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1 Introduction

1.1 Image Analysis and Prior Knowledge

Image segmentation is among the most studied problems in image understanding and com-

puter vision. The goal of image segmentation is to partition the image plane into a set

of meaningful regions. Here meaningful typically refers to a semantic partitioning where

the computed regions correspond to individual objects in the observed scene. Unfortu-

nately, generic purely low-level segmentation algorithms often do not provide the desired

segmentation results, because the traditional low level assumptions like intensity or texture

homogeneity and strong edge contrast are not sufficient to separate objects in a scene.

To overcome these limitations researchers have proposed to impose prior knowledge into

low-level segmentation methods. In the following, we will review methods which allow to

impose knowledge about the shape of objects of interest into segmentation processes.

In the literature there exist various definitions of the term shape, from the very broad

notion of shape of Kendall [54] and Bookstein [5] where shape is whatever remains of an

object when similiarity transformations are factored out (i.e. a geometrically normalized

version of a gray value image) to more specific notions of shape referring to the geometric
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outline of an object in 2D or 3D. In this work, we will adopt the latter view and refer

to an object’s silhouette or boundary as its shape. Intentionally we will leave the exact

mathematical definition until later, as different representations of geometry actually imply

different definitions of the term shape.

One can distinguish various kinds of shape knowledge:

• low-level shape priors which typically simply favor shorter boundary length, i.e. curves

with shorter boundary have lower shape energy. where boundary length can be mea-

sured in various ways [53, 4, 69, 49, 6],

• mid-level shape priors which favor for example thin and elongated structures, thereby

facilitating the segmentation of roads in satellite imagery or of blood vessles in medical

imagery [70, 78, 44], and

• high-level shape priors which favor similarity to previously observed shapes, such as

hand shapes [50, 21, 36], silhouettes of humans [29, 26] or medical organs like the heart,

the prostate, the lungs or the cerebellum [83, 99, 81, 58].

There exists a wealth of works on shape priors for image segmentation. It is beyond the

scope of this article to provide a complete overview of existing work. Instead we will present

a range of representative works – with many of the examples taken from the author’s own

work – discuss their advantages and shortcomings. Some of these works are formulated in

a probabilistic setting where the challenge is to infer the most likely shape given an image

and a set of training shapes. Typically the segmentation is formulated as an optimization

problem.

One can distinguish two important challenges:

1. The modeling challenge: How do we formalize distances between shapes? What prob-

ability distributions do we impose? What energies should we minimize?

2. The algorithmic challenge: How do we minimize the arising cost function? Are the

computed solutions globally optimal? If they are not globally optimal how sensitive

are solutions with respect to the initialization?
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1.2 Explicit versus Implicit Shape Representation

Spatially continuous Spatially discrete

Explicit
polygons [21, 102],

splines [53, 3, 36]

edgel labeling & dyn.

progr. [84, 74, 1, 87, 89] hybrid repres. &

LP relaxation [90]

Implicit
level set methods [39, 72],

convex relaxation [11, 31]
graph cut methods [49, 6]

Figure 1: Shapes can be represented explicitly or implicitly, in a spatially continuous or a

spatially discrete setting. More recently, researchers have adopted hybrid representations

[90], where objects are represented both in terms of their interior (implicitly) and in terms

of their boundary (explicitly).

A central question in the modeling of shape similarity is that of how to represent a

shape. Typically one can distinguish between explicit and implicit representations. In the

former case, the boundary of the shape is represented explicitly – in a spatially continuous

setting this could be a polygon or a spline curve. In a spatially discrete setting this could

be a set of edgles (edge elements) forming a regular grid. Alternatively, shapes can be

represented implicitly in the sense that one labels all points in space as being part of the

interior or the exterior of the object. In the spatially continuous setting the optimization

of such implicit shape representations is solved by means of partial differential equations.

Among the most popular representatives are the level set method [39, 72] or alternative

convex relaxation techniques [11]. In the spatially discrete setting implicit representations

have become popular through the graph cut methods [49, 7]. More recently, researchers

have also advocated hybrid representations where objects are represented both explicitly

and implicitly [90]. Table 1 provides an overview of a few representative works on image

segmentation based on explicit and implicit representations of shape.

Figure 2 shows examples of shape representations using an explicit parametric represen-

tation by spline curves (spline control points are marked as black boxes), implicit represen-

tations by a signed distance function or a binary indicator function and an explicit discrete

3



Figure 2: Examples of shape representations by means of a parametric spline curve (1st

image), a signed distance function (2nd image), a binary indicator function (3rd image), and

an explicit discrete representation (4th image).

representation (4th image).

As we shall see in the following, the choice of shape representation has important conse-

quences on the class of objects that can be modeled, the type of energy that can be minimized

and the optimality guarantees that can be obtained. Among the goals of this article is to

put in contrast various shape representations and discuss their advantages and limitations.

In general one observes that:

• Implicit representations are easily generalized to shapes in arbitrary dimension. Re-

spective algorithms (level set methods, graph cuts, convex relaxation techniques) straight-

forwardly extend to three or more dimensions. Instead, the extension of explicit shape

representations to higher dimensions is by no means straight forward: The notion of

arc-length parameterization of curves does not extend to surfaces. Moreover, the dis-

crete polynomial-time shortest-path algorithms [1, 85, 89] which allow to optimally

identify pairwise correspondence of points on either shape do not directly extend to

minimal-surface algorithms.

• Implicit representations are easily generalized to arbitrary shape topology. Since the

implicit representation merely relies on a labeling of space (as being inside or outside

the object), the topology of the shape is not constrained. Both level set and graph

cut algorithms can therefore easily handle objects of arbitrary topology. Instead, for

spatially continuous parametric curves, modeling the transition from a single closed

curve to a multiply connected object boundary requires sophisticated splitting and

merging techniques [61, 65, 60, 38]. Similarly, discrete polynomial-time algorithms are
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Figure 3: The linear interpolation of spline-based curves (shown here along the first three

eigenmodes of a shape distribution) gives rise to a families of intermediate shapes.

typically constrained to finding open [1, 23, 20] or closed curves [86, 89].

• Explicit boundary representations allow to capture the notion of point correspondence

[47, 85, 89]. The correspondence between points on either of two shapes and the

underlying correspondence of semantic parts is of central importance to human notions

of shape similarity. The determination of optimal point correspondences, however, is

an important combinatorial challenge, especially in higher dimensions.

• For explicit representations the modeling of shape similarity is often more straight

forward and intuitive. For example, for two shapes parameterized as spline curves, the

linear interpolation of these shapes also gives rise to a spline curve and often captures

the human intuition of an intermediate shape. Instead, the linear interpolation of

implicit representations is generally not straight-forward: Convex combintations of

binary-valued functions are no longer binary-valued. And convex combinations of

signed distance functions are generally no longer a signed distance function. Figures

3 show examples of a linear interpolations of spline curves and a linear interpolations

of signed distance functions. Note that the linear interpolation of signed distance

functions may give rise to intermediate silhouettes of varying topology.

In the following, we will give an overview over some of the developments in the domain

of shape priors for image segmentation. In Section 2, we will review a formulation of im-

age segmentation by means of Bayesian inference which allows the fusion of input data and

shape knowledge in a single energy minimization framework. In Section 3, we will discuss a
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framework to impose statistical shape priors in a spatially continuous parametric represen-

tation. In Section 4, we discuss methods to impose statistical shape priors in level set based

image segmentation. In Section 5, we discuss statistical models which allow to represent the

temporal evolution of shapes and can serve as dynamical priors for image sequence segmen-

tation. And lastly, in Section 6, we will present recent developments to impose elastic shape

priors in a manner which allows to compute globally optimal shape-consistent segmentations

in polynomial time.

Figure 4: This figure shows the linear interpolation of the signed distance functions associated

with two human silhouettes. The interpolation gives rise to intermediate shapes and allows

changes of the shape topology. Yet, the linear combination of two signed distance functions

is generally no longer a signed distance function.

2 Image Segmentation via Bayesian Inference

Over the last decades Bayesian inference has become an established paradigm to tackle data

analysis problems – see [105, 30] for example. Given an input image I : Ω→ R on a domain

Ω ⊂ R2, a segmentation C of the image plane Ω can be computed by maximizing the posterior

probability

P(C | I) =
P(I | C) P(C)
P(I)

(1)

where P(I | C) denotes the data likelihood for a given segmentation C and P(C) denotes the

prior probability which allows to impose knowledge about which segmentations are a priori

more or less likely.

Maximizing the posterior distribution can be performed equivalently by minimizing the
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negative logarithm of (1) which gives rise to an energy or cost function of the form

E(C) = Edata(C) + Eshape(C), (2)

where Edata(C) = − logP(I | C) and Eshape(C) = − logP(C) are typically referred to as

data fidelity term and regularizer or shape prior. By maximizing the posterior one aims at

computing the most likely solution given data and prior. Of course there exist alternative

strategies of either computing solutions corresponding to the mean of the distribution rather

than its mode, or of retaining the entire posterior distribution in order to propagate multiple

hypotheses over time, as done for example in the context of particle filtering [3].

Over the years various data terms have been proposed. In the following, we will simply

use a piecewise-constant approximation of the input intensity I [69]:

Edata(C) =
k∑
i=1

∫
Ωi

(
I(x)− µi

)2
dx, (3)

where the regions Ω1, . . . ,Ωk are pairwise disjoint regions separated by the boundary C and

µi denotes the average of I over the region Ωi:

µi =
1

|Ωi|

∫
Ωi

I(x) dx. (4)

More sophisticated data terms based on color likelihoods [57, 8, 103] or texture likelihoods

[2, 30] are conceivable.

A glance into the literature indicates that the most prominent image segmentation meth-

ods rely on a rather simple geometric shape prior Eshape which energetically favors shapes

with shorter boundary length [53, 4, 69], a penalizer which – in a spatially discrete setting

– dates back at least as far as the Ising model for ferromagnetism [52]. There are several

reasons for the popularity of length constraints in image segmentation. Firstly, solid ob-

jects in our world indeed tend to be spatially compact. Secondly, such length constraints

are mathematically well-studied. They give rise to well-behaved models and algorithms –

mean curvature motion in a continuous setting and low-order Markov random fields and

submodular cost functions in the discrete setting.

Nevertheless, the preference for a shorter boundary is clearly a very simplistic shape

prior. In many applications the user may have a more specific knowledge about what kinds
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of shapes are likely to arise in a given segmentation task. For example, in biology one may

want to segment cells that all have a rather specific size and shape. In medical imaging one

may want to segment organs that all have a rather unique shape – up to a certain variability –

and preserve a specific spatial relationship with respect to other organs. In satellite imagery

one may be most interested in segmenting thin and elongated roads, or in the analysis of

traffic scenes from a driving vehicle, the predominant objects may be cars and pedestrians.

In the following sections, we will discuss ways to impose such higher-level shape knowledge

into image segmentation methods.

3 Statistical Shape Priors for Parametric Shape Rep-

resentations

Among the most straight-forward ways to represent a shape is to model its outline as a

parametric curve. An example is a simple closed spline curve C ∈ Ck(S1,Ω) of the form:

C(s) =
n∑
i=1

piBi(s), (5)

where pi ∈ R2 denote a set of spline control points and Bi a set of spline basis functions

of degree k [66, 19, 43, 36]. In the special case of linear basis functions, we simply have a

polygonal shape, used for example in [102]. With increasing number of control points, we

obtain a more and more detailed shape representation – see Figure 5. It shows one of the

nice properties of parametric shape representations: The representation is quite compact in

the sense that very detailed silhouettes can be represented by a few real-valued variables.

Given a family of m shapes each represented by a spline curve of a fixed number of n

control points, we can think of these training shapes as a set {z1, . . . , zm} of control point

vectors

zi = (pi1, . . . , pin) ∈ R2n, (6)

where we assume that all control point vectors are normalized with respect to translation,

rotation and scaling [41].

With this contour representation, the image segmentation problem boils down to com-

puting an optimal spline control point vector z ∈ R2n for a given image. The segmentation
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process can be constrained to familiar shapes by imposing a statistical shape prior computed

from the set of training shapes.

Input image 20 points 40 points 70 points 100 points

Figure 5: Spline representation of a hand shape (left) with increasing resolution.

3.1 Linear Gaussian Shape Priors

Among the most popular shape prior is based on the assumption that the training shapes

are Gaussian distributed – see for example [21, 55, 36]. There are several reasons for the

popularity of Gaussian distributions. Firstly, according to the central limit theorem the

average of a large number of i.i.d. random variables is approximately Gaussian distributed

– so if the observed variations of shape were created by independent processes then one

could expect the overall distribution to be approximately Gaussian. Secondly, the Gaussian

distribution can be seen as a second-order approximation of the true distribution. And

thirdly, the Gaussian distribution gives rise to a convex quadratic cost function that allows

for easy minimization.

In practice, the number of training shapes m is often much smaller than the number of

dimensions 2n. Therefore, the estimated covariance matrix Σ is degenerate with many zero

eigenvalues and thus not invertible. As introduced in [36] a regularized covariance matrix is

given by:

Σ⊥ = Σ + λ⊥
(
I − V V t

)
, (7)

where V is the matrix of eigenvectors of Σ. In this way, we replace all zero eigenvalues of

the sample covariance matrix Σ by a constant λ⊥ ∈ [0, λr], where λr denotes the smallest
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non-zero eigenvalue of Σ.1 In [68] it was shown that λ⊥ can be computed from the true

covariance matrix by minimizing the Kullback-Leibler divergence between the exact and

the approximated distribution. Yet, since we do not have the exact covariance matrix but

merely a sample covariance matrix, the reasoning for determining λ⊥ suggested in [68] is not

justified.

The Gaussian shape prior is then given by:

P(z) =
1

|2πΣ⊥|1/2
exp

(
−1

2
(z − z̄)t Σ−1

⊥ (z − z̄)

)
, (8)

where z̄ denotes the mean control point vector.

Based on the Gaussian shape prior, we can define a shape energy that is invariant to

similarity transformations (translation, rotation and scaling) by:

Eshape(z) = − logP (ẑ) , (9)

where ẑ is the shape vector upon similarity alignment with respect to the training shapes:

ẑ =
R (z − z0)

|R (z − z0)|
, (10)

where the optimal translation z0 and rotation R can be written as functions of z [36]. As a

consequence, we can minimize the overall energy

E(z) = Edata(C(z)) + Eshape(z) (11)

using gradient descent in z. For details on the numerical minimization we refer to [36, 25].

Figure 6 shows several intermediate steps in a gradient descent evolution on the energy (2)

combining the piecewise constant intensity model (3) with a Gaussian shape prior constructed

from a set of sample hand shapes. Note how the similarity-invariant shape prior (9) constrains

the evolving contour to hand-like shapes without constraining its translation, rotation or

scaling.

Figure 7 shows the gradient descent evolution with the same shape prior for an input

image of a partially occluded hand. Here the missing part of the silhouette is recovered

1Note that the inverse Σ−1⊥ of the regularized covariance matrix defined in (7) fundamentally differs from

the pseudoinverse, the former scaling components in degenerate directions by λ−1⊥ while the latter scales

them by 0.
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Initial curve step 1 step 2 step 3

step 4 step 5 final training shapes

Figure 6: Evolution of a parametric spline curve during gradient descent on the energy (2)

combining the piecewise constant intensity model (3) with a Gaussian shape prior constructed

from a set of sample hand shapes (lower right). Note that the shape prior is by construction

invariant to similiarity transformations. As a consequence, the contour easily undergoes

translation, rotation and scaling as these do not affect the energy.

Figure 7: Gradient descent evolution of a parametric curve from initial to final with similarity

invariant shape prior. The statistical shape prior permits a reconstruction of the hand

silhouette in places where it is occluded.

through the statistical shape prior. These evolutions demonstrate that the curve converges to

the correct segmentation over rather large spatial distance, an aspect which is characteristic
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for region-based cost functions like (3).

Aligned contours Simple Gaussian Mixture model
Feature space

Gaussian

Figure 8: Model comparison. Density estimates for a set of left (•) and right (+) hands,

projected onto the first two principal components. From left to right: Aligned contours,

simple Gaussian, mixture of Gaussians, Gaussian in feature space (13). In contrast to the

mixture model, the Gaussian in feature space does not require an iterative (sometimes sub-

optimal) fitting procedure.

3.2 Nonlinear Statistical Shape Priors

The shape prior (9) was based on the assumption that the training shapes are Gaussian

distributed. For collections of real-world shapes this is generally not the case. For example,

the various silhouettes of a rigid 3D object obviously form a three-dimensional manifold

(given that there are only three degrees of freedom in the observation process). Similarly, the

various silhouettes of a walking person essentially correspond to a one-dimensional manifold

(up to small fluctuations). Furthermore, the manifold of shapes representing deformable

objects like human persons are typically very low-dimensional, given that the observed 3D

structure only has a small number of joints.

Rather than learning the underlying low-dimensional representation (using principal sur-

faces or other manifold learning techniques), we can simply estimate arbitrary shape distri-

butions by reverting to nonlinear density estimators – nonlinear in the sense that the permis-

sible shapes are not simply given by a weighted sum of eigenmodes. Classical approaches for

estimating nonlinear distributions are the Gaussian mixture model or the Parzen-Rosenblatt
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kernel density estimator – see Section 4.

An alternative technique is to adapt recent kernel learning methods to the problem of

density estimation [28]. To this end, we approximate the training shapes by a Gaussian

distribution, not in the input space but rather upon transformation ψ : R2n → Y to some

generally higher-dimensional feature space Y :

Pψ(z) ∝ exp

(
−1

2
(ψ(z)− ψ0)t Σ−1

ψ (ψ(z)− ψ0)

)
. (12)

As before we can define the corresponding shape energy as

E(z) = − logPψ (ẑ) , (13)

with ẑ being the similarity-normalized shape given in (10). Here ψ0 and Σψ denote the mean

and covariance matrix computed for the transformed shapes:

ψ0 =
1

m

m∑
i=1

ψ(zi), Σψ =
1

m

m∑
i=1

(
ψ(zi)− ψ0

)(
ψ(zi)− ψ0

)>
, (14)

where Σψ is again regularized as in (7).

As shown in [28], the energy E(z) in (13) can be evaluated without explicitly specifying

the nonlinear transformation ψ. It suffices to define the corresponding Mercer kernel [67, 24]:

k(x, y) := 〈ψ(x), ψ(y)〉 , ∀x, y ∈ R2n, (15)

representing the scalar product of pairs of transformed points ψ(x) and ψ(y). In the following

we simply chose a Gaussian kernel function of width σ:

k(x, y) =
1

(2πσ2)
n
2

exp

(
−||x− y||

2

2σ2

)
. (16)

It was shown in [28], that the resulting energy can be seen as a generalization of the classical

Parzen-Rosenblatt estimators. In particular, the Gaussian distribution in feature space Y

is fundamentally different from the previously presented Gaussian distribution in the input

space R2n. Figure 8 shows the level lines of constant shape energy computed from a set

of left and right hand silhouettes, displayed in a projection onto the first two eigenmodes

of the distribution. While the linear Gaussian model gives rise to elliptical level lines, the

Gaussian mixture and the nonlinear Gaussian allow for more general non-elliptical level
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Initial contour No prior With prior

Sample segmentations of subsequent frames

Figure 9: Tracking a familiar object over a long image sequence with a nonlinear statistical

shape prior. A single shape prior constructed from a set of sample silhouettes allows the

emergence of a multitude of familiar shapes, permitting the segmentation process to cope

with background clutter and partial occlusions.

lines. In contrast to the mixture model, however, the nonlinear Gaussian does not require

an interative parameter estimation process, not does it require or assume a specific number

of Gaussians.

Figure 9 shows screenshots of contours computed for an image sequence by gradient de-

scent on the energy (11) with the nonlinear shape energy (13) computed from a set of 100

training silhouettes. Throughout the entire sequence, the object of interest was occluded by

an artificially introduced rectangle. Again, the shape prior allows to cope with spurious back-

ground clutter and to restore the missing parts of the object’s silhouette. Two–dimensional

projections of the training data and evolving contour onto the first principal components,

shown in Figure 10, demonstrate how the nonlinear shape energy constrains the evolving
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Projection onto 1st & 2nd

principal component

Projection onto 2nd & 4th

principal component

Figure 10: Tracking sequence from Figure 9 visualized. Training data (•), estimated energy

density (shaded) and the contour evolution (white curve) in appropriate 2D projections. The

evolving contour – see Figures 9 – is constrained to the domains of low energy induced by

the training data.

shape to remain close to the training shapes.

4 Statistical Priors for Level Set Representations

Parametric representations of shape as those presented above have numerous favorable prop-

erties, in particular, they allow to represent rather complex shapes with few a parameters,

resulting in low memory requirements and low computation time. Nevertheless, the explicit

representation of shape has several drawbacks:

• The representation of explicit shapes typically depends on a specific choice of rep-

resentation. To factor out this dependency in the representation and in respective

algorithms gives rise to computationally challenging problems. Determining point cor-

respondences, for example, becomes particularly difficult for shapes in higher dimen-

sions (surfaces in 3D for example).

• In particular, the evolution of explicit shape representations requires sophisticated

numerical regridding procedures to assure an equidistant spacing of control points and
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prevent control point overlap.

• Parametric representations are difficult to adapt to varying topology of the represented

shape. Numerically topology changes require sophisticated splitting and remerging

procedures.

• A number of recent publications [49, 11, 59] indicate that in contrast to explicit shape

representations, the implicit representation of shape allows to compute globally optimal

solutions to shape inference for large classes of commonly used energy functionals.

A mathematical representation of shape which is independent of parameterization was

pioneered in the analysis of random shapes by Fréchet [45] and in the school of mathematical

morphology founded by Matheron and Serra [64, 94]. The level set method [39, 72] provides

a means of propagating contours C (independent of parameterization) by evolving associated

embedding functions φ via partial differential equations – see Figure 11 for a visualization of

the level set function associated with a human silhouette. It has been adapted to segment

images based on numerous low-level criteria such as edge consistency [63, 10, 56], intensity

homogeneity [13, 101], texture information [73, 80, 51, 9] and motion information [33].

In this section, we will give a brief insight into shape modeling and shape priors for

implicit level set representations. Parts of the following text were adopted from [34, 81, 35].

4.1 Shape Distances for Level Sets

The first step in deriving a shape prior is to define a distance or dissimilarity measure for two

shapes encoded by the level set functions φ1 and φ2. We shall briefly discuss three solutions

to this problem. In order to guarantee a unique correspondence between a given shape

and its embedding function φ, we will in the following assume that φ is a signed distance

function, i.e. φ > 0 inside the shape, φ < 0 outside and |∇φ| = 1 almost everywhere. A

method to project a given embedding function onto the space of signed distance functions

was introduced in [98].

Given two shapes encoded by their signed distance functions φ1 and φ2, a simple measure
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Figure 11: The level set method is based on representing shapes implicitly as the zero level

set of a higher-dimensional embedding function.

of their dissimilarity is given by their L2-distance in Ω [62]:∫
Ω

(φ1 − φ2)2 dx. (17)

This measure has the drawback that it depends on the domain of integration Ω. The shape

dissimilarity will generally grow if the image domain is increased – even if the relative position

of the two shapes remains the same. Various remedies to this problem have been proposed.

We refer to [32] for a detailed discussion.

An alternative dissimilarity measure between two implicitly represented shapes repre-

sented by the embedding functions φ1 and φ2 is given by the area of the symmetric difference

[12, 77, 15]:

d2(φ1, φ2) =

∫
Ω

(
Hφ1(x)−Hφ2(x)

)2

dx. (18)

In the present work, we will define the distance between two shapes based on this measure,

because it has several favorable properties. Beyond being independent of the image size Ω,

measure (18) defines a distance on the set of shapes: it is non-negative, symmetric and fulfills

the triangle inequality. Moreover, it is more consistent with the philosophy of the level set

method in that it only depends on the sign of the embedding function. In practice, this

means that one does not need to constrain the two level set functions to the space of signed

distance functions. It can be shown [15] that L∞ and W 1,2 norms on the signed distance

functions induce equivalent topologies as the metric (18).
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Since the distance (18) is not differentiable, we will in practice consider an approximation

of the Heaviside function H by a smooth (differentiable) version Hε. Moreover, we will only

consider gradients of energies with respect to the L2–norm on the level set function, because

they are easy to compute and because variations in the signed distance function correspond

to respective variations of the implicitly represented curve. In general, however, these do

not coincide with so-called shape gradients – see [46] for a recent work on this topic.

4.2 Invariance by Intrinsic Alignment

One can make use of the shape distance (18) in a segmentation process by adding it as a

shape prior Eshape(φ) = d2(φ, φ0) in a weighted sum to the data term, which we will assume

to be the two-phase version of (3) introduced in [14]:

Edata(φ) =

∫
Ω

(I − u+)2Hφ(x)dx +

∫
Ω

(I − u−)2
(
1−Hφ(x)

)
dx + ν

∫
Ω

|∇Hφ|dx, (19)

Minimizing the total energy

Etotal(φ) = Edata(φ) + αEshape(φ) = Edata(φ) + α d2(φ, φ0) (20)

with a weight α > 0, induces an additional driving term which aims at maximizing the

similarity of the evolving shape with a given template shape encoded by the function φ0.

By construction this shape prior is not invariant with respect to certain transformations

such as translation, rotation and scaling of the shape represented by φ.

A common approach to introduce invariance (c.f. [17, 82, 35]) is to enhance the prior by a

set of explicit parameters to account for translation by µ, rotation by an angle θ and scaling

by σ of the shape:

d2(φ, φ0, µ, θ, σ) =

∫
Ω

(
H
(
φ
(
σRθ(x− µ))

)
−Hφ0(x)

)2

dx. (21)

This approach to estimate the appropriate transformation parameters has several drawbacks:

• Optimization of the shape energy (21) is done by local gradient descent. In particular,

this implies that one needs to determine an appropriate time step for each parameter,

chosen so as to guarantee stability of resulting evolution. In numerical experiments,

we found that balancing these parameters requires a careful tuning process.
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• The optimization of µ, θ, σ and φ is done simultaneously. In practice, however, it

is unclear how to alternate between the updates of the respective parameters. How

often should one iterate one or the other gradient descent equation? In experiments,

we found that the final solution depends on the selected scheme of optimization.

• The optimal values for the transformation parameters will depend on the embedding

function φ. An accurate shape gradient should therefore take into account this depen-

dency. In other words, the gradient of (21) with respect to φ should take into account

how the optimal transformation parameters µ(φ), σ(φ) and θ(φ) vary with φ.

Inspired by the normalization for explicit representations introducing in (10), we can

elimiate these difficulties associated with the local optimization of explicit transformation

parameters by introducing an intrinsic registration process. We will detail this for the cases

of translation and scaling. Extensions to rotation and other transformations are conceivable

but will not be pursued here.

4.2.1 Translation invariance by intrinsic alignment

Assume that the template shape represented by φ0 is aligned with respect to the shape’s

centroid. Then we define a shape energy by:

Eshape(φ) = d2(φ, φ0) =

∫
Ω

(
Hφ(x+ µφ)−Hφ0(x)

)2

dx, (22)

where the function φ is evaluated in coordinates relative to its center of gravity µφ given by:

µφ =

∫
xhφ dx, with hφ ≡ Hφ∫

Ω
Hφdx

. (23)

This intrinsic alignment guarantees that the distance (22) is invariant to the location of the

shape φ. In contrast to the shape energy (21), we no longer need to iteratively update an

estimate of the location of the object of interest.

4.2.2 Translation and scale invariance via alignment

Given a template shape (represented by φ0) which is normalized with respect to translation

and scaling, one can extend the above approach to a shape energy which is invariant to
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translation and scaling:

Eshape(φ) = d2(φ, φ0) =

∫
Ω

(
Hφ(σφ x+ µφ)−Hφ0(x)

)2

dx, (24)

where the level set function φ is evaluated in coordinates relative to its center of gravity µφ

and in units given by its intrinsic scale σφ defined as:

σφ =

(∫
(x− µ)2 hφ dx

) 1
2

, where hφ =
Hφ∫

Ω
Hφdx

. (25)

In the following, we will show that functional (24) is invariant with respect to translation

and scaling of the shape represented by φ. Let φ be a level set function representing a shape

which is centered and normalized such that µφ = 0 and σφ = 1. Let φ̃ be an (arbitrary) level

set function encoding the same shape after scaling by σ ∈ R and shifting by µ ∈ R2:

Hφ̃(x) = Hφ

(
x− µ
σ

)
.

Indeed, center and intrinsic scale of the transformed shape are given by:

µφ̃ =

∫
xHφ̃dx∫
Hφ̃dx

=

∫
xHφ

(
x−µ
σ

)
dx∫

Hφ
(
x−µ
σ

)
dx

=

∫
(σx′ + µ)Hφ(x′)σdx′∫

Hφ(x′)σdx′
= σµφ + µ = µ,

σφ̃ =

(∫
(x− µφ̃)2Hφ̃dx∫

Hφ̃dx

) 1
2

=

(∫
(x− µ)2Hφ

(
x−µ
σ

)
dx∫

Hφ
(
x−µ
σ

)
dx

) 1
2

=

(∫
(σx′)2Hφ(x′)dx′∫

Hφ(x′)dx′

) 1
2

= σ.

The shape energy (24) evaluated for φ̃ is given by:

Eshape(φ̃) =

∫
Ω

(
Hφ̃(σφ̃ x+ µφ̃)−Hφ0(x)

)2

dx =

∫
Ω

(
Hφ̃(σ x+ µ)−Hφ0(x)

)2

dx

=

∫
Ω

(
Hφ(x)−Hφ0(x)

)2

dx = Eshape(φ)

Therefore, the above shape dissimilarity measure is invariant with respect to translation and

scaling.

Note, however, that while this analytical solution guarantees an invariant shape distance,

the transformation parameters µφ and σφ are not necessarily the ones which minimize the

shape distance (21). Extensions of this approach to a larger class of invariance are con-

ceivable. For example, one could generate invariance with respect to rotation by rotational

alignment with respect to the (oriented) principal axis of the shape encoded by φ. We will

not pursue this here.
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4.3 Kernel Density Estimation in the Level Set Domain

In the previous sections, we have introduced a translation and scale invariant shape energy

and demonstrated its effect on the reconstruction of a corrupted version of a single familiar

silhouette the pose of which was unknown. In many practical problems, however, we do not

have the exact silhouette of the object of interest. There may be several reasons for this:

• The object of interest may be three-dimensional. Rather than trying to reconstruct the

three dimensional object (which generally requires multiple images and the estimation

of correspondence), one may learn the two dimensional appearance from a set of sample

views. A meaningful shape dissimilarity measure should then measure the dissimilarity

with respect to this set of projections – see the example in Figure 9.

• The object of interest may be one object out of a class of similar objects (the class

of cars or the class of tree leafs). Given a limited number of training shapes sampled

from the class, a useful shape energy should provide the dissimilarity of a particular

silhouette with respect to this class.

• Even a single object, observed from a single viewpoint, may exhibit strong shape

deformation – the deformation of a gesticulating hand or the deformation which a

human silhouette undergoes while walking. In the following, we will assume that one

can merely generate a set of stills corresponding to various (randomly sampled) views

of the object of interest for different deformations – see Figure 12. In the following,

we will demonstrate that – without constructing a dynamical model of the walking

process – one can exploit this set of sample views in order to improve the segmentation

of a walking person.

In the above cases, the construction of appropriate shape dissimilarity measures amounts

to a problem of density estimation. In the case of explicitly represented boundaries, this has

been addressed by modeling the space of familiar shapes by linear subspaces (PCA) [21] and

the related Gaussian distribution [36], by mixture models [22] or nonlinear (multi-modal)

representations via simple models in appropriate feature spaces [27, 28].
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For level set based shape representations, it was suggested [62, 100, 83] to fit a linear

sub-space to the sampled signed distance functions. Alternatively, it was suggested to rep-

resent familiar shapes by the level set function encoding the mean shape and a (spatially

independent) Gaussian fluctuation at each image location [82]. These approaches were shown

to capture some shape variability. Yet, they exhibit two limitations: Firstly, they rely on

the assumption of a Gaussian distribution which is not well suited to approximate shape

distributions encoding more complex shape variation. Secondly, they work under the as-

sumption that shapes are represented by signed distance functions. Yet, the space of signed

distance functions is not a linear space. Therefore, in general, neither the mean nor the

linear combination of a set of signed distance functions will correspond to a signed distance

function.

In the following, we will propose an alternative approach to generate a statistical shape

dissimilarity measure for level set based shape representations. It is based on classical meth-

ods of (so-called non-parametric) kernel density estimation and overcomes the above limita-

tions.

Given a set of training shapes {φi}i=1...N – such as those shown in Figure 12 – we define

a probability density on the space of signed distance functions by integrating the shape

distances (22) or (24) in a Parzen-Rosenblatt kernel density estimator [79, 75]:

P(φ) ∝ 1

N

N∑
i=1

exp

(
− 1

2σ2
d2(Hφ,Hφi)

)
. (26)

The kernel density estimator is among the theoretically most studied density estimation

methods. It was shown (under fairly mild assumptions) to converge to the true distribution

in the limit of infinite samples (and σ → 0), the asymptotic convergence rate was studied

for different choices of kernel functions.

It should be pointed out that the theory of classical nonparametric density estimation

was developed for the case of finite-dimensional data. It is beyond the scope of this work

to develop a general theory of probability distributions and density estimation on infinite-

dimensional spaces (including issues of integrability and measurable sets). For a general

formalism to model probability densities on infinite-dimensional spaces, we refer the reader

to the theory of Gaussian processes [76]. In our case, an extension to infinite-dimensional
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Selected sample shapes from a set of a walking silhouettes.

Figure 12: Density estimated using a kernel density estimator for a projection of 100 silhou-

ettes of a walking person (see above) onto the first three principal components.

objects such as level set surfaces φ : Ω→ R could be tackled by considering discrete (finite-

dimensional) approximations {φij ∈ R}i=1,...,N,j=1,...,M of these surfaces at increasing levels

of spatial resolution and studying the limit of infinitesimal grid size (i.e. N,M → ∞).

Alternatively, given a finite number of samples, one can apply classical density estimation

techniques efficiently in the finite-dimensional subspace spanned by the training data [81].

Similarly respective metrics on the space of curves give rise to different kinds of gradient

descent flows. Recently researchers have developed rather sophisticated metrics to favor

smooth transformations or rigid body motions. We refer the reader to [16, 97] for promising

advances in this direction. In the following we will typically limit ourselves to L2 gradients.

There exist extensive studies on how to optimally choose the kernel width σ, based on

asymptotic expansions such as the parametric method [37], heuristic estimates [104, 95] or

maximum likelihood optimization by cross validation [42, 18]. We refer to [40, 96] for a

detailed discussion. For this work, we simply fix σ2 to be the mean squared nearest-neighbor
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distance:

σ2 =
1

N

N∑
i=1

min
j 6=i

d2(Hφi, Hφj). (27)

The intuition behind this choice is that the width of the Gaussians is chosen such that on

the average the next training shape is within one standard deviation.

Reverting to kernel density estimation resolves the drawbacks of existing approaches to

shape models for level set segmentation discussed above. In particular:

• The silhouettes of a rigid 3D object or a deformable object with few degrees of free-

dom can be expected to form fairly low-dimensional manifolds. The kernel density

estimator can capture these without imposing the restrictive assumption of a Gaus-

sian distribution. Figure 12, shows a 3D approximation of our method: We simply

projected the embedding functions of 100 silhouettes of a walking person onto the first

three eigenmodes of the distribution. The projected silhouette data and the kernel den-

sity estimate computed in the 3D subspace indicate that the underlying distribution is

not Gaussian. The estimated distribution (indicated by an isosurface) shows a closed

loop which stems from the fact that the silhouettes were drawn from an essentially

periodic process.

• Kernel density estimators were shown to converge to the true distribution in the limit

of infinite (independent and identically distributed) training samples [40, 96]. In the

context of shape representations, this implies that our approach is capable of accurately

representing arbitrarily complex shape deformations.

• By not imposing a linear subspace, we circumvent the problem that the space of shapes

(and signed distance functions) is not a linear space. In other words: Kernel density

estimation allows to estimate distributions on non-linear (curved) manifolds. In the

limit of infinite samples and kernel width σ going to zero, the estimated distribution

is more and more constrained to the manifold defined by the shapes.
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4.4 Gradient Descent Evolution for the Kernel Density Estimator

In the following, we will detail how the statistical distribution (26) can be used to enhance

level set based segmentation process. As for the case of parametric curves, we formulate level

set segmentation as a problem of Bayesian inference, where the segmentation is obtained by

maximizing the conditional probability

P(φ | I) =
P(I |φ) P(φ)

P(I)
, (28)

with respect to the level set function φ, given the input image I. For a given image, this is

equivalent to minimizing the negative log-likelihood which is given by a sum of two energies:

E(φ) = Edata(φ) + Eshape(φ), (29)

with

Eshape(φ) = − logP(φ), (30)

Minimizing the energy (29) generates a segmentation process which simultaneously aims

at maximizing intensity homogeneity in the separated phases and a similarity of the evolving

shape with respect to all the training shapes encoded through the statistical estimator (26).

Gradient descent with respect to the embedding function amounts to the evolution:

∂φ

∂t
= − 1

α

∂Edata
∂φ

− ∂Eshape
∂φ

, (31)

where the knowledge-driven component is given by:

∂Eshape
∂φ

=

∑
αi

∂
∂φ
d2(Hφ,Hφi)

2σ2
∑
αi

, (32)

which simply induces a force in direction of each training shape φi weighted by the factor:

αi = exp

(
− 1

2σ2
d2(Hφ,Hφi)

)
, (33)

that decays exponentially with the distance from the training shape φi.

4.5 Nonlinear Shape Priors for Tracking a Walking Person

In the following we apply the above shape prior to the segmentation of a partially occluded

walking person. To this end, a sequence of a walking figure was partially occluded by
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Figure 13: Purely intensity-based segmentation. Various frames show the segmentation of a

partially occluded walking person generated by minimizing the Chan-Vese energy (19). The

walking person cannot be separated from the occlusion and darker areas of the background

such as the person’s shadow.

an artificial bar. Subsequently we minimized energy (19), segmenting each frame of the

sequence using the previous segmentation as initialization. Figure 13 shows that this purely

image-driven segmentation scheme is not capable of separating the object of interest from

the occluding bar and similarly shaded background regions such as the object’s shadow on

the floor.

In a second experiment, we manually binarized the images corresponding to the first half

of the original sequence (frames 1 through 42) and aligned them to their respective center

of gravity to obtain a set of training shape – see Figure 12. Then we ran the segmentation

process (31) with the shape prior (26). Apart from adding the shape prior we kept the other

parameters constant for comparability.

Figure 14 shows several frames from this knowledge-driven segmentation. A comparison
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Figure 14: Segmentation with nonparametric invariant shape prior. Segmentation gener-

ated by minimizing energy (29) combining intensity information with the shape prior (26).

For every frame in the sequence, the gradient descent equation was iterated (with fixed

parameters), using the previous segmentation as initialization. The shape prior permits to

separate the walking person from the occlusion and darker areas of the background such as

the shadow. The shapes in the second half of the sequence were not part of the training set.

to the corresponding frames in Figure 13 demonstrates several properties:

• The shape prior permits to accurately reconstruct an entire set of fairly different shapes.

Since the shape prior is defined on the level set function φ – rather than on the boundary

C (cf. [17]) – it can easily handle changing topology.

• The shape prior is invariant to translation such that the object silhouette can be

reconstructed in arbitrary locations of the image.

• The statistical nature of the prior allows to also reconstruct silhouettes which were

not part of the training set – corresponding to the second half of the images shown

(beyond frame 42).

27



5 Dynamical Shape Priors for Implicit Shapes

5.1 Capturing the Temporal Evolution of Shape

In the above works, statistically learned shape information was shown to cope for missing

or misleading information in the input images due to noise, clutter and occlusion. The

shape priors were developed to segment objects of familiar shape in a given image. Although

they can be applied to tracking objects in image sequences, they are not well-suited for this

task, because they neglect the temporal coherence of silhouettes which characterizes many

deforming shapes.

When tracking a deformable object over time, clearly not all shapes are equally likely at

a given time instance. Regularly sampled images of a walking person, for example, exhibit

a typical pattern of consecutive silhouettes. Similarly, the projections of a rigid 3D object

rotating at constant speed are generally not independent samples from a statistical shape

distribution. Instead, the resulting set of silhouettes can be expected to contain strong

temporal correlations.

In the following, we will present temporal statistical shape models for implicitly repre-

sented shapes that were first introduced in [26]. In particular, the shape probability at a

given time depends on the shapes observed at previous time steps. The integration of such

dynamical shape models into the segmentation process can be elegantly formulated within

a Bayesian framework for level set based image sequence segmentation. The resulting opti-

mization by gradient descent induces an evolution of the level set function which is driven

both by the intensity information of the current image as well as by a dynamical shape prior

which relies on the segmentations obtained on the preceding frames. Experimental evalua-

tion demonstrates that the resulting segmentations are not only similar to previously learned

shapes, but they are also consistent with the temporal correlations estimated from sample

sequences. The resulting segmentation process can cope with large amounts of noise and

occlusion because it exploits prior knowledge about temporal shape consistency and because

it aggregates information from the input images over time (rather than treating each image

independently).
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5.2 Level Set Based Tracking via Bayesian Inference

Statistical models can be estimated more reliably if the dimensionality of the model and

the data are low. We will therefore cast the Bayesian inference in a low-dimensional formu-

lation within the subspace spanned by the largest principal eigenmodes of a set of sample

shapes. We exploit the training sequence in a twofold way: Firstly, it serves to define a low-

dimensional subspace in which to perform estimation. And secondly, within this subspace

we use it to learn dynamical models for implicit shapes. For static shape priors this concept

was already used in [81].

Let {φ1, . . . , φN} be a temporal sequence of training shapes.2 Let φ0 denote the mean

shape and ψ1, . . . , ψn the n largest eigenmodes with n� N . We will then approximate each

training shape as:

φi(x) = φ0(x) +
n∑
j=1

αij ψj(x), (34)

where

αij = 〈φi − φ0, ψj〉 ≡
∫

(φi − φ0)ψj dx. (35)

Such PCA based representations of level set functions have been successfully applied for the

construction of statistical shape priors in [62, 100, 83, 81]. In the following, we will denote

the vector of the first n eigenmodes as ψ = (ψ1, . . . , ψn). Each sample shape φi is therefore

approximated by the n-dimensional shape vector αi = (αi1, . . . , αin). Similarly, an arbitrary

shape φ can be approximated by a shape vector of the form

αφ = 〈φ− φ0,ψ〉. (36)

In addition to the deformation parameters α, we introduce transformation parameters

θ, and we introduce the notation:

φα,θ(x) = φ0(Tθx) +α>ψ(Tθx), (37)

2We assume that all training shapes φi are signed distance functions. Yet an arbitrary linear combination

of eigenmodes will in general not generate a signed distance function. While the discussed statistical shape

models favor shapes which are close to the training shapes (and therefore close to the set of signed distance

functions), not all shapes sampled in the considered subspace will correspond to signed distance functions.
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to denote the embedding function of a shape generated with deformation parameters α and

transformed with parameters θ. The transformations Tθ can be translation, rotation and

scaling (depending on the application).

With this notation, the goal of image sequence segmentation within this subspace can be

stated as follows: Given consecutive images It : Ω → R from an image sequence, and given

the segmentations α̂1:t−1 and transformations θ̂1:t−1 obtained on the previous images I1:t−1,

compute the most likely deformation α̂tand transformation θ̂t by maximizing the conditional

probability

P(αt, θt | It, α̂1:t−1, θ̂1:t−1) =
P(It |αt, θt) P(αt, θt | α̂1:t−1, θ̂1:t−1)

P(It | α̂1:t−1, θ̂1:t−1)
. (38)

The key challenge, addressed in the following, is to model the conditional probability

P(αt, θt | α̂1:t−1, θ̂1:t−1), (39)

which constitutes the probability for observing a particular shape αt and a particular trans-

formation θt at time t, conditioned on the parameter estimates for shape and transformation

obtained on previous images.

5.3 Linear Dynamical Models for Implicit Shapes

For realistic deformable objects one can expect the deformation parameters αt and the trans-

formation parameters θt to be tightly coupled. Yet, we want to learn dynamical shape models

which are invariant to the absolute translation, rotation etc. To this end, we can make use

of the fact that the transformations form a group which implies that the transformation θt

at time t can be obtained from the previous transformation θt−1 by applying an incremental

transformation 4θt: Tθtx = T4θtTθt−1x. Instead of learning models of the absolute transfor-

mation θt, we can simply learn models of the update transformations 4θt (e.g. the changes

in translation and rotation). By construction, such models are invariant with respect to the

global pose or location of the modeled shape.

To jointly model transformation and deformation, we simply obtain for each training

shape in the learning sequence the deformation parameters αi and the transformation
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changes 4θi, and define the extended shape vector

βt :=

(
αt
4θt

)
. (40)

We will then impose a linear dynamical model of order k to approximate the temporal

evolution of the extended shape vector:

P(βt | β̂1:t−1) ∝ exp

(
−1

2
v>Σ−1 v

)
, (41)

where

v ≡ βt − µ− A1β̂t−1 − A2β̂t−2 . . .− Akβ̂t−k (42)

Various methods have been proposed in the literature to estimate the model parameters

given by the mean µ and the transition and noise matrices A1, . . . , Ak,Σ. We applied a

stepwise least squares algorithm proposed in [71]. Using dynamical models up to an order of

8, we found that according to Schwarz’s Bayesian criterion [92], our training sequences were

best approximated by an autoregressive model of second order (k = 2).

Figure 15 shows a sequence of statistically synthesized embedding functions and the in-

duced contours given by the zero level line of the respective surfaces – for easier visualization,

the transformational degrees are neglected. In particular, the implicit representation allows

to synthesize shapes of varying topology. The silhouette on the bottom left of Figure 15, for

example, consists of two contours.

5.4 Variational Segmentation with Dynamical Shape Priors

Given an image It from an image sequence and given a set of previously segmented shapes

with shape parameters α̂1:t−1 and transformation parameters θ̂1:t−1, the goal of tracking is

to maximize the conditional probability (38) with respect to shape αt and transformation

θt. This can be performed by minimizing its negative logarithm, which is – up to a constant

– given by an energy of the form:

E(αt, θt) = Edata(αt, θt) + Eshape(αt, θt). (43)

For the data term we use the model in (3) with independent intensity variances:

Edata(αt, θt) =

∫ (
(It−µ1)2

2σ2
1

+log σ1

)
Hφαt,θt +

(
(It−µ2)2

2σ2
2

+log σ2

)(
1−Hφαt,θt

)
dx. (44)
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Figure 15: Synthesis of implicit dynamical shapes. Statistically generated embedding sur-

faces obtained by sampling from a second order autoregressive model, and the contours

given by the zero level lines of the synthesized surfaces. The implicit representation allows

the embedded contour to change topology (bottom left image).

Using the autoregressive model (41), the shape energy is given by:

Eshape(αt, θt) =
1

2
v>Σ−1 v (45)

with v defined in (42).

The total energy (43) is easily minimized by gradient descent. For details we refer to

[26].

Figure 16 shows images from a sequence that was degraded by increasing amounts of

noise.

Figure 17 shows segmentation results obtained by minimizing (43) as presented above.

Despite prominent amounts of noise, the segmentation process provides reliable segmenta-

tions where human observers fail.

Figure 18 shows the segmentation of an image sequence showing a walking person that

was corrupted by noise and an occlusion which completely covers the walking person for

several frames. The dynamical shape prior allows for reliable segmentations despite noise
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25% noise 50% noise 75% noise 90% noise

Figure 16: Images from a sequence with increasing amount of noise.

Segmentation results for 75% noise.

Segmentation results for 90% noise.

Figure 17: Variational image sequence segmentation with a dynamical shape prior for various

amounts of noise. 90% noise means that nine out of ten intensity values were replaced by

a random intensity from a uniform distribution. The statistically learned dynamical model

allows for reliable segmentation results despite prominent amounts of noise.

and occlusion. For more details and quantitative evaluations we refer to [26].

Figure 18: Tracking in the presence of occlusion. The dynamical shape prior allows to

reliably segment the walking person despite noise and occlusion.
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6 Parametric Representations Revisited: Combinato-

rial Solutions for Segmentation with Shape Priors

In previous sections we saw that shape priors allow to improve the segmentation and tracking

of familiar deformable objects, biasing the segmentation process to favor familiar shapes or

even familiar shape evolution. Unfortunately these approaches are based on locally minimiz-

ing respective energies via gradient descent. Since these energies are generally non-convex,

respective solutions are bound to be locally optimal only. As a consequence, they depend

on an initialization and are likely to be suboptimal in practice. One exception based on im-

plicit shape representations as binary indicator functions and convex relaxation techniques

was proposed in [31]. Yet, the linear interpolation of shapes represented by binary indicator

functions does not give rise to plausible intermediate shapes such that respective algorithms

require a large number of training shapes.

Figure 19: A polynomial-time solution for matching shapes to images: Matching a template

curve C : S1 → R2 (left) to the image plane Ω ⊂ R2 is equivalent to computing an orientation-

preserving cyclic path Γ : S1 → Ω × S1 (blue curve) in the product space spanned by the

image domain and the template domain. The latter problem can be solved in polynomial

time – see [89] for details.
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Moreover, while implicit representations like the level set method circumvent the problem

of computing correspondences between points on either of two shapes, it is well-known that

the aspect of point correspondences plays a vital role in human notions of shape similarity.

For matching planar shapes there is abundant literature on how to solve the arising corre-

spondence problem in polynomial time using dynamic programming techniques [48, 93, 85].

Similar concepts of dynamic programming can be employed to localize deformed template

curves in images. Coughlan et al. [23] detected open boundaries by shortest path algorithms

in higher-dimensional graphs. And Felzenszwalb et al. used dynamic programming in chordal

graphs to localize shapes, albeit not on a pixel level.

Polynomial-time solutions for localizing deformable closed template curves in images

using minimum ratio cycles or shortest circular paths were proposed in [89], with a further

generalization presented in [88]. There the problem of determining a segmentation of an

image I : Ω → R that is elastically similar to an observed template cc : S1 → R2 by

computing minimum ratio cycles

Γ : S1 → Ω× S1 (46)

in the product space spanned by the image domain Ω and template domain S1. See Figure

19 for a schematic visualization. All points along this circular path provide a pair of corre-

sponding template point and image pixel. In this manner, the matching of template points

to image pixels is equivalent to the estimation of orientation-preserving cyclic paths, which

can be solved in polynomial time using dynamic programming techniques such as ratio cycles

[86] or shortest circular paths [91].

Figure 20 shows an example result obtained with this approach: The algorithm deter-

mines a deformed version (right) of a template curve (left) in an image (center) in globally

optimal manner. An initialization is no longer required and the best conceivable solution is

determined in polynomial time.

Figure 21 shows further examples of tracking objects: Over long sequences of hundreds

of frames the objects of interest are tracked reliably – despite low contrast, camera shake,

bad visibility and illumination changes. For further details we refer to [89].
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Template curve Close-up of input image Optimal segmentation

Figure 20: Segmentation with a single template: Despite significant deformation and trans-

lation, the initial template curve (red) is accurately matched to the low-contrast input image.

The globally optimal correspondence between template points and image pixels is computed

in polynomial time by dynamic programming techniques [89].

frame 1 frame 10 frame 80 frame 110

frame 1 frame 100 frame 125 frame 200

Figure 21: Tracking of various objects in challenging real-world sequences. [89]. Despite

bad visibility, camera shake and substantial lighting changes, the polynomial-time algorithm

allows to reliably track objects over hundreds of frames. Image data taken from [89].
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7 Conclusion

In the previous sections, we have discussed various ways to impose statistical shape priors

into image segmentation methods. We have made several observations:

• By imposing statistically learnt shape information one can generate segmentation pro-

cesses which favor the emergence of familiar shapes – where familiarity is based on one

or several training shapes.

• Statistical shape information can be elegantly combined with the input image data in

the framework of Bayesian maximum aposteriori estimation. Maximizing the posterior

distribution is equivalent to minimizing a sum of two energies representing the data

term and the shape prior. A further generalization allows to impose dynamical shape

priors so as to favor familiar deformations of shape in image sequence segmentation.

• While linear Gaussian shape priors are quite popular, the silhouettes of typical ob-

jects in our environment are generally not Gaussian distributed. In contrast to linear

Gaussian priors, nonlinear statistical shape priors based on Parzen-Rosenblatt kernel

density estimators or based on Gaussian distributions in appropriate feature spaces

[28] allow to encode a large variety of rather distinct shapes in a single shape energy.

• Shapes can be represented explicitly (as points on the object’s boundary or surface)

or implicitly (as the indicator function of the interior of the object). They can be

represented in a spatially discrete or a spatially continuous setting.

• The choice of shape representation has important consequences regarding the question

which optimization algorithms are employed and whether respective energies can be

minimized locally or globally. Moreover, different shape representations give rise to

different notions of shape similarity and shape interpolation. As a result, there is no

single ideal representation of shape. Ultimately one may favor hybrid representations

such as the one proposed in [90]. It combines explicit and implicit representations

allowing cost functions which represent properties of both the object’s interior and its

boundary. Subsequent LP relaxation provides minimizers of bounded optimality.
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