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Abstract

The introduction of statistical shape knowledge into level set
based segmentation methods was shown to improve the segmenta-
tion of familiar structures in the presence of noise, clutter or par-
tial occlusions. While most work has been focused on shape priors
which are constant in time, it is clear that when tracking deformable
shapes certain silhouettes may become more or less likely over time.
In fact, the deformations of familiar objects such as the silhouettes
of a walking person are often characterized by pronounced temporal
correlations.

In this paper, we propose a nonlinear dynamical shape prior for
level set based image segmentation. Specifically, we propose to ap-
proximate the temporal evolution of the eigenmodes of the level set
function by means of a mixture of autoregressive models. We de-
tail how such shape priors “with memory” can be integrated into
a variational framework for level set segmentation. As an applica-
tion, we experimentally validate that the nonlinear dynamical prior
drastically improves the tracking of a person walking in different
directions, despite large amounts of clutter and noise.

Keywords: Level sets, shape priors, dynamical systems, tracking.

1 Introduction

1.1 Level set methods

In this work, we are focused on the problems of segmentation and tracking:
Given a sequence of images I1, . . . , It, where Ii : Ω → R, we want to infer
at any given time t the most likely shape Ct in the image plane Ω ⊂ R.
Within the Bayesian framework, this is done by maximizing the posterior
distribution P(Ct | I1, . . . , It). This problem has been studied extensively,
researchers have proposed dynamical models of shape and developed so-
phisticated frameworks to propagate the posterior distribution. Most of
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this work is based on explicit contour representations (e.g. [2]).1

Yet, explicit boundary representations are known to suffer from several
limitations when applied to shape learning and shape inference: Firstly,
the matching of explicit contours requires to identify pairwise correspon-
dences between points. In general this is a combinatorial problem – in
particular if one wants to allow for local stretching or shrinking of the
respective contours. While efficient matching algorithms have been de-
veloped based on dynamic programming, the integration of the resulting
shape distances with statistical learning of shapes is still an open problem.
Secondly, explicit boundary representations are typically constrained to
a fixed topology. In practice, a shape of interest may undergo topological
changes – it could be that a hole is torn into a 3D shape, or it could be that
a single 3D object will induce 2D projections of varying topology. While
the transition between two topological structures for explicit contours can
be modeled based on sophisticated (and somewhat heuristic) decision pro-
cesses (cf. [16]), the matching of explicit shapes with different topology for
the sake of shape learning is not defined.

The level set method introduced by Osher and Sethian [19, 18] over-
comes these drawbacks of explicit representations2 as a means to implicitly
propagate a boundary C(t) by evolving an appropriate embedding function
φ : Ω× [0, T ]→ R, where:

C(t) = {x ∈ Ω | φ(x, t) = 0}. (1)

In the context of shape learning and statistical shape inference, the level
set method has several advantages:

• The implicit representation does not depend on a specific parameter-
ization. Therefore shape matching does not require the computation
of point-correspondences.

• Shape dissimilarity measures defined on the embedding functions can
handle shapes of varying topology.

• The implicit representation (1) naturally generalizes to hypersurfaces
in three or more dimensions, where the estimation of optimal point
correspondences becomes a computationally cumbersome problem.

1While object-specific models representing human figures as kinematic chains of cou-
pled geometric primitives allow for excellent results on tracking humans (cf. [23, 1, 24]),
the geometric primitives and couplings are specified by a user. In contrast, our approach
is based on a generic shape representation inferred from training data in an unsupervised
manner.

2A precursor of the level set method was proposed by Dervieux and Thomasset [9].
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Figure 1: Purely intensity-based image segmentation. With
increasing amounts of noise, the intensity-based image segmentation
using the method of Chan and Vese [5] gradually degrades.

1.2 Statistical shape priors for level set segmentation

The first applications of the level set method to image segmentation were
pioneered in the early 90’s by Malladi et al. [15], by Caselles et al. [3, 4],
by Kichenassamy et al. [12] and by Paragios and Deriche [20].

Traditionally level set methods were applied to image segmentation by
minimizing functionals which are based on local edge information [11, 4, 12]
or based on regional homogeneity of the intensity function [17, 5, 26]. The
results in Figure 1 show that purely intensity-based methods fail to pro-
vide the desired segmentation if the intensity information is degraded by
increasing amounts of noise. In recent years, researchers have successfully
introduced prior information about expected shapes into level set segmen-
tation to cope with noise, background clutter and partial occlusions. Lev-
enton et al. [13] modeled the embedding function by principal component
analysis (PCA) of a set of training shapes and added appropriate driving
terms to the level set evolution equation. Tsai et al. [25] suggested a more
efficient formulation, where optimization is performed directly within the
subspace of the first few eigenmodes. Rousson et al. [21] introduced shape
information on the variational level. Cremers et al. introduced nonlinear
statistical shape priors based on kernel density estimation [8].

By construction, these approaches were aimed to segment static images
of an object of interest. Although they can be applied to tracking objects
in image sequences (cf. [8]), they are not well-suited for this task, because
they neglect the temporal coherence of silhouettes which characterizes de-
forming shapes. When tracking a deformable object, clearly not all shapes
are equally likely at a given time instance. Regularly sampled images of
a walking person, for example, exhibit a typical pattern of consecutive sil-
houettes. The resulting set of silhouettes can be expected to contain strong
temporal correlations. In [6], we recently proposed a simple linear dynam-
ical shape model to capture such temporal correlations. Yet the use of
linear models is limited to a single periodic motion.
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Figure 2: Samples from a sequence of training silhouettes.

1.3 Contribution of this work

In this paper, we propose a more sophisticated dynamical shape model
for level set segmentation which allows to simultaneously encode multiple
dynamical modes. To this end, we approximate the temporal evolution
of the level set embedding function by a mixture of autoregressive models.
This leads to a nonlinear dynamical shape model for implicitly represented
shapes. We detail the integration of nonlinear shape priors into the level
set based segmentation process in a Bayesian framework. The resulting
optimization problem is implemented using gradient descent inducing an
evolution of the embedding function, driven both by the intensity infor-
mation of the current image and by a time-dependent shape prior which
relies on the segmentations obtained on the preceding frames. Experi-
mental evaluation demonstrates that – in contrast to segmentation with
static shape priors – the resulting segmentations are not only similar to
previously learned shapes, but they are also consistent with the temporal
correlations estimated from sample sequences. The resulting segmenta-
tion process can cope with large amounts of noise and occlusion because it
exploits prior knowledge about temporal shape consistency and because it
aggregates information over time. The nonlinearity of the dynamical shape
model allows the shape deformation to undergo various dynamical modes.
We demonstrate this by tracking a person walking in different directions.
A preliminary version of this paper was presented at the International Con-
ference on Computer Vision and Pattern Recognition [7].

2 Nonlinear Implicit Dynamical Shape Mod-
els

In the following, we define as shape a set of closed 2D contours modulo
a certain transformation group, the elements of which are denoted by Tθ
with a parameter vector θ. Depending on the application, these may be
rigid-body transformations, similarity or affine transformations or larger
transformation groups. The shape is represented implicitly by an embed-
ding function φ according to equation (1). Thus objects of interest will be
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given by φ(Tθ x), where the transformation Tθ acts on the grid, leading to
corresponding transformations of the implicitly represented contour. We
thus separate shape φ and transformation parameters θ, as one may want
to use different models to represent and learn their temporal evolution.

Assume we are given a temporal sequence of training shapes such as
the ones shown in Figure 2, represented by their embedding functions
{φ1, . . . , φn} and their transformation parameters {θ1, . . . , θn}. For unique-
ness we require that all φi are signed distance functions. In the following,
we will develop nonlinear dynamical models for implicit shape representa-
tions which allow to statistically model the above shape sequence.

2.1 A compact low-dimensional representation

It is well-known that statistical learning and inference can be performed
more reliably and more efficiently in low-dimensional representations. For
this reason, we revert to an approximation of the embedding functions
associated with all training shapes by their principal components, i.e.

φi(x) = φ0(x) +
n∑
j=1

αij ψj(x), (2)

where φ0 denotes the mean embedding function and ψ1, . . . , ψn the n largest
eigenmodes with n << N . The expansion coefficients αij are given by the
projection of each shape onto these eigenmodes:

αij =
∫

(φi − φ0)ψj dx, (3)

Such PCA based representations of level set functions have been success-
fully applied for the construction of statistical shape priors in [13, 25, 21].
It should be pointed out that the application of PCA to the embedding
function has certain limitations. The space of signed distance functions is
not a linear space, such that a linear combination of eigenmodes will in gen-
eral not be a signed distance function. While the proposed statistical shape
models favor shapes which are close to the training shapes (and therefore
close to the set of signed distance functions), not all shapes sampled in the
considered subspace will correspond to signed distance functions.

Let us denote the vector of the first n eigenmodes as

ψ = (ψ1, . . . , ψn). (4)

Each sample shape φi is therefore approximated by the n-dimensional shape
vector

αi = (αi1, . . . , αin) =
∫

(φi − φ0)ψ dx. (5)
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Much theory has been developed for the statistical analysis of time se-
ries data. Overviews can be found in [14, 10]. Applications of dynamical
systems to model deformable shapes were proposed among others in [2]. In
our context, we intend to learn dynamical models for implicitly represented
shapes. To allow for a more transparent presentation, we will gradually in-
crease the model complexity from linear dynamical models of deformation,
over joint models of deformation and transformation to nonlinear mixture
models.

2.2 Linear implicit dynamical shape models

To learn a temporal model of the evolution of the level set function, one
can approximate the shape vectors αt ≡ αφt

representing sequence of level
set functions by a Markov chain of order k [6]:

αt = µ+A1αt−1 +A2αt−2 + . . .+Akαt−k + η, (6)

where η is zero-mean Gaussian noise with covariance Σ, µ denotes the mean
and Ai denote transition matrices. The probability of a shape conditioned
on the shapes observed in previous time steps is therefore given by the
corresponding autoregressive (AR) model of order k:

P(αt |α1:t−1) ∝ exp
(
−1

2
v>Σ−1 v

)
, (7)

where
v = αt − µ−A1αt−1 −A2αt−2 . . .−Akαt−k (8)

Various methods have been proposed in the literature to estimate the model
parameters given by the mean µ ∈ Rn and the transition and noise matrices
A1, . . . , Ak,Σ ∈ Rn×n. We applied a maximum likelihood estimation using
least squares. Different tests have been devised to quantify the accuracy
of the model fit. Using dynamical models up to an order of 8, we found
that according to Schwarz’s Bayesian Criterion [22], our training sequences
were best approximated by an autoregressive model of second order.

2.3 Models of deformation and transformation

In the previous section, we employed an autoregressive model to capture
the temporal dynamics of implicitly represented shapes. To this end, we
removed the degrees of freedom corresponding to transformations such as
translation and rotation before performing the learning of dynamical mod-
els. As a consequence, the learning only incorporates deformation modes,
neglecting all information about pose and location. The synthesized shapes
in Figure 3, for example, show a person walking “on the spot”.
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Figure 3: Synthesis of implicit dynamical shapes. Statistically
generated embedding surfaces obtained by sampling from a second or-
der autoregressive model, and the contours given by the zero level lines
of the surfaces. The implicit formulation allows the embedded contour
to change topology (third image).

In general, one can expect the deformation parameters αt and the trans-
formation parameters θt to be tightly coupled. A model which captures the
joint dynamics of shape and transformation would clearly be more powerful
than one which neglects these transformations. At the same time, we want
to learn dynamical shape models which are invariant to translation, rota-
tion and other transformations. To this end, we can make use of the fact
that the transformations form a group which implies that the transforma-
tion θt at time t can be obtained from the previous transformation θt−1 by
applying an incremental transformation 4θt: Tθt

x = T4θt
Tθt−1x. Instead

of learning models of the absolute transformation θt, we can simply learn
models of the update transformations 4θt (e.g. the changes in translation
and rotation). By construction, such models are invariant with respect to
the global pose or location of the modeled shape.

To jointly model transformation and deformation, we simply obtain for
each shape in the training sequence the deformation parameters αt and
the transformation changes 4θt, and fit the autoregressive models given in
equations (7) and (8) to an extended shape vector

βt ≡
(
αt
4θt

)
. (9)

Synthesizing from the autoregressive model allows to generate silhouettes
of a walking person which are similar to the ones shown in Figure 3, but
which move forward in space, starting from an arbitrary (user-specified)
initial position.

2.4 Nonlinear implicit dynamical shape models

While linear dynamical models may be sufficient to model simple essentially
periodical shape deformations, they are clearly insufficient when it comes
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to modeling more complex dynamical processes. Much theory has been
developed to model nonlinear dynamical systems. In the following, we
will assume that the dynamics of our shape can be approximated using
a collection of linear autoregressive models. Such mixtures models have
been successfully applied to the tracking of human motion, based on user-
specified shape representations by coupled geometric primitives [1]. The
probability of an (extended) shape vector βt conditioned on the shapes at
previous time instances is approximated by a mixture of N autoregressive
models of orders {ki}i=1..N according to:

P(βt |β1:t−1) ∝ 1
N

N∑
i=1

1√
|2πΣi|

exp
(
−1

2
v>i Σ−1

i vi

)
, (10)

where
vi = βt − µi −Ai1βt−1 −Ai2βt−2 . . .−Aiki

βt−ki
. (11)

The fitting of a mixture of autoregressive models to a training sequence re-
quires the estimation of the model parameters given by the number N of au-
toregressive models, the model orders {ki}, the means {µi} and transition
matrices {Aij}j=1..ki

associated with model i, where i = 1, . . . , N . There
exist sophisticated approaches to learn these parameters in an unsupervised
manner. The key challenge is to solve the chicken-and-egg problem of si-
multaneously segmenting the sequence and estimating model parameters
for each subsequence. This can be done using either iterative algorithms
such as EM or direct approaches, for example by means of polynomial
factorization [27].

Since the unsupervised learning of autoregressive mixture models is not
the focus of this work, we will for simplicity pursue a semi-supervised learn-
ing process. Specifically we assume that our training sequence is already
partitioned into subsequences each of which is fitted by a separate AR
model. While we use the entire sequence to construct a PCA-based low-
dimensional shape representation shared by all dynamical modes, we then
learn separate autoregressive models to capture subsequences which are
labeled, for example by a user marking them as “walking left”, “walking
right”, “running left”, etc. We will demonstrate that this approach allows
to track objects undergoing different dynamics by using the same nonlinear
dynamical shape prior.

3 Integration in a segmentation process

In the following, we will detail how the proposed nonlinear dynamical shape
model can be imposed as a prior in variational image segmentation.
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Assume we are given an image It : Ω → R from an image sequence
and segmentations of the previous images in terms of shape vectors and
transformations {α̂i, θ̂i}i=1,...,t−1. The problem of segmenting the current
frame It can then be addressed in the framework of Bayesian inference by
computing the shape vector α̂t and transformation θ̂t which maximize the
conditional probability

P(αt, θt | It, α̂i, θ̂i) ∝ P(It |βt, θt) P(αt, θt | α̂i, θ̂i).

Here we assumed that It only depends on the current segmentation, i.e.
there is no further hidden dependence on the preceeding shape configura-
tions. The expression P(αt, θt | α̂i, θ̂i) is identical to the one in (10), with
all past variables given by their optimal values α̂i, θ̂i for i = 1, . . . , t−1.

Maximizing this conditional probability can be performed by minimiz-
ing its negative logarithm, which is – up to a constant – given by an energy
of the form:

E(αt, θt) = Edata(αt, θt) + ν Eshape(αt, θt). (12)

Assuming Gaussian-distributed intensities of object and background [28, 5],
the data term is given by

Edata(αt, θt) =
∫ (

(It−µ1)2

2σ2
1

+log σ1

)
Hφβt

dx

+
∫ (

(It−µ2)2

2σ2
2

+log σ2

)(
1−Hφβt

)
dx,

where, for notational simplicity, we have introduced the expression

φβt
≡ φ0(Tθt

x) +α>t ψ(Tθt
x) (13)

for the embedding function of a shape generated with parameters βt.
With the autoregressive mixture model (10), the dynamical shape en-

ergy is:

Eshape(αt, θt)=− log

[
N∑
i=1

1√
|2πΣi|

exp
(
−1

2
v>i Σ−1

i vi

)]
,

with vi defined in (11), replacing βi by β̂i for i < t.
Tracking an object of interest over a sequence of images with a non-

linear dynamical shape prior can be done by minimizing energy (12). We
pursue a gradient descent strategy. Due to space limitations, we will merely
report the differential equations governing the evolution of the deformation
component αt of the extended shape vector βt:

dαt(τ)
dτ

= −∂Edata
∂αt

− ν ∂Eshape
∂αt

(14)
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where τ denotes the artificial evolution time, as opposed to the physical
time t.

The data term is given by:

∂Edata
∂αt

=
∫
Ω

(
(It − µ1)2

2σ2
1

− (It − µ2)2

2σ2
2

+ log
σ1

σ2

)
ψ(Tθt

x) δ
(
φβt

)
dx. (15)

The gradient of the shape energy is given by:

∂Eshape
∂αt

=
∑
i

γi

(
1n 0
0 0

)
Σ−1
i vi, (16)

with vi given in (11) and 1n being the n-dim. unit matrix modeling the
projection on the shape components of vi, where n is the number of shape
modes. The normalized weights γi are given by:

γi =
γ̃i∑
j γ̃j

, γ̃i =
1√
|2πΣi|

exp
(
−1

2
v>i Σ−1

i vi

)
. (17)

For every image It in the input sequence, the evolution of the shape αt
is thus driven by the two terms shown in equations (15) and (16). These
have the following very intuitive interpretations:

• The data term (15) draws the shape to separate the image intensities
according to the estimated two Gaussian intensity models. Since the
effect of variations in the shape vector αt onto the level set function
φβt

are given by the eigenmodes ψ, the data term is a projection
onto these eigenmodes.

• The shape term (16) induces a relaxation of the shape vector αt to-
ward the most likely shape, as predicted by the nonlinear dynamical
model based on the segmentations of previous time frames. This
second term consists of a weighted sum of terms. Each term drives
the current shape αt to the shape predicted by the i-th autoregres-
sive model. The weights γi in (17) indicate how (relatively) well
the respective dynamical models match the current dynamics. They
(exponentially) suppress the influence of models which are not con-
sistent with current and past estimates of shape and transformation.
The weights γi thus indicates which dynamical models best represent
the current observations. Plotting the weights γi over time allows to
track an interpretation of the observed dynamics as a superposition
of dynamical models.

Similar evolution equations can be derived for the transformation parame-
ters.
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Figure 4: Segmentation with dynamical shape prior for 90%
noise3. Compared to the segmentation results without shape prior
shown in Figure 1, the dynamical shape prior provides reliable segmen-
tations even if nine out of ten pixels are assigned a random intensity.

4 Experimental Results

For all experiments, we constructed a prior by hand-segmenting a sequence
of a walking person. We additionally partitioned the training sequence into
sections associated with different dynamical models. The subsequent com-
putation of embedding functions, alignment, PCA and dynamical system
parameters are done fully automatically. The weight ν of the prior was
chosen constant for all experiments. While results are not too sensitive to
the choice of ν, too large values of ν (too weak data term) tend to inhibit
the detection of transitions between different dynamical modes.

Coping with noise

Figure 4 shows segmentation results obtained with a dynamical shape
prior for images corrupted by noise. While the segmentation without dy-
namical shape prior degrades even with moderate amounts of noise (see
Figure 1), the same data term constrained with a dynamical shape prior
at 90% noise3 provides reliable segmentations where human observers fail.

Linear versus nonlinear dynamical shape prior

The nonlinear dynamical shape prior (10) allows to integrate prior knowl-
edge about multiple autoregressive models into the segmentation process.
Figure 5 provides segmentation results obtained on a sequence showing a
person walking in different directions with 50% noise superimposed. These
indicate that in contrast to the linear prior (top row), the nonlinear dynam-
ical prior (bottom row) can reliably enhance the segmentation of different
dynamical shape modes, thereby allowing to track a person in different di-
rections using a single shape prior. Since we merely imposed priors on the
deformation (and not the transformation), the linear prior provides accept-
able segmentations except that all generated silhouettes seem to be walking
right. The close-ups in Figure 6 show that in contrast to the linear one,
the nonlinear model selected the correct dynamical model in a data-driven
manner.

390% noise means that 90% of pixel intensities were replaced by a random intensity.
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Tracking right with linear shape prior

Tracking right with nonlinear shape prior

Tracking left with linear shape prior

Tracking left with nonlinear shape prior

Figure 5: Linear versus nonlinear dynamical shape prior.
While the linear prior (first and third) was built on people walking
to the right, the nonlinear prior (second and fourth) simultane-
ously encodes both walking directions. Upon turning around (last three
frames), the weights γi in 17 flip from 0 to 1 (and vice versa), indicat-
ing that the algorithm imposes the appropriate dynamical model in a
data-driven manner. This leads to superior segmentation results in the
second part of the sequence – see also the closeups in Figure 6.
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Linear model Linear model

Nonlinear model Nonlinear model

Figure 6: Zoom-in on Figure 5, last two columns. In contrast
to the linear model (top) which incorrectly generates segmentations
that look like a person walking right, the nonlinear dynamical prior
(bottom) allows for the emergence of multiple walking modes, thereby
providing segmentations which are consistent with people walking in
either direction. This gives rise to superior segmentation results in the
second part of the sequence.

Tracking through occlusions

Figure 7 demonstrates that one obtains accurate segmentations even
when the walking person is fully occluded by an oncoming bar. This is
due to the fact that the dynamical prior accumulates information over
time and provides segmentations which are temporally consistent with the
segmentations obtained on previous frames.
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Figure 7: Dealing with noise and occlusion. The input sequence
shows a person walking to the left occluded by a bar moving to the
right, corrupted by 80% noise. Since the dynamical prior accumulates
information over time, it allows for accurate segmentations even when
the walking person is completely occluded – see the fourth frame.

5 Conclusion

In this work, we introduced a nonlinear dynamical shape model for implic-
itly represented shapes in order to cope with misleading low-level infor-
mation in level set based image segmentation. Specifically, we proposed to
approximate the temporal evolution of the eigenmodes of the level set func-
tion by a mixture of autoregressive models. In contrast to existing models
for implicit shapes, the proposed approach allows to learn the temporal
correlations characterizing deforming shapes in terms of multiple dynam-
ical modes. The model can be integrated as a nonlinear dynamical shape
prior in a Bayesian formulation of level set based image sequence segmen-
tation. Experimental results confirm that the nonlinear dynamical shape
prior outperforms the linear one when tracking a person walking in different
directions through large amounts of noise and prominent occlusions.
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