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Abstract. We present a variational approach for segmenting the image plane into
regions of piecewise parametric motion given two or more frames from an image
sequence. Our model is based on a conditional probability for the spatio-temporal
image gradient, given a particular velocity model, and on a geometric prior on the
estimated motion field favoring motion boundaries of minimal length.

We cast the problem of motion segmentation as one of Bayesian inference, we
derive a cost functional which depends on parametric motion models for each of
a set of domains and on the boundary separating them. The resulting functional
can be interpreted as an extension of the Mumford-Shah functional from intensity
segmentation to motion segmentation. In contrast to most alternative approaches,
the problems of segmentation and motion estimation are jointly solved by contin-
uous minimization of a single functional. Minimization results in an eigenvalue
problem for the motion parameters and in a gradient descent evolution for the
motion boundary. The evolution of the motion boundaries is implemented by a
multiphase level set formulation which allows for the segmentation of an arbitrary
number of multiply connected moving objects.

We further extend this approach to the segmentation of space-time volumes
of coherent motion from video sequences. To this end, motion boundaries are
represented by a set of surfaces in space-time. An implementation by a higher-
dimensional multiphase level set model allows the evolving surfaces to undergo
topological changes. In contrast to an iterative segmentation of consecutive frame
pairs, a constraint on the area of these surfaces leads to an additional temporal
regularization of the computed motion boundaries.

Numerical results demonstrate the capacity of our approach to segment objects
based exclusively on their relative motion.

1 Introduction

The segmentation of images into meaningful areas can be driven by various low-level
grouping criteria, such as edge information, color information or texture information.
In the present work, we address the question of how to exploit motion information for
the purpose of segmentation.

While traditionally researchers have suggested to first estimate a motion field and to
subsequently segment the scene based on this motion field [35], the problem of motion
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segmentation can be viewed as a chicken and egg problem: Reliable motion estimation
algorithms generally require a region of support (ideally given by a segmentation of the
moving object), while the computation of a segmentation assumes knowledge of the
motion.

Many researchers have addressed this coupling of segmentation and motion estima-
tion. Some have proposed to model motion discontinuities implicitly by non-quadratic
robust estimators [2, 4, 21, 22, 25, 36]. Others tackled the problem of segmenting motion
by treating the problems of motion estimation in disjoint sets and optimization of the
motion boundaries separately [5, 14, 27, 29, 30]. Some approaches are based on Markov
Random Field (MRF) formulations and optimization schemes such as stochastic relax-
ation by Gibbs sampling [20], split-and-merge techniques [15], deterministic relaxation
[3], graph cuts [31] or expectation maximization (EM) (cf. [18, 37]). As pointed out
in [37], exact solutions to the EM algorithm are computationally expensive and there-
fore suboptimal approximations are employed. An elegant method to directly compute
both the segmentation and the motion models was recently proposed in [34], yet this ap-
proach differs from the above approaches in that it does not allow to impose smoothness
of the estimated motion boundaries.

In the present paper, we propose a framework which allows to jointly solve the prob-
lems of segmentation and motion estimation by minimizing a single functional. We
formulate the problem of motion segmentation in the framework of Bayesian inference.
Related Bayesian formulations have been proposed in the discrete MRF framework (cf.
[3]). Our formulation differs from the above approach in that it is continuous, uses a
contour representation of the motion discontinuity set, can be optimized by a simple
and fast gradient descent minimization and is based on a different (normalized) likeli-
hood in the data term. The proposed functional can be interpreted as an extension of
the Mumford-Shah model [24] from the case of gray value segmentation to the case
of motion segmentation. Minimization leads to an eigenvalue problem for the motion
parameters associated with each region, and to a gradient descent evolution for the
boundary separating the regions.

This joint minimization of a single functional with respect to motion parameters and
motion boundaries generates a pde-based solution to the above chicken and egg prob-
lem. The resulting boundary evolution can be interpreted in the way that neighboring
regions compete for the boundary in terms of their motion energy. In analogy to the
corresponding gray value model, which has been termed Region Competition [39], we
therefore refer to this process as Motion Competition.

We propose a multiphase level set implementation of the motion competition func-
tional, which is based on the corresponding gray value model of Chan and Vese [7]. The
level set formulation permits the segmentation of several (possibly multiply connected)
objects, based on their relative motion.

In order to impose temporal regularity of the estimated motion segmentation, we gen-
eralize the motion boundaries from contours in 2D to surfaces in 3D (space and time).
An analogous level set implementation allows to compute several multiply-connected
motion phases representing moving objects or regions over time. The present paper
integrates and extends results presented in [8–12].
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The paper is organized as follows. In Section 2, we formulate motion estimation
as a problem of Bayesian inference. In Section 3, we consistently derive a variational
framework for motion segmentation. In Section 6, we introduce a level set implemen-
tation of the proposed functional. In Section 7, we present an extension to space-time
motion segmentation of videos. Numerical results for simulated ground truth data and
real-world sequences are given in Section 8.

2 From Motion Estimation to Motion Segmentation

2.1 Motion Estimation as Bayesian Inference

Let Ω ⊂ R
2 denote the image plane and let f : Ω × R → R be a gray value image

sequence. Denote the spatio-temporal image gradient of f(x, t) by

∇3f =
(

∂f

∂x1
,

∂f

∂x2
,

∂f

∂t

)t

. (1)

Let
v : Ω → R

3, v(x) = (u(x), w(x), 1)t, (2)

be the velocity vector at a point x in homogeneous coordinates.1

With these definitions, the problem of motion estimation now consists in maximizing
the conditional probability

P (v | ∇3f) =
P (∇3f | v) P (v)

P (∇3f)
, (3)

with respect to the motion field v. For a related Bayesian formulation of motion
segmentation in the discrete case, we refer to [3].

2.2 A Normalized Velocity Likelihood

In the following, we will assume t hat the intensity of a moving point remains constant
throughout time. Expressed in differential form, this gives a relation between the spatio-
temporal image gradient and the homogeneous velocity vector, known as optic flow
constraint:

df

dt
=

∂f

∂t
+

∂f

∂x1

dx1

dt
+

∂f

∂x2

dx2

dt
= vt ∇3f = 0. (4)

The optic flow constraint has been extensively exploited in the motion estimation com-
munity. Following the seminal work of Horn and Schunck [16], researchers commonly
estimate motion fields by minimizing functionals which integrate this constraint in a
least-squares manner (while imposing a smoothness constraint on the velocity field). In
this work, we propose an alternative geometric approach to interpret the optic flow con-
straint. As we will argue in the following, the resulting likelihood is more appropriate
in the context of motion segmentation.

1 For the moment, we are only concerned with two consecutive frames from a sequence. There-
fore we will drop the time coordinate in the notation of the velocity field.
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Except for locations where the spatio-temporal gradient vanishes, the constraint (4)
states that the homogeneous velocity vector must be orthogonal to the spatio-temporal
image gradient. Therefore we propose to use a measure of this orthogonality as a con-
ditional probability on the spatio-temporal image gradient. Let α be the angle between
the two vectors then:

P
(
∇3f(x)|v(x)

)
∝ e− cos2(α) = exp

(
− (v(x)t∇3f(x))2

|v(x)|2|∇3f(x)|2

)
. (5)

By construction, this probability is independent of the length of the two vectors and
monotonically increases the more orthogonal the two vectors. A normalization with
respect to the length of the velocity vector only has been proposed in the context of
motion estimation [1]. For derivations of alternative likelihood functions from gener-
ative models of the image formation process and associated noise models, we refer to
[13, 26, 38].

2.3 A Geometric Prior on the Velocity Field

We discretize the velocity field v by a set of disjoint regions Ωi ⊂ Ω with constant
velocity vi:

v(x) = {vi, if x ∈ Ωi} (6)

An extension to piecewise parametric motion is presented in Section 4. We now as-
sume the prior probability on the velocity field to only depend on the length |C| of the
boundary C separating these regions:

P (v) ∝ exp
(

− ν |C|
)

(7)

In particular, this means that we do not make any prior assumptions on the velocity
vectors vi. Such a prior would necessarily introduce a bias favoring certain velocities.
Priors on the length of separating boundaries are common in the context of variational
segmentation (cf. [6, 19, 24]). For alternative more object-specific priors in the context
of motion segmentation, we refer to [10]. As we shall see in the next section, the choice
of velocity representation in (6) combined with the prior in (7) will transform the motion
estimation framework into one of motion segmentation.

3 A Variational Framework for Motion Segmentation

With the above assumptions, we can use the framework of Bayesian inference to de-
rive a variational method for motion segmentation. The first term in the numerator of
equation (3) can be written as:

P (∇3f | v) =
∏
x∈Ω

P (∇3f(x) | v(x))h =
n∏

i=1

∏
x∈Ωi

P (∇3f(x) | vi)
h

, (8)

where h = dx denotes the grid size of the discretization of Ω.2 The first step is based
on the assumptions that gradient measurements are spatially independent and that the

2 The introduction of the grid size h ensures the correct continuum limit.
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velocity affects the spatio-temporal gradient only locally.3 And the second step is based
on the discretization of the velocity field given in (6).

With the prior probability (7), maximizing the conditional probability (3) with re-
spect to the velocity field v therefore amounts to

max
v

P (v | ∇3f) = max
vi,C

{
e−ν |C|

n∏
i=1

∏
x∈Ωi

P (∇3f(x) | vi)
h

}
. (9)

Equivalently one can minimize the negative logarithm of this expression, which is given
by the energy functional:

E(C, {vi}) = −
n∑

i=1

∫
Ωi

log (P (∇3f(x) | vi)) dx + ν |C|. (10)

With the conditional probability (5) on the spatio-temporal gradient, this gives:

E(C, {vi}) =
n∑

i=1

∫
Ωi

(v t
i ∇3f(x))2

|vi|2 | ∇3f(x)|2 dx + ν |C|. (11)

Let us make the following remarks about this functional:

• The functional (11) can be considered an extension of the piecewise constant
Mumford-Shah functional [24] from the case of gray value segmentation to the
case of motion segmentation. Rather than having a constant fi modeling the inten-
sity of each region Ωi, we now have a velocity vector vi modeling the motion in
each region Ωi.

• Gradient descent minimization with respect to the boundary C and the set of motion
vectors {vi}, jointly solves the problems of segmentation and motion estimation.
In our view, this aspect is crucial, since these two problems are tightly coupled.
Many alternative approaches to motion segmentation tend to instead treat the two
problems separately by first (globally) estimating the motion and then trying to
segment the estimated motion into a set of meaningful regions.

• The integrand in the data term differs from the one commonly used in the optic flow
community for motion estimation: Rather than minimizing the deviation from the
optic flow constraint in a least-squares manner, as done e.g. in the seminal work of
Horn and Schunck [16], measure (5) introduces an additional normalization with
respect to the length of the two vectors. In Section 5.3, we will argue that these
normalization are essential in the case of motion segmentation, where differently
moving regions are compared.

3 Both of these assumptions are known to be inaccurate. More elaborate modeling of spatial
correlations might lead to improved segmentation schemes.
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• The functional (11) contains one free parameter ν, which determines the relative
weight of the length constraint. Larger values of ν will induce a segmentation of
the image motion on a coarser scale. As argued by Morel and Solimini [23], such a
scale parameter is fundamental to all segmentation approaches.

4 Piecewise Parametric Motion Segmentation

Minimizing functional (11) generates a segmentation of the image plane into domains
of piecewise constant motion. In order to cope with more complex motion regions, one
can extend this approach to piecewise parametric motion. An extension of the geometric
reasoning of Section 2.2 to parametric motion models is as follows.

The velocity on the domain Ωi is allowed to vary according to a model of the form:

vi(x) = M(x) pi, (12)

where M is a matrix depending only on space and time and pi is the parameter vector
associated with each region. A particular model which allows for expansion, contrac-
tion, rotation and shearing is the case of affine motion given by the matrix

M(x) =

⎛
⎝x1 x2 1 0 0 0 0

0 0 0 x1 x2 1 0
0 0 0 0 0 0 1

⎞
⎠ , (13)

and a parameter vector pi = (ai, bi, ci, di, ei, fi, 1) for each region Ωi.
Inserting model (12) into the optic flow constraint (4) gives a relation which – again

interpreted geometrically – states that the the vector M t∇3f must either vanish or be
orthogonal to the vector pi. We therefore model the conditional probability that the
point x ∈ Ω belongs to the domain Ωi by a quantity which only depends on the angle
between pi and M t∇3f :

P (∇3f | pi) ∝ exp
(

− (pt
i M t∇3f)2

|pi|2 |M t∇3f |2

)
. (14)

The corresponding generalization of functional (11) from piecewise constant to
piecewise parametric motion segmentation is given by:

E(C, {pi}) =
∑

i

∫
Ωi

|p t
i M t∇3f |2

|pi|2|M t∇3f |2 dx + ν |C|. (15)

5 Energy Minimization

The functional (15) is of the form

E(C, {pi}) =
n∑

i=1

∫
Ωi

p t
i T (x) pi

|pi|2
dx + ν |C|, (16)
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where, for notational simplification, we have introduced the matrix

T (x) =
∇3f M t M ∇3f

t

|M t ∇3f |2 . (17)

This functional is minimized by alternating the two fractional steps of optimizing
with respect to the motion parameters {pi} for fixed boundary C, and iterating the
gradient descent with respect to C for fixed parameters {pi}.

5.1 An Eigenvalue Problem for the Motion Parameters

The functional (16) can be further simplified:

E(C, {pi}) =
n∑

i=1

p t
i Ti pi

|pi|2
dx + ν |C|, where Ti =

∫
Ωi

T (x) dx, (18)

with T given in (17). For fixed boundary C, i.e. fixed regions Ωi, minimizing this func-
tional with respect to the motion parameters {pi} results in a set of eigenvalue problems
of the form:

pi = argmin
p

pt Ti p

ptp
. (19)

The parametric motion model pi for each region Ωi is therefore given by the eigenvector
corresponding to the smallest eigenvalue of the matrix Ti defined above. It is normal-
ized, such that the third component is 1. Similar eigenvalue problems arise in motion
estimation due to normalization with respect to the velocity magnitude (cf. [1, 18]).

5.2 Motion Competition

Conversely, for fixed motion models pi, a gradient descent on the energy (16) for the
boundary C results in the evolution equation:

∂C

∂t
= −∂E

∂C
= (ej − ek)n − ν

d|C|
dC

, (20)

where the indices ‘j’ and ‘k’ refer to the regions adjoining the contour, n denotes the
normal vector on the boundary pointing into region Ωj , and

ei =
p t

i T pi

p t
i pi

=
p t

i ∇3f M t M ∇3f
t pi

|pi|2 |M t ∇3f |2 (21)

is an energy density.
Note that we have neglected in the evolution equation (20) higher-order terms which

account for the dependence of the motion parameters pi on the regions Ωi. An Eulerian
accurate shape optimization scheme as presented for example in [17] is the focus of
ongoing research.
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The two terms in the contour evolution (20) have the following intuitive interpretation:

– The first term is proportional to the difference of the energy densities ei in the re-
gions adjoining the boundary: The neighboring regions compete for the boundary in
terms of their motion energy density, thereby maximizing the motion homogeneity.
For this reason we refer to this process as Motion Competition.

– The second term minimizes the length L of the separating motion boundary.

5.3 Effect of the Normalization

In Section 2.2 we argued that the proposed likelihood (5) (in contrast to the commonly
used least-squares formulation) does not introduce a bias with respect to the magnitude
of the velocity or the image gradient.4 As a direct consequence, the respective contour
evolutions differ, as we will detail for the case of piecewise constant motion.

The proposed motion likelihood (5) results in a contour evolution of the form (20)
with energy densities

ei =
v t

i ∇3f ∇3f
t vi

|vi|2 |∇3f |2 (22)

This means that the term driving the contour evolution does not depend on the mag-
nitude of the spatio-temporal gradient and it does not depend on the magnitude of the
respective velocity models.

In contrast, a Horn-and-Schunck type likelihood [16] would induce contour driving
terms which do not include the normalizing terms in the denominator:

ei = v t
i ∇3f ∇3f

t vi. (23)

This lack of normalization has two effects on the boundary evolution and resulting seg-
mentation: Firstly the motion boundary will propagate much faster in areas of high gra-
dient. Secondly the evolution direction and speed will be affected by the magnitude of
velocities: regions with larger velocity will exert a stronger pull on the motion boundary.

6 A Multiphase Level Set Implementation

A few years after its introduction in [28], the level set based evolution of contours was
adopted as a framework for image segmentation (cf. [6, 7, 19]). In contrast to explicit
boundaries, the level set representation does not depend on a particular choice of pa-
rameterization. During the evolution of the boundary one avoids the issues of control
point regridding. Moreover, the topology of the evolving interface is not constrained.
This permits splitting and merging of the contour during evolution and therefore makes
level set representations well suited for the segmentation of several objects or multiply
connected objects.

Based on a corresponding gray value model of Chan and Vese [7], we will first
present a two-phase level set model for the motion competition functional (16) with a
single level set function φ. This model is subsequently extended to a multi-phase model
on the basis of a vector-valued level set function.

4 In particular, the functionals (11) and (16) are invariant to global scale transformations of the
intensity: f → γf .
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6.1 The Two-Phase Model

In this subsection, we restrict the class of permissible motion segmentations to two-
phase solutions, i.e. to segmentations of the image plane for which each point can be
ascribed to one of two velocity models p1 and p2. The general case of several velocity
models {pi}i=1,...,n will be treated in the next subsection.

Let the boundary C in the functional (16) be represented as the zero level set of a
function φ : Ω → R:

C = {x ∈ Ω | φ(x) = 0}. (24)

With the Heaviside step function

H(φ) =
{

1 if φ ≥ 0
0 if φ < 0 , (25)

the energy (16) can be embedded by the following two-phase functional:

E(p1, p2, φ) =
∫
Ω

pt
1Tp1

|p1|2
H(φ) dx +

∫
Ω

pt
2Tp2

|p2|2
(
1 − H(φ)

)
dx

+ ν

∫
Ω

∣∣∇H(φ)
∣∣ dx. (26)

The first two terms in (26) enforce a homogeneity of the estimated motion in the two
phases, while the last term enforces a minimal length of the region boundary given by
the zero level set of φ.

The two-phase functional (26) is simultaneously minimized with respect to the ve-
locity models p1 and p2, and with respect to the embedding level set function φ defining
the motion boundaries. To this end, we alternate the two fractional steps:

(a) Updating the Motion Models.
For fixed φ, minimization of the functional (26) with respect to the motion vectors
p1 and p2 results in the eigenvalue problem:

pi = argmin
v

vt Ti v

vtv
, (27)

for the matrices

T1 =
∫
Ω

T (x)H(φ) dx and T2 =
∫
Ω

T (x)
(
1 − H(φ)

)
dx. (28)

The solution of (27) is given by the eigenvectors corresponding to the smallest
eigenvalues of T1 and T2.

(b) Evolution of the Level Set Function.
Conversely, for fixed motion vectors, the gradient descent on the functional (26) for
the level set function φ is given by:

∂φ

∂t
= δ(φ)

[
ν div

(
∇φ

|∇φ|

)
+ e2 − e1

]
, (29)
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with the energy densities ei given in (21). As suggested in [7], we implement the
Delta function δ(φ) = d

dφH(φ) by a smooth approximation of finite width σ:

δσ(s) =
1
π

σ

σ2 + s2 . (30)

Thereby the update of φ is not restricted to the areas of zero-crossing, but rather
spread out over a band of width σ around it. Depending on the size of σ, this
permits to detect interior motion boundaries.

6.2 The General Multiphase Model

Compared to the explicit contour representation, the above level set representation per-
mits to segment several, possibly multiply connected, moving regions. Yet, the repre-
sentation of the motion boundary with a single level set function φ permits to model
motion fields with only two phases (i.e. it permits only two different velocity models).
Moreover, one cannot represent certain geometrical features of the boundary, such as
triple junctions, by the zero level set of a single function φ. There are various ways to
overcome these limitations by using multiple level set functions.

An elegant solution to model multiple phases was proposed by Chan and Vese in [7].
Rather than representing each phase by a separate level set function, they introduce a
more compact representation of up to n phases which needs only m = log2(n) level
set functions.5 Moreover, by definition, the suggested approach generates a partition
of the image plane and therefore does not suffer from overlap or vacuum formation,
a difficulty which commonly arises when modeling each region by its own level set
function. We will therefore adopt this representation of Chan and Vese to implement
multiple motion phases, as detailed in the following.

Consider a set of m level set functions φi : Ω → R, let

Φ = (φ1, . . . , φm) (31)

be a vector level set function and let H(Φ) = (H(φ1), . . . , H(φm)) be the associated
vector Heaviside function. This function maps each point x ∈ Ω to a binary vector and
therefore permits to encode a set of n = 2m phases Ωi defined by:

R = {x ∈ Ω | H
(
Φ(x)

)
= constant}. (32)

In analogy to the corresponding level set formulation of the Mumford-Shah functional
[7], we propose to replace the two-phase functional (26) by the multiphase functional:

E({pi}, Φ) =
n∑

i=1

∫
Ω

p t
i T pi

|pi|2
χi(Φ) dx + ν

n∑
i=1

∫
Ω

∣∣∇H(φi)
∣∣ dx, (33)

where χi denotes the indicator function for the region Ωi. Note, that for n = 2, this is
equivalent to the two-phase model introduced in (26).

For further details regarding the minimization of this multiphase model, we refer to
[8].

5 During the optimization certain phases may disappear such that the final segmentation may
consist of less than n phases.
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6.3 Redistancing

During their evolution, the level set functions generally grow to very large positive or
negative values in the respective areas of the input image corresponding to a particular
motion hypothesis. Indeed, there is nothing in the level set formulation of Chan and
Vese [7] which prevents the level set functions from growing indefinitely. In numerical
implementations, we found that a very steep slope of the level set functions can even
inhibit the flexibility of the boundary to displace. In order to reproject the evolving level
set function to the space of distance functions, we intermittently iterate several steps of
the redistancing equation [32]:

∂φ

∂t
= sign(φ̂) (1 − |∇φ|) , (34)

where φ̂ denotes the level set function before redistancing. This transformation does
not affect the motion boundaries given by the zero-crossing of φ. It merely enforces the
gradient to be of magnitude 1.

7 Motion-Based Space-Time Segmentation of Videos

The above framework allows to segment images into regions of parametric motion
based on two consecutive frames from an image sequence. Given an entire video se-
quence, one can apply the proposed method iteratively to consecutive frame pairs – see
[9] for details. In practical applications, the inferred contour tends to jitter over time.

Rather than processing the sequence frame by frame, one can impose temporal reg-
ularity of the inferred segmentation by casting the motion segmentation problem as
one of identifying volumes Di ⊂ Ω × [0, τ ] of coherent motion in space-time, where
τ denotes the length of the sequence. Rather than minimizing (16) with respect to a
boundary C, one minimizes by the functional

E(S, {pi}) =
n∑

i=1

∫
Di

p t
i T (x, t) pi

|pi|2
dx dt + ν |S|, (35)

with respect to a surface S ⊂ Ω × [0, τ ] separating the phases Di. The constraint on
the area |S| of the surface imposes regularity of the segmentation both in space and in
time.

The parametric representation of velocity fields (12) can be directly extended into
the temporal domain, thereby allowing to consider the case of accelerated motion with

M(x, t) =

⎛
⎝1 0 t 0 0

0 1 0 t 0
0 0 0 0 1

⎞
⎠ , (36)

and pi = (u, w, au, aw, 1) modeling an accelerated motion in each domain. Combina-
tions of models of spatial and temporal variation are conceivable to capture accelerated
rotations and other kinds of motion.

For the extension of the multiphase framework of Section 6.2 to propagate motion
surfaces in space-time, the reader is referred to [11].
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Wallpaper image Multiple regions Text regions

Fig. 1. Data for ground truth experiments. Specific image regions of the wallpaper shot (left) are
artificially translated to generate input data.

8 Numerical Results

In the following, we will present numerical results demonstrating various properties of
the proposed framework for motion segmentation.

For all experiments we determined the spatio-temporal image gradient from two con-
secutive images and specified a particular initialization of the boundary (or surface in
the case of space-time segmentation). We subsequently minimized the functionals (33)
or (35) by alternating the three fractional steps of:

– updating the motion models for all phases by solving the corresponding eigenvalue
problem (27),

– evolving the level set functions by iterating the appropriate gradient descent pdes –
e.g. equation (29) in the two-phase case,

– and redistancing the level set functions according to (34).

For all experiments, we show the evolving motion boundaries (and in some cases
also the corresponding motion estimates) superimposed onto one of the frames. It
should be noted that all results are obtained exclusively on the basis of the motion
information.

8.1 Accurate Motion Segmentation Without Features

In order to verify the spatial precision of the motion competition approach, we per-
formed a number of ground truth experiments in the following way. We took a snapshot
of homogeneously structured wallpaper. We artificially translated certain image regions
according to specific motion models. The input image and the respective image regions
are highlighted (in various shades of gray) in Figure 1.

In the first example, we show that one can generate spatially accurate segmenta-
tion results exploiting only motion information, even for image sequences that exhibit
little intensity variation or salient features. Figure 2 shows the contour evolution gener-
ated by minimizing functional (11). The input data consists of two wall paper images
with the text region (Figure 1, right side) moving to the right and the remainder of the
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Fig. 2. Accurate motion segmentation. Contour evolution obtained with functional (26) and pa-
rameter values ν = 0.06, σ = 1, superimposed on one of the two input frames. The input images
show the text region (Figure 1, right side) of the wallpaper moving to the right and the remainder
moving to the left. The motion competition framework generates highly accurate segmentations,
even if the input images exhibit little in terms of salient features. Due to the region-based for-
mulation, the initial contour does not need to be close to the final segmentation. We found that
alternative initializations generate essentially identical segmentation results. The contour evolu-
tion took approximately 10 seconds in Matlab.

image plane moving to the left. Even for human observers the differently moving re-
gions are difficult to detect – similar to a camouflaged lizard moving on a similarly-
textured ground. The gradient descent evolution superimposed on one of the two frames
gradually separates the two motion regions without requiring salient features such as
edges or corner points.

8.2 Segmenting Several Motion Phases

In this experiment, we demonstrate an application of the multi-phase model (33) to the
segmentation of up to four different regions based on their motion information. The
input data consists of two images showing the wallpaper from Figure 1, left side, with
three regions (shown in Figure 1, right side) moving away from the center. The upper
two regions move by a factor 1.4 faster than the lower region.

Figure 3 shows several steps in the minimization of the functional (33) for two level
set functions. Superimposed onto the ground truth region information are the evolution
of the zero level sets of the two embedding functions φ1 (black contour) and φ2 (white
contour), and the estimated piecewise constant motion field indicated by the black
arrows.

Note that the two contours represent a set of four different phases:

Ω1 ={x∈Ω | φ1 ≥0, φ2 ≥0}, Ω2 ={x ∈ Ω | φ1 ≥0, φ2 <0},

Ω3 ={x ∈ Ω | φ1 <0, φ2 ≥0}, Ω4 ={x ∈ Ω | φ1 <0, φ2 <0}.

Upon convergence, these four phases clearly separate the three moving regions and the
static background. The resulting final segmentation of the image, which is not explicitly
shown here, is essentially identical to the ground truth region information. Note that the
segmentation is obtained purely on the basis of the motion information: In the input
images, the different regions cannot be distinguished from the background on the basis
of their appearance.
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8.3 Intensity Segmentation Versus Motion Segmentation

All image segmentation models are based on a number of more or less explicitly stated
assumptions about the properties which define the objects of interest. The motion com-
petition model is based on the assumption that objects are defined in terms of homoge-
neously moving regions. It extends the Mumford-Shah functional of piecewise constant
intensity to a model of piecewise parametric motion.

In this example, we will show that despite this formal similarity the segmentations
generated by the motion competition framework are very different from those of its gray
value analog. The task is to segment a real-world traffic scene showing two moving cars
on a differently moving background. We used two consecutive images from a sequence
recorded by D. Koller and H.-H. Nagel (KOGS/IAKS, University of Karlsruhe).6 The
sequence shows several cars moving in the same direction, filmed by a static camera. In
order to increase the complexity of the sequence, we artificially induced a background
motion by selecting a subarea of the original sequence and shifting one of the two
frames, thereby simulating the case of a moving camera.

Figure 4, top, shows the boundary evolution obtained by minimizing the two-phase
model of Chan and Vese [7] for the first of the two frames. The segmentation process
progressively separates bright and dark areas of the image plane. Yet, since the objects
of interest are not well-defined in terms of homogeneous gray value, the final segmen-
tation inevitably fails to capture them. The dark car in the lower left is associated with
the darker parts of the street, whereas the car in the upper right is split into its brighter
and darker parts.

Fig. 3. Segmenting multiple moving regions. The two input images show the wallpaper of Figure
1, left side, with three circular regions moving away from the center. The magnitude of the veloc-
ity of the upper two regions is 1.4 times larger than that of the bottom region. Superimposed on
the true region information are the evolving zero level sets of φ1 (black contour) and φ2 (white
contour), which define four different phases. The simultaneously evolving piecewise constant
motion field is represented by the black arrows. Both the phase boundaries and the motion field
are obtained by minimizing the multiphase model (33) with parameters ν = 0.05, σ = 2 with
respect to the level set functions and the motion vectors. In the final solution, the two boundaries
clearly separate four phases corresponding to the three moving regions and the static background.

In this example, the cars and the street are moving according to different motion
models. The motion competition framework exploits this property. Figure 4, bottom,

6 http://i21www.ira.uka.de/image sequences/
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Intensity segmentation for the first of two frames.

Motion segmentation generated from both frames.

Fig. 4. Intensity segmentation versus motion segmentation. Two consecutive input frames show
two cars moving to the top right, and the background moving to the bottom left. Top row: Seg-
mentation of the first frame from a traffic scene according to the two-phase level set model of
the piecewise constant Mumford-Shah functional, as introduced by Chan and Vese [7]. The as-
sumption of homogeneous intensity is clearly not appropriate to segment the objects of interest.
Bottom: Motion segmentation of the same traffic scene. By minimizing the motion competition
functional (26) with parameters ν = 1.5, σ = 5, one obtains a fairly accurate segmentation of
the two cars and an estimate of the motion of cars and background. Since the objects of interest
are better defined in terms of homogeneous motion than in terms of homogeneous intensity, the
segmentation is more successful than the one obtained by the analogous gray value model. Until
convergence, the contour evolution took 41 seconds in Matlab on a 2.4 GHz computer.

show the contour evolution generated by minimizing the motion segmentation
functional (26) and the corresponding motion estimates superimposed on the first
frame.

The contour evolution generated by motion competition is fundamentally different
from the one generated by its gray value analog. The energy minimization simultane-
ously generates a fairly accurate segmentation of the two cars and an estimate of the
motion of cars and background. Minor discrepancies of the final segmentation may be
due to several factors, in particular the weak gray value structure of the street, which
prevents reliable motion estimation, and the reflections on the cars which violate the
Lambertian assumption.

8.4 Segmentation by Piecewise Affine Motion

The functional (16) allows to segment piecewise affine motion fields. In particular, this
class of motion models includes rotation and expansion/contraction. Figure 5 shows
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Motion segmentation of a hand rotating around the wrist.

Motion segmentation of a hand moving toward the camera.

Fig. 5. Piecewise affine motion segmentation. Functional (16) allows to segment objects based on
the model of affine motion. The above images show contour evolutions obtained for two image
pairs showing a hand rotating (top) and moving toward the camera (bottom). Minor discrepancies
of the final segmentation (right) are probably due to a lack of gray value variation of the table.
Both results were obtained with the same parameter values (ν = 8 · 10−5, σ = 2). Again
certain areas of little intensity variation do not provide sufficient motion information to be reliably
associated with one or the other motion model.

contour evolutions obtained for a hand in a cluttered background rotating (in the camera
plane) and moving toward the camera. The energy minimization allows to segment the
object and estimate its rotational or divergent motion.

The images on the right of Figure 5 demonstrate that the objects of interest can be
extracted from a fairly complex background based exclusively on their motion. Appli-
cations of such motion-based segmentation schemes to video editing and MPEG com-
pression are conceivable.

8.5 Spatio-temporal Motion Segmentation

While the previous results were obtained using only two consecutive frames from a
sequence, we will now present an application of the segmentations in space-time ob-
tained by minimizing a multiphase implementation of the functional (35) for several
frames of the flower garden sequence [35], which shows a static scene filmed by a mov-
ing camera. Figure 6 shows the evolution of the surfaces separating the motion phases
in space-time (top rows). The lower rows depict the corresponding temporal slices of
these surfaces associated with the frames 2, 5 and 8. During energy minimization, the
surfaces propagate to the final segmentation both in space and in time. The final seg-
mentation clearly separates foreground, midplane and background. The simultaneously
evolving piecewise constant motion field is depicted in Figure 7.
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Evolution of the first spatio-temporal motion interface

Evolution of the second spatio-temporal motion interface

Evolution for frame number 2

Evolution for frame number 5

Evolution for frame number 8

Fig. 6. Spatio-temporal sequence segmentation with the multiphase model. The top rows show
the evolution of the spatio-temporal surfaces given by the zero level sets of two embedding func-
tions φ1 and φ2. The lower rows show various temporal slices of these surfaces, corresponding
to the 2nd, 5th and 8th frame of the sequence. The evolving surfaces propagate both in space and
time during minimization of the energy (35). In the final segmentation the phases clearly sep-
arate foreground, midplane and background. For better visibility, the simultaneously estimated
piecewise constant motion field is shown separately in Figure 7.
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Fig. 7. Temporal slice through the evolving surfaces shown in Figure 6. The final segmentation
separates the tree in the foreground, the grass in the midplane and the houses and smaller trees in
the background. Boundary and the motion estimates are obtained by simultaneously minimizing
an appropriate cost functional defined on the spatio-temporal image derivatives. Unlike most
alternative approaches to layer extraction, no preprocessing (such as local disparity estimation,
camera calibration and prior rectification of individual frames [33]) is applied to the image data.

9 Conclusion

We derived a variational framework for segmenting the image plane (or the space-time
volume of an image sequence) into a set of phases of parametric motion. The proposed
functional depends on parametric velocity models for a set of phases and the boundary
separating them. The only free parameter in the functional is the fundamental scale
parameter intrinsic to all segmentation schemes.

The motion discontinuity set is implemented by a multiphase level set formulation
(for contours in 2D or surfaces in 3D). The resulting model has the following properties:

• The minimization of a single functional jointly solves the problems of segmentation
and motion estimation. It generates a segmentation of the image plane (or the space-
time volume) in terms of piecewise parametric motion.

• An extension to surfaces in space-time allows to segment moving regions over time,
providing an additional temporal regularity of the segmentation.

• Implicit multiphase representations allow for topological changes of the evolving
boundaries. They permit a segmentation of the image plane (or the space-time vol-
ume) into several (possibly multiply-connected) motion phases.

• Local minimization of the proposed functional results in an eigenvalue problem for
the motion vectors, and an evolution equation of the level set functions embedding
the motion boundary.

• Due to the region-based homogeneity criterion rather than an edge-based formula-
tion, motion boundaries converge over fairly large spatial distances.

• Segmentation and motion estimates can be generated from two consecutive frames
of an image sequence. Therefore the approach is in principle amenable to real-time
implementations and tracking.
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