surface
at volume resolution 216×288×324. This solution corresponds to a global minimum
of (1.18) obtained by convex relaxation and thresholding.

with appropriately defined regional photoconsistencies ρint and ρext to
model the log-likelihood that a voxel is inside or outside the surface.
For details on the computation of these functions the reader is referred
to [21].

Representing the surface S by a binary labeling function θ : Ω →
{0, 1}, where θ(x) = 1 if x ∈ int(S) and θ(x) = 0 otherwise, the
minimization problem (1.17) is equivalent to

min
θ:Ω→{0,1}

∫
Ω

ρ(x)|Dθ|+
∫

Ω

θ(x) (ρint(x)− ρext(x)) dx (1.18)

This turns out to be the two-region case of the model presented in
Section 1.2.4. It can be solved optimally by minimizing the convex
relaxation and thresholding of the minimizer.

Figure 1.6 shows reconstructions computed from multiple images of
a bunny.

Solution 2: Imposing Silhouette Consistency.

What makes the empty set not a good reconstruction for a given
image set is that its projection into each image does not match the
observed silhouettes. Let us assume that we are also given the silhou-
ettes Si : Ωi → {0, 1} of the observed object in each image Ωi ⊂ R2 for
i = 1, . . . , n, where Si(x) = 1 if x is inside the object’s silhouette. In
reconstruction problems with known or homogeneous background these
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are typically rather straight-forward to obtain beforehand. The follow-
ing formulation allows to combine stereo and silhouette information via
convex functionals over convex sets.

A silhouette consistent optimally photoconsistent reconstruction can
then be computed by solving the constrained optimization problem

min
S

∫
S

ρ(x)dA(x),

s.t. πi(S) = Si, ∀i = 1, . . . , n

(1.19)

where πi denotes the projection into image i.
As above, one can revert to an implicit representation of the surface

with an indicator function θ : Ω→ {0, 1}. Problem (1.19) is equivalent
to

min
θ:Ω→{0,1}

∫
Ω

ρ(x)|Dθ(x)|

s.t.

∫
Rij

θ(x) dRij ≥ δ if j ∈ Si,
∫
Rij

θ(x) dRij = 0 if j /∈ Si.

(1.20)

Here the parameter δ > 0 denotes a material-dependent constant cor-
responding to the thickness of material below which the object becomes
translucent. In numerical implementations one can set δ = 1. Thus the
two constraints in (1.20) simply reflect the silhouette consistency con-
straint: For any pixel j which is part of the silhouette Si observed in
image i, the visual ray Rij from the camera center through that pixel
must cross the object in at least one voxel. On the other hand, for
pixels j outside the silhouette Si the ray Rij through that pixel may
not intersect with the object, i.e. the integral of θ along that ray must
be zero. See Figure 1.7 for a schematic drawing.

Again, one can perform a relaxation of problem (1.20) by allowing θ
to take on intermediate values between 0 and 1:

min
θ∈D

∫
Ω

ρ(x) |Dθ(x)|, (1.21)

with

D :=

θ : V → [0, 1]

∣∣∣∣∣
∫
Rij

θ(x) dRij ≥ 1 if j ∈ Si ∀i, j∫
Rij

θ(x) dRij = 0 if j /∈ Si ∀i, j

 (1.22)
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Figure 1.7 Schematic view of the silhouette consistency constraint: For a silhou-
ette consistent reconstruction at least one voxel along each visual ray from the
camera center through silhouette pixels (bold area) must be occupied, whereas all
voxels along a ray through a non-silhouette pixel must be empty.

It turns out that in the implicit representation, the silhouette constraint
nicely ties into the convex optimization framework.
Proposition 1.7
The set D of all silhouette-consistent functions defined in (1.22) forms
a convex set.

PROOF. Let θ1, θ2 ∈ D be two elements of D. Then any convex combi-
nation θ = αθ1 + (1 − α)θ2 with α ∈ [0, 1] is also an element in D. In
particular, θ(x) ∈ [0, 1] for all x. Moreover,∫
Rij

θ dRij = α

∫
Rij

θ1 dRij + (1− α)

∫
Rij

θ2 dRij ≥ 1 if j ∈ Si, (1.23)

and similarly∫
Rij

θ dRij = α

∫
Rij

θ1 dRij + (1− α)

∫
Rij

θ2 dRij = 0 if j /∈ Si. (1.24)

Thus θ ∈ D.

Since we are interested in minimizers of the non-convex binary label-
ing problem (1.20), a straightforward methodology is to threshold the
solution of the convex problem (1.21) appropriately. Although this
will not guarantee finding the global minimum of (1.20), the pro-
posed strategy entails a series of advantages compared to classical local
optimization techniques. Extending the set of admissible functions,
computing the global minimum over this domain and subsequently pro-
jecting to the nearest point within the original set will provide a solution
which is independent of initialization. Moreover, one can compute an
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upper bound on the energetic deviation of the computed solution from
the global minimum.
Proposition 1.8
Let θ∗ be a minimizer of the relaxed problem (1.21) and let θ̂∗ be a

projection onto the binary silhouette-consistent solutions. Then θ̂∗ is of
bounded distance (in terms of its energy E) from the true solution θ′:∣∣∣E(θ̂∗)− E(θ′)

∣∣∣ ≤ ∣∣∣E(θ∗)− E(θ̂∗)
∣∣∣ . (1.25)

PROOF. The proof is analogous to that of proposition 1.4.

The projection θ̂∗ of a minimizer θ∗ onto the silhouette-consistent
binary functions can be computed by simple thresholding:

θ̂(x) =

{
1, if θ∗(x) ≥ µ
0, otherwise

, (1.26)

where

µ = min

{(
min

i∈{1,...,n},j∈Si

max
x∈Rij

θ∗(x)

)
, 0.5

}
. (1.27)

This threshold µ provides the closest silhouette-consistent binary
function to the solution of the relaxed problem.
Proposition 1.9
The computed binary solution exactly fulfills all silhouette constraints.

PROOF. For a proof the reader is referred to [18].

1.4.1 Experimental Multiview Results

Figure 1.8 shows an experimental comparison of the two alternative
multiview methods on the reconstruction of a metal head. Due to the
strong reflections and highlights, the stereo information becomes unreli-
able and the resulting reconstruction is substantially deteriorated (left).
Incorporating the silhouette constraint allows to substantially improve
the reconstruction (right).

The minimal surface formulation suffers from a shrinking bias in
the sense that small scale and elongated structures tend to get
supressed (as this leads to smaller surface energy). The silhouette
constraint, on the other hand, allows to preserve many small scale
structures. Figure 1.9 shows reconstructions from 24 images of a
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2 of 33 images Stereo only Stereo & silhouettes

Figure 1.8 Silhouette and stereo integration. While the purely stereo-based
reconstruction method (1.17) (middle) tends to remove thin structures and is
heavily affected by specular reflections such as those of metal objects (left), the
fusion of stereo and silhouette information using approach (1.20) allows to compute
stereo-based reconstructions which are guaranteed to be silhouette consistent. As a
consequence, concave areas (around the ears) as well as fine geometric details such
as the pedestal are preserved in the reconstruction.

warrior statue, computed by solving the constrained optimization prob-
lem (1.21). The image data is courtesy of Yasutaka Furukawa – see
http://www.cs.washington.edu/homes/furukawa/research/mview/index.html.
Note that the silhouette constraint allows to preserve fine details like
the hammer and the sword.

1.5 Summary and Conclusion

This chapter provided several convex relaxation techniques for central
computer vision problems like image segmentation, stereo and multi-
view reconstruction. Optimal solutions or solutions of bounded opti-
mality are computed in a spatially continuous representation through
the minimization of convex functionals and subsequent projection.
In contrast to level set approaches, the presented convex relaxation
schemes are independent of initialization and provide solutions with
known optimality guarantees. In contrast to graph cut based solutions,
the spatially continuous formulation does not suffer from metrication
errors – see [17] for a detailed comparison. In addition physical con-
straints like the silhouette consistency of 3D reconstructions often give
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Figure 1.9 Warrior sequence. 2 of 24 input images of resolution 1600 × 1600 and
multiple views of the reconstructed surface. Note that thin structures such as ham-
mer and sword as well as concavities – for example at the chest – are reconstructed
accurately.

rise to convex constraints and can therefore be directly imposed in the
optimization scheme.

Due to space limitations the numerical solution of the arising con-
vex optimization problems were not detailed. There are many different
algorithms, from simple gradient descent to more efficient algorithms
based on fixed point iteration and successive over-relaxation [21] or
primal-dual algorithms [26, 25]. These algorithms are typically straight-
forward to parallelize on the pixel or voxel grid. As a consequence,
implementations on graphics hardware lead to substantial speed-ups
over CPU implementations.

The concept of convex relaxation has become increasingly popular
in computer vision over the last year. In addition to the approaches
discussed in this chapter, there are further convex relaxation schemes
to find optimal solutions to anisotropic minimal surface problems
[26, 32, 29, 19] or to ratio functionals [20]. Recently, the first algorithm
for minimizing convex relaxations of the piecewise smooth Mumford-
Shah functional was proposed in [25]. All these developments indicate
that the spatially continuous representation and pde-based optimiza-
tion techniques provide a powerful alternative to graph-theoretic
Markov random field approaches.
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