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Abstract—We propose a convex formulation for silhouette and stereo fusion in 3D reconstruction from multiple images. The key idea

is to show that the reconstruction problem can be cast as one of minimizing a convex functional, where the exact silhouette

consistency is imposed as convex constraints that restrict the domain of feasible functions. As a consequence, we can retain the

original stereo-weighted surface area as a cost functional without heuristic modifications of this energy by balloon terms or other

strategies, yet still obtain meaningful (nonempty) reconstructions which are guaranteed to be silhouette-consistent. We prove that the

proposed convex relaxation approach provides solutions that lie within a bound of the optimal solution. Compared to existing

alternatives, the proposed method does not depend on initialization and leads to a simpler and more robust numerical scheme for

imposing silhouette consistency obtained by projection onto convex sets. We show that this projection can be solved exactly using an

efficient algorithm. We propose a parallel implementation of the resulting convex optimization problem on a graphics card. Given a

photoconsistency map and a set of image silhouettes, we are able to compute highly accurate and silhouette-consistent

reconstructions for challenging real-world data sets. In particular, experimental results demonstrate that the proposed silhouette

constraints help to preserve fine-scale details of the reconstructed shape. Computation times depend on the resolution of the input

imagery and vary between a few seconds and a couple of minutes for all experiments in this paper.

Index Terms—Image-based modeling, silhouette and stereo fusion, convex optimization.

Ç

1 INTRODUCTION

1.1 Multiview Reconstruction Using Stereo and
Silhouettes

RECOVERING 3D geometrical structure from a series of
calibrated images is among the fundamental problems

in computer vision, with numerous applications in compu-
ter graphics, augmented reality, robot navigation, and
tracking. Among a variety of existing methods for multi-
view reconstruction, one can identify two major classes of
approaches: shape from silhouettes and shape from stereo.

Historically, the first strategy for multiview 3D shape

retrieval, dating back to the 1970s, has been to use the

outlines of the imaged objects [2]. Most of these shape from

silhouettes approaches aim at approximating the visual hull

[19] of the observed solid. The visual hull is an outer

approximation, constructed as the intersection of the visual

cones associated with all image silhouettes. In the course of

research, different shape representations have been pro-

posed: volumetric [21], surface-based [5], and polyhedral

[11]. Apart from shape representation, research has also been

focused on the development of methods operating on raw

image data instead of predetermined silhouettes. Most of

them are based on an energy minimization framework

allowing us to impose regularization in the labeling process

[29], [33]. The segmentation of each image is obtained
through the evolution of a single surface in 3D rather than
separate contours in 2D. As a result, such approaches exhibit
considerable robustness to image noise and erroneous
camera calibration.

The main drawback of silhouette-based approaches is
their inability to reconstruct concavities since these do not
affect the silhouettes. Stereo-based methods capture such
indentations by measuring the photoconsistency of surface
patches in space. The fundamental idea is that under the
Lambertian assumption, only points on the object’s surface
have a consistent appearance in the input images, while all
other points project to incompatible image patches. The
earliest algorithms use carving techniques to obtain a
volumetric representation of the scene by repeatedly
eroding inconsistent voxels [25]. Yet, such greedy methods
do not explicitly enforce the smoothness of the surface,
which often results in rather noisy reconstructions. Subse-
quently, proposed energy minimization techniques [10], [7],
[20] overcome this drawback. They typically aim at
computing a weighted minimal surface, where the weights
reflect the local photoconsistency.

Such minimal surface approaches have two fundamental
limitations: First, the inherent coupling of data term and
regularization often produces oversmoothing at locations of
thin structure [30], [14]. Although this bias toward surfaces
with small area can be alleviated by utilizing regional terms
[3], [14], [18], it still persists when a smoothness prior is
applied. Second, the global minimizer of minimal surface
functionals is the empty set, a solution that clearly violates
the silhouette constraints.

Ideally, one would like to combine the advantages of
silhouette and stereo-based techniques so as to compute
reconstructions which do allow concavities and yet are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. X, XXXXXXX 2011 1

. The authors are with the Department of Computer Science, Technical
University of Munich, Boltzmanstrasse 3, 85748 Garching bei München,
Germany. E-Mail: {daniel.cremers, kalin.kolev}@in.tum.de.

Manuscript received 18 Feb. 2010; revised 17 June 2010; accepted 25 July
2010; published online 1 Sept. 2010.
Recommended for acceptance by F. Kahl.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-02-0107.
Digital Object Identifier no. 10.1109/TPAMI.2010.174.

0162-8828/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society



consistent with all observed silhouettes—see Fig. 1. A simple
strategy to fuse these complementary features is to use a
visual hull (computed from silhouettes) as initialization for a
stereo-based approach [22], [32]. First, this requires con-
straining the solution space to avoid the empty set. Second,
the resulting reconstruction will generally no longer fulfill
the silhouette constraints. Alternatively, one can unify both
information sources in a single formulation. Two different
techniques have been proposed to achieve this goal: One can
integrate in the evolution silhouette-aligning forces [6], [9],
[12] or one can use predetermined surface points [15], [30],
[26] to impose exact silhouette constraints. Both strategies
have their shortcomings. The first one may lead to a
numerically unstable behavior and introduces a bias near
the visual hull boundary, while the second one requires
premature decisions about voxel occupancy. A mathemati-
cally elegant alternative to fuse silhouette and stereo
information is stated by the stereoscopic segmentation model
[13], [33]. Appropriate evolution terms enforcing photocon-
sistency and silhouette consistency criteria are thereby
derived by means of the derivative of the reprojection error
of the estimated shape. However, due to the complexity of
the model, it is difficult to overcome local optimization,

which is prone to undesired local minima.1 To address this
difficulty and move apart from local evolution schemes,
Sinha and Pollefys [27] proposed a graph cut framework for
silhouette and stereo fusion. Unfortunately, the practical
applicability of this method is limited due to its high memory
requirements. This poses a severe restriction on the volume
resolution at which reconstructions can be computed.
Finally, we can conclude that the development of robust
and efficient schemes for silhouette and stereo integration
remains an open challenge.

1.2 Contribution

In this paper, we propose a mathematically transparent
framework for silhouette and stereo fusion in 3D recon-
struction. The idea is to cast multiview stereovision as a
convex variational problem where exact silhouette consis-
tency is imposed by means of convex constraints that
restrict the domain of feasible functions. Silhouette-consis-
tent reconstructions are computed by convex relaxation,
finding global minimizers of the relaxed problem, and
subsequent projection onto the original nonconvex set.
Compared to existing fusion techniques, we thus compute
guaranteed silhouette-consistent reconstructions without
constraining the search space and without extending the
original stereo-weighted cost functional by heuristic bal-
looning terms or more sophisticated balancing terms.
Compared to classical local fusion techniques, the proposed
formulation does not depend on initialization and leads to a
more tractable numerical scheme by removing the bias near
the visual hull boundary. In experiments on several
challenging real data sets (including metallic objects, low-
texture objects, and complex objects with fine-scale details),
we show the advantages of imposing silhouette consistency
in the reconstruction of small-scale structures which cannot
be restored by state-of-the-art stereo algorithms.

A preliminary version of this paper was presented at the
European Conference on Computer Vision [17]. In addition
to the conference version, in this paper, we provide an
exact algorithm that allows us to efficiently compute the
projection onto the set of silhouette-consistent solutions.
Moreover, we explore the convergence properties of the
employed numerical optimization scheme in more detail.

The paper is organized as follows: In the next section, we
review the formulation of stereo-based multiview reconstruc-
tion as a weighted minimal surface problem. In Section 3, we
show that the integration of stereo and silhouette constraints
can be formulated as a problem of minimizing a convex
functional over the convex set of silhouette-consistent
functions. In Section 5, we provide details on the numerical
implementation of the constrained optimization problem,
including two alternative methods to impose silhouette
consistency. In Section 6, we show experimental results on
several real data sets which demonstrate the advantages of
silhouette consistency for the reconstruction of fine-scale
structures and emphasize the superiority of the proposed
approach over traditional techniques.
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Fig. 1. Silhouette and stereo integration. While stereo-based reconstruc-
tion methods tend to remove thin structures and are heavily affected by
specular reflections such as those of metal objects (a), silhouette-based
methods cannot reconstruct indentations of the object surface since
these do not appear in the silhouette. In this paper, we propose fusing
stereo and silhouette information in a convex optimization framework in
order to obtain stereo-based reconstructions which are guaranteed to be
silhouette-consistent. As a consequence, the resulting algorithm allows
us to restore concave areas (around the ears) as well as fine geometric
details such as the pedestal (b).

1. An example of an undesired local minimum is the case of a torus
where the initialization consists of a disk enclosing it. Since local
deformations (indentation) of the disk only increase the overall surface
area without decreasing the reprojection error, the local minimization
procedure will not give rise to a torus but, rather, remain stuck with the
disk—see [16] for an experimental validation.



2 MULTIVIEW 3D RECONSTRUCTION AS A

WEIGHTED MINIMAL SURFACE PROBLEM

Let V � IR3 be a volume which contains the scene of interest
and

I1; . . . ; In : �! IR3 ð1Þ

be a collection of calibrated color images with perspective
projections �1; . . . ; �n. Let

S1; . . . ; Sn � � ð2Þ

be the observed silhouettes of the 3D object and let

� : V ! ð0; 1� ð3Þ

be a photoconsistency map measuring the discrepancy
among various image projections. In particular, low values
of �ðxÞ indicate strong agreement from different cameras on
the observed image patches, indicating a high likelihood
that the surface passes through the given point. It should be
noted that the photoconsistency values generally depend on
the surface S to be estimated, which determines the
projective warping of corresponding image patches. To this
end, researchers proposed explicitly modeling this depen-
dence by incorporating the surface normal as an additional
argument [10], [13]. However, this leads to higher order
terms and significantly exacerbates the optimization. More
details on the computation of photoconsistency are given in
Section 5.1.

With the above definitions, multiview reconstruction can
be done by minimizing the classical energy [10]

EðSÞ ¼
Z
S

�ðxÞ dAðxÞ; ð4Þ

where dAðxÞ denotes the infinitesimal surface element at x.
The reconstruction is therefore given by a minimal surface
measured in a Riemannian metric that favors boundaries
along photoconsistent locations. While local optimization
techniques (using coarse-to-fine strategies) provide useful
reconstructions, there is little guarantee regarding the
optimality of the solutions. In fact, the question of
optimality is somewhat meaningless as the global minimum
of (4) is obviously the empty set. This indicates that the
minimization problem (4) in itself is not a meaningful
approach to multiview reconstruction since surfaces of
lower energy do not necessarily correspond to better
reconstructions. A remedy to the above problem is to either
to constrain the search space around the visual hull [32] or
add regional balancing terms to the cost functional using
balloon forces [20] or heuristically constructed regional
terms [14], [18]. Global optima of respective cost functionals
can then be computed either in a spatially discrete setting
using graph cuts [32], [20] or in a spatially continuous
setting using convex relaxation techniques [18].

Nevertheless, there are two grave limitations of such
methods. First, the balancing regional terms are typically
based on a number of somewhat heuristic assumptions and
can often introduce a bias in the resulting reconstruction—
favoring surfaces of larger volume, for example. Second,
the resulting reconstructions are not guaranteed to be
silhouette-consistent in the sense that the projections of
the estimated surface do not generally coincide with the
observed silhouettes.

3 CONVEX INTEGRATION OF SILHOUETTES AND

STEREO

3.1 Imposing Silhouette Consistency

We saw that the classical approach to multiview reconstruc-
tion via minimization of a stereo-weighted minimal surface
energy (4) by itself is not meaningful since the lowest
energy solution is the empty set. Yet, obviously the empty
set is not a desired solution. How can we avoid this trivial
solution while retaining a required grade of smoothness? If
we are given the silhouettes of the observed object in each of
the images, then we can impose silhouette alignment of the
computed shape during the energy minimization process.
This naturally prevents the collapse of the surface since the
empty set is clearly not a silhouette-consistent solution.

More specifically, we propose to solve the following
constrained optimization problem:

min
S

Z
S

�ðxÞ dAðxÞ;
s:t: �iðSÞ ¼ Si 8 i ¼ 1; . . . ; n:

ð5Þ

Unfortunately, the above optimization is highly non-
convex: Depending on the values of the photoconsistency
function �, variations in S may give rise to an arbitrary
increase or decrease in the cost functional. Furthermore,
imposing silhouette consistency in the above representation
is not a trivial task.

3.2 Convex Relaxation

Surprisingly, these difficulties can be removed by reverting
to an implicit representation of the surface S. In order to
cast (5) as a convex optimization problem, the surface S is
represented by the characteristic function u : V ! f0; 1g of
its interior Sint. Hence, changes in the topology of S are
handled automatically without reparameterization.

With this implicit surface representation, the optimiza-
tion problem (5) in S is equivalent to the following
optimization problem in the binary labeling u:

min
u2D0

Z
V

�ðxÞ jruðxÞj d3x; ð6Þ

where

D0 ¼ u : V ! f0; 1g

Z
Rij

uðxÞ dx � �; if j 2 Si 8i; j;Z
Rij

uðxÞ dx ¼ 0; if j 62 Si 8i; j;

��������

8>><
>>:

9>>=
>>;;
ð7Þ

where Rij denotes the visual ray through pixel j of image i.
In this implicit formulation, the silhouette consistency
constraint in (5) gives rise to equality and inequality
constraints. These constraints are based on the following
reasoning: For all visual rays from the camera center
passing through a pixel inside a silhouette, at least one of
the voxels along this ray should be occupied, whereas for a
visual ray passing through a pixel outside a silhouette, all
voxels along the respective ray should be empty (see Fig. 2).
In the spatially continuous formulation adopted in this
paper (where there exists no notion of discrete voxels), the
constant � in (7) denotes the thickness of material below
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which the considered object becomes translucent. It should

be noted that this material-dependent parameter � gives rise

to a more realistic physical model than imposingZ
Rij

uðxÞ dx > 0 if j 2 Si 8 i; j:

Moreover, while the latter also leads to a convex set, this set

is open such that projections are not defined and the

existence of solutions cannot be assured. In discrete

implementations, we simply choose � ¼ 1, which we also

do in the following to simplify the notation.
There are a few important remarks regarding the

formulation in (6) that should be made. In the case of

imperfect silhouettes, the above constraints can be applied

only to those pixels for which we have certain confidence

about being inside or outside a silhouette. Note that this

property is in contrast to most of the existing approaches,

which require apparent contours of the imaged object to be

provided. In a discrete setting, the volume resolution

should be determined according to the given image

resolution. When the respective volume sampling is too

coarse, some discretization artifacts could appear in the

reconstruction. Unfortunately, increasing the voxel resolu-

tion entails a considerable computational and memory

burden and is not always possible in practice. In such cases,

subsampling the input silhouettes could be helpful. Note

that the constraints in (6) could give an empty set. This can

happen when all voxels along a visual ray passing through

a silhouette pixel in one of the images project to background

in another image. Although this is unlikely to happen in a

real scenario, it can occur in the case of noisy silhouette

input. Such difficulties can be circumvented by restricting

the computations to the visual hull of the object and holding

the values of u for all other voxels fixed.
Now, let us concentrate on the optimization of the

energy model in (6). Interestingly, the functional is convex.

Yet, due to the constraint that u is a binary-valued function,

the overall minimization problem (6) is nonconvex (because

the space of binary functions is nonconvex). This can be

resolved by relaxing the binary constraint and allowing the

function u to take on values in the interval ½0; 1�. The relaxed

problem therefore becomes that of minimizing a convex
functional over a convex set:

min
u2D

Z
V

�ðxÞ jruðxÞj d3x; ð8Þ

where

D ¼ u : V ! ½0; 1�

Z
Rij

uðxÞ dx � 1; if j 2 Si 8i; j;Z
Rij

uðxÞ dx ¼ 0; if j 62 Si 8i; j;

��������

8>><
>>:

9>>=
>>; ð9Þ

is the set of continuous-valued functions u which are
silhouette-consistent with respect to all images i and all
rays j. Again, the corresponding constraints follow the
formulation in (7).

Surprisingly, in this implicit representation of the shape S
by a relaxed labeling function u : V ! ½0; 1�, the set D of
silhouette-consistent configurations has the following fa-
vorable property:

Proposition 1. The set D of all silhouette-consistent functions
defined in (9) forms a convex set.

Proof. In order to show the convexity, let u1; u2 2 D be two
elements of D. Then, any convex combination u ¼
�u1 þ ð1� �Þu2 with � 2 ½0; 1� is also an element in D.
In particular, uðxÞ 2 ½0; 1� for all x. Moreover,Z
Rij

u dx ¼ �
Z
Rij

u1 dxþ ð1� �Þ
Z
Rij

u2 dx � 1 ifj 2 Si;

and similarly,Z
Rij

u dx ¼ �
Z
Rij

u1 dxþ ð1� �Þ
Z
Rij

u2 dx ¼ 0 ifj 62 Si:

Thus, u 2 D. tu
The above statement implies that a global minimum u�

of the relaxed problem (8) exists and can be computed, for
example, by a simple gradient descent procedure or by
more efficient numerical schemes. A necessary condition
for a minimum of (8) is stated by the associated Euler-
Lagrange equation:

0 ¼ div �
ru
jruj

� �
¼ � div

ru
jruj

� �
þ r�; rujruj

� �
: ð10Þ

A numerical solution to this partial differential equation
within the domain of admissible functions specified by the
convex constraints in (8) is detailed in Section 5.

3.3 Binary Solution via Thresholding

Since we are interested in minimizers of the nonconvex
binary labeling problem (6), a straightforward methodology
is to threshold the solution of the convex problem
appropriately. Although this does not guarantee finding
the global minimum of (6), the proposed strategy entails a
series of advantages compared to classical local optimiza-
tion techniques. Intuitively, extending the set of feasible
functions, computing the global minimum over this
domain, and subsequently projecting to the nearest point
within the original set is expected to give a more accurate
estimate than a simple gradient descent procedure for
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Fig. 2. Schematic views of silhouette consistency. A 2D visualization of
the object surface and its projection onto the image shows that for a
silhouette-consistent shape, at least one voxel along each visual ray
through a silhouette pixel is occupied, whereas all voxels along rays
through nonsilhouette pixels are empty. The bright area on the image
plane indicates the outlines of the observed object and the shaded voxel
is an occupied one along the given viewing ray.



smooth functionals. In particular, the proposed methodol-

ogy has the following advantages:

. It allows us to incorporate exact silhouette con-
straints without making premature hard decisions
about voxel occupancy along each viewing ray
passing through a silhouette pixel.

. It does not depend on initialization since the relaxed
functional is optimized globally.

. It leads to a simple and tractable numerical scheme
which does not rely on a locally estimated surface
orientation and thus does not introduce a bias near
the visual hull boundary.

. The algorithm provides a solution to the binary
optimization problem (6) which lies within an
energetic bound of the optimal solution. This is
stated in the following proposition:

Proposition 2. Let E denote the functional in (8) and u� be a

minimizer. LetD0 � D be the set of binary silhouette-consistent

functions defined in (7). Furthermore, let u0 2 D0 be the (global)

minimum of (6) and ~u the solution obtained with the above

procedure. Then, the computed solution lies within an energetic

bound of the optimum.

Proof. Since D0 � D, we have Eðu?Þ ¼< Eðu0Þ, and hence,

Eð~uÞ � Eðu0Þ ¼< Eð~uÞ � Eðu?Þ;

where the right-hand side can easily be computed. tu
The projection ~u 2 D0 of a minimizer u� onto D0 can be

computed by simple thresholding

~uðxÞ ¼ 1; if u�ðxÞ � �;
0; otherwise;

�
ð11Þ

where

� ¼ min min
i2f1;:::;ng;j2Si

max
x2Rij

u�ðxÞ
� �

; 0:5

� �
: ð12Þ

This threshold � provides the closest (in any Lp-norm)

silhouette-consistent binary function to the solution of the

relaxed problem.2

Proposition 3. The reconstructed surface exactly fulfills all

silhouette constraints, i.e., ~u 2 D0.
Proof. Let Rpq be a given ray. For q 62 Sp, the silhouette

constraint is fulfilled for any threshold � 2 ð0; 1Þ since

the labels ~uðxÞ of all voxels x along the respective ray are

0. For q 2 Sp, we have

� � min
i2f1;:::;ng;j2Si

max
x2Rij

u�ðxÞ � max
x2Rpq

u�ðxÞ:

This implies 9x 2 Rpq : u�ðxÞ � �, and hence, 9x 2 Rpq:

~uðxÞ ¼ 1. tu

In practice, thresholding by � can be replaced by
subtracting � from the values of u� and extracting the zero-
level. This methodology has the advantage that it produces
smoother surfaces than the thresholding procedure without
affecting the energy which is defined on a voxel basis.

4 IMPOSING SILHOUETTE CONSISTENCY

4.1 A Set of Linear Constraints

The minimization of (8) should be performed within the
specified domain of admissible functions. A straightfor-
ward way to achieve this is to project the current estimate
after each iteration to the next point in the convex domain of
permissible functions. This convex set is formed by three
types of linear equality or inequality constraints.

1. At every location x, the function u must take on
values within the domain ½0; 1�.

2. For all pixels j of image i that lie outside the
silhouette Si � � for i ¼ 1; . . . ; n, the integral of u
along that ray must vanish:Z

Rij

uðxÞ dx ¼ 0 if j 62 Si: ð13Þ

3. For all pixels j that lie inside the silhouette Si � � for
i ¼ 1; . . . ; n, the integral of u along that ray must be
at least 1: Z

Rij

uðxÞ dx � 1 if j 2 Si: ð14Þ

4.2 A Simple Iterative Projection Scheme

Individually, each type of constraint can be easily imposed as
follows: The first constraint is imposed by simply clipping
the values of u to the interval ½0; 1� for all voxels x. The second
type of constraint in (13) is imposed by simply setting all
values of u along the respective ray Si to zero. This concerns
all voxels outside the visual hull of the imaged object. The
third type of constraint in (14) requires more effort. Assume
that it is violated for some pixel j in silhouette Si, i.e., there
exists some residual � > 0 such thatZ

Rij

u dx ¼ 1� �: ð15Þ

Then, the projection onto the space of functions where the
respective constraint is fulfilled is obtained by simply
adding that residual (in equal amounts) to the values of u
as follows:

unewðxÞ ¼ uðxÞ þ
�R

Rij
dx

8 x 2 Rij: ð16Þ

Iterating these individual projections can be done quite
efficiently. It leads to a feasible configuration.

Enforcing these constraints in a different order will
generally produce a different result. Since the constraints
defined above are generally not orthogonal, sequentially
projecting onto each respective hyperplane will not give rise
to the euclidean projection onto the convex domain. It will
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2. An anonymous reviewer pointed out that the above thresholding
could alternatively be realized by computing the binary labeling function ~u
of the lowest energy instead of the closest one. We tested this procedure and
found out that it typically gives a threshold very close to the one specified in
(12). As a result, both thresholds give rise to visually indistinguishable
reconstructions.



lead to a feasible solution but typically not the closest one
among all. This can be seen in the schematic drawing of Fig.
3a: By sequentially projecting from an initial configuration
(black dot) onto two nonorthogonal hyperplanes, one ends up
with a solution (red dot) in the feasible set but not the closest
one to the input configuration (yellow dot). In our scenario,
this will happen if the same voxel lies on two rays that both
violate the constraint. Depending on which of the two
constraints is imposed first, we may obtain a different
solution.

In practice, we find that when the evolution step is small
enough, this issue is not crucial and the simple sequential
projection often produces acceptable results. In order to
avoid computations of ray-volume intersections any time
the constraint is checked, one can compute the set of
relevant voxels to each viewing ray in a preprocessing step
and store them in lists. However, the size of this data
structure could grow significantly when the resolution of
input images is high. For this reason, in our implementa-
tion, we stored only the first and last voxels along each ray.
Another important issue when using constraints is the
frequency of enforcing them. In our implementation, we
achieved stable behavior when applying the first constraint
after each optimization iteration and the silhouette con-
straints after each 10 iterations.

Nevertheless, one may ask if there is a more elegant
solution to impose the constraints since imposing each
constraint sequentially as above not only depends on the
order of projections, but is also likely to shrink the current
solution more than necessary.

4.3 Euclidean Projection onto the Convex Set

Ideally, one would like to compute the euclidean projection
onto the convex set of feasible solutions such that all
constraints are taken into account simultaneously. Since
there are a huge number of these constraints, a central
challenge is to find an efficient algorithm to do this.
Fortunately, such algorithms exist in the literature. In this
work, we make use of a method that was first published by

Dykstra and Boyle [8], [4]. By alternating projections onto
each convex set in a recursive manner, this approach allows
us to compute the euclidean projection onto the intersection
of finite number of closed convex sets.

In our scenario, we first perform the clipping to the
values uðxÞ 2 ½0; 1� in order to satisfy constraint (1) above.
As mentioned above, constraints of type (2) do not have to
be handled explicitly and can be realized by restricting the
computations to the visual hull of the imaged object. Let us
now denote the projections associated with violated
constraints of type (3) by �i for i ¼ 1; . . . ; p. More con-
cretely, �i denotes the projection onto the hyperplane
corresponding to constraint i. Furthermore, let ~u denote a
vector obtained by stacking the values of u at all voxels and
let ~ucur be our current estimate corresponding to a function
ucur 62 D. We then iteratively compute a series of projections
f~uki g and increments f~vki g as follows:

~uk0 ¼ ~uk�1
p ;

~uki ¼ �ið~uki�1 �~vk�1
i Þ; i ¼ 1; 2; . . . ; p;

~vki ¼ ~uki � ð~uki�1 �~vk�1
i Þ; i ¼ 1; 2; . . . ; p;

ð17Þ

for k ¼ 1; 2; . . . with initial values ~u0
p ¼ ~ucur and ~v0

i ¼~0 for
i ¼ 1; 2; . . . ; p.

Similarly to the simple procedure described in Section 4.2,
this recursive algorithm also applies the individual
projections �i sequentially. Yet, it systematically separates
the residuals associated with various projection directions
so as to make sure that the computed estimates ~ukp gradually
approach the euclidean projection onto the intersection of
half-spaces.

Proposition 4. The algorithm defined in (17) converges to the
euclidean projection onto the intersection of convex sets.

Proof. For the proof, we refer to [8], [4]. tu

Fig. 3b shows a visualization of this recursive projection
method for the case of two nonorthogonal constraints.

It can be noted that the dimensionality of all involved
variables in (17) is equal to the number of voxels and is
usually in the order of multiple million. Hence, some care
should be taken when implementing the above procedure
to reduce the memory requirements. First, one can observe
that the updates in ~uki only involve the previously
projected values ~uki�1 and thus can be evaluated on the
fly. Moreover, the auxiliary vectors ~vki always have the
direction of the normals to the corresponding hyperplanes.
This implies that only their lengths can be stored instead
of the full configurations.

5 IMPLEMENTATION

This section gives more details on the implementation of the
proposed approach.

5.1 Photoconsistency Estimation

In this paper, we propose a novel strategy for integration of
silhouette and stereo information. The presented method
operates on a precomputed photoconsistency map � : V !
½0; 1� and is independent of its particular implementation. To
validate its concept, we used the voting scheme proposed in
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Fig. 3. Schematic view of projections of an initial configuration (black
dot) onto two nonorthogonal linear constraints. While the sequential
projection onto each individual constraint (a) leads to configurations (red
dots) within the set of feasible solutions (shaded area), these
configurations will generally not coincide with the euclidean projection
onto the set (yellow dot). In addition, the final configuration depends on
the order in which the projections are performed. In contrast, the
recursive projection algorithm described in Section 4.3 allows us to
compute the euclidean projection (b).



[9] for photoconsistency computation. The choice of this

technique was motivated by its robustness, even without

explicit visibility estimation and increased accuracy com-

pared to traditional methods. See [9] for more details.

5.2 Linearization and Fixed-Point Iteration

In order to solve (10), we suggest using a fixed-point iteration

scheme that transforms the nonlinear system into a sequence

of linear systems. These can be efficiently solved with an

iterative solver like successive overrelaxation (SOR).
It can be observed that the only source of nonlinearity in

(10) is the diffusivity g :¼ �
jruj . Starting with an initialization

u0, we can compute g and keep it constant. For constant g,

(10) is linear and discretization yields a sparse linear system

of equations of the form A~u ¼~0, which we solve with the

SOR method. This means we iteratively compute an update

of u at voxel i by

ul;kþ1
i ¼ ð1� !Þul;ki

þ !
P

j2NðiÞ;j<i g
l
i�ju

l;kþ1
j þ

P
j2NðiÞ;j>i g

l
i�ju

l;k
jP

j2NðiÞ g
l
i�j

; ð18Þ

where NðiÞ denotes the six-neighborhood of i. Finally, gi�j
denotes the diffusivity between voxel i and its neighbor j. It

is defined as

gli�j :¼
gli þ glj

2
; gli :¼ �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrulij
2 þ �2

q ; ð19Þ

where � :¼ 0:001 is a small constant that prevents the

diffusivity to become infinite when jrulij
2 ¼ 0 and jrulij

2 is

approximated by standard central differences. The over-

relaxation parameter ! has to be chosen in the interval ð0; 2Þ
for the method to converge. The optimal value depends on

the linear system to be solved. Empirically, for the specific

problem at hand, we obtained a stable behavior for ! ¼ 1:3.

After the linear solver yields a sufficiently good approx-

imation (we iterated for k ¼ 1; . . . ; 10), one can update the

diffusivities and solve the next linear system. Iterations are

stopped as soon as the energy decay in one iteration is in

the area of number precision.
The described optimization procedure shares similarities

with previously introduced fixed-point iteration methods

[31]. However, while [31] suggests completely solving the

arising linear systems before updating the nonlinear

diffusivity part, we argue for making the updates on the

fly after a fixed number of iterations, which is a better

strategy to address constrained minimization problems. In

fact, the proposed numerical scheme can be interpreted as a

specific quasi-Newton method (see the Appendix). Experi-

mental evaluations showed that compared to established,

provably convergent alternatives like gradient descent or

primal-dual techniques [23], for the weighted minimal

surface model at hand the proposed approach is substan-

tially faster and achieves a higher degree of numerical

stability even though it does not involve any line search

procedures and does not require updating a data-depen-

dent time-step parameter. These observations coincide with

the conclusions in [31] and motivated our particular choice.

6 EXPERIMENTAL RESULTS

In the previous sections, we developed a convex optimiza-
tion method to combine stereo and silhouette information in
multiview reconstruction. In the following, we provide a
series of experiments to assess the properties of the
proposed method. Recently, impressive reconstructions of
sufficiently textured objects acquired under controlled
conditions with accuracy competing laser scanning techni-
ques have been reported [24]. Although the presented
approach achieves state-of-the-art accuracy, we believe that
its main advantage is its robustness, i.e., the ability to
operate in many practical situations where traditional
methods fail. To emphasize this, we focus on four types
of objects which exhibit important challenges for image-
based modeling techniques, namely:

. We consider objects that are not Lambertian, such as
metallic and shiny objects. For such objects, the key
assumption underlying the stereo approach is that
points on the surface have the same color when seen
from different views is violated such that the stereo
information alone is likely to provide suboptimal
reconstructions.

. We consider objects with complex and fine-scale
details. In traditional weighted minimal-surface
approaches, elongated and fine-scale details are
typically suppressed as this drastically reduces
the surface area.

. We consider objects that exhibit little prominent
texture. Such objects are known to be difficult for
stereo approaches since the matching of similar
structures no longer provides a reliable discrimina-
tion of good and bad matches.

. We consider image sequences acquired with a hand-
held camera lacking perfect color and camera
calibration. Analogously, the matching process is
quite challenging under such conditions.

In addition, we compare the proposed method to other
state-of-the-art multiview stereo methods (based on bal-
looning and propagated photoconsistency) and also to
alternative techniques simultaneously imposing photo-
metric and silhouette consistency.

6.1 Comparison to Two Alternative Multiview Stereo
Methods

We validate the proposed approach on a scene of a head
statue with complex reflection properties containing thin
structures (the pedestal); see Fig. 4.3 Scenes of this type
are a known challenge for variational stereo-based
methods due to the violation of the Lambertian assump-
tion and the presence of a regularizer, which introduces a
bias toward shapes with small area. In particular, we
implemented two classical paradigms in multiview stereo-
vision: a weighted minimal surface formulation with a
ballooning constraint [32] and a stereo propagating
scheme [14], [18]. The first method produces clear over-
smoothing effects at concavities and small-scale structures.
The second approach retrieves shape indentations but also
leads to erroneous carving at thin parts and specularities.
In contrast, the introduced technique produces accurate
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3. The image sequences used in Figs. 4 and 9 can be downloaded from
http://wwwcremers.in.tum.de/index.php?nav=data.



reconstructions of thin structures (the pedestal) as well as
concave areas by incorporating silhouette constraints in
the optimization process. Note that all three models are
based on a classical minimal surface formulation but use
different methodologies to avoid the empty surface as a
solution. Note also that all three methods use silhouette
information to restrict the ballooning, for initialization or
to constrain the domain of admissible functions.

6.2 Absence of Bias toward the Visual Hull

The proposed method is based on minimizing a convex
energy under convex constraints. Although the computed

solution does not depend on the initialization, in practice,
we can accelerate computation by initializing the solution
with the visual hull. In Fig. 5, we show intermediate steps in
the evolution process of the proposed approach. Usually,
local minimization techniques use the surface orientation to
identify locations to deform the current shape in order to
minimize the resulting reprojection error. However, this
could lead to instabilities and introduce a bias near the
visual hull boundary by involving surface points beyond
the contour generator. In contrast, the introduced method
recovers shape indentations effortlessly while retaining
silhouette alignment during the optimization process.
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Fig. 4. Experimental comparison with alternative state-of-the-art methods on the reconstruction of a metallic head. While both the ballooning
approach (upper row) and the more elaborate model based on volumetric photoconsistency (middle row) fail to recover the pedestal of the statue
and produce oversmoothing effects or erroneous carving, the proposed approach (bottom row) accurately recovers all relevant details.



6.3 Comparison to the Multiview Stereo and
Silhouette Fusion Approach of Sinha et al. [26]

Fig. 6 shows a comparison between the proposed convex
relaxation method and the approach of [26] on an image
sequence of a statue of a Greek goddess. The experiments
show that both approaches give rise to a high-quality
silhouette-consistent reconstruction. The proposed method,
however, offers visible improvements in the area of the face
and the creases of the cloth. Overall, it provides a smoother
reconstruction that nevertheless preserves the relevant
structures. On the other hand, the recovered surface seems
to be slightly overflattened at some locations (e.g., on the
nose or the back), which is due to the discrepancy between
image and volume sampling, discussed previously. Note
that the input photographs are of relatively high resolution.

6.4 Reconstruction of Complex and Fine-Scale
Objects

While the above objects were topologically rather simple,
Fig. 7 shows experimental results obtained on a consider-
ably more complex geometry of a warrior figurine that has
many small-scale structures, such as the hammer and the
sword.4 Again, we observe that the proposed reconstruction
exhibits a relatively high degree of smoothness while
preserving all fine-scale geometric details. Note that the
image sequence consists of only 24 images from camera
positions arranged on a hemisphere around the object,
which implies large baselines and thus restricted accuracy
of the estimated photoconsistency.

Fig. 8 shows a comparison between the reconstructions
obtained by applying the simple iterative projection method
and the more accurate euclidean projection in the course of
optimization (see Section 4). While the simple iterative
approach produces artifacts in the area below the fur at the
back (marked in red), the euclidean one overcomes these
numerical difficulties and gives a more accurate reconstruc-
tion. Generally, the simple iterative procedure performs
poorly in the presence of occluded concave areas. However,

in most practical scenarios, such cases do not occur. In fact,
in our experiments, the “warrior” sequence was the only
one where we could observe considerable differences
between the results obtained by both techniques.

6.5 Reconstruction of Low-Textured Objects

The next experiment shown in Fig. 9 illustrates that the
proposed method allows us to compute good quality
reconstructions even for objects that exhibit rather little
prominent texture. For such experiments where the stereo-
matching provides almost no relevant information regard-
ing good or bad matches, the proposed method essentially
computes a euclidean minimal surface that exactly fulfills
all silhouette constraints. The results show that even in the
absence of reliable stereo information, we are able to obtain
highly detailed reconstructions.

6.6 Robustness to Missing Silhouette Information

In many practical scenarios, perfect silhouette information
is hard to obtain due to background clutter, image noise,
etc. This raises the question about the practical relevance of
the proposed approach. In contrast to most existing
methods for silhouette-based reconstruction, our method
can easily exploit partial silhouette information. While
alternative techniques require given apparent contours,
the presented approach exploits the pixel occupancy of the
object projections. Obviously, we can impose silhouette
constraints only for those pixels (and corresponding visual
rays) for which we have a minimal confidence about being
inside or outside the silhouette—for example, based on
some color likelihood criterion. How will such limited
silhouette information affect the final reconstruction?

In order to explore the behavior of the proposed method
in the case of incomplete silhouette information, we assume
that only a certain percentage p 2 ½0; 1� of all constraints of
type (14) are taken into account for reconstruction. Note that
omitting constraints of type (13) will have less impact on the
reconstruction due to the nature of the silhouette fusion
process. In addition, we assume for objectivity that the
subset of ignored constraints has been selected randomly,
i.e., a certain proportion of it is randomly switched off.

Let ufull : V ! f0; 1g denote the solution computed with
complete silhouette information and up : V ! f0; 1g the
solution obtained using only a fraction p 2 ½0; 1� of it. To
quantify the decay in performance with fewer and fewer
constraints, we define the reconstruction error with respect
to the solution with complete information as the relative
deviation �p:

�p ¼

Z
V

jufullðxÞ � upðxÞj d3xZ
V

ufullðxÞ d3xþ
Z
V

upðxÞ d3x

: ð20Þ

In particular, we have �p 2 ½0; 1�, with � ¼ 0 if and only if
both reconstructions are identical and � ¼ 1 if up is the
empty set.

Fig. 10 shows the average reconstruction error computed
as a function of the percentage of missing silhouette
constraints. It shows that the reconstruction accuracy
gradually degrades with decreasing value of p. Yet, for values
p � 0:96, the reconstruction error is below 0.02. The figure
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Fig. 5. Minimization process. Surface evolution starting from the visual
hull, obtained by projecting the current estimate onto the original
domain. Note that the presented method is able to generate accurate
shapes starting from this initialization since it does not take the local
surface orientation into account.

4. The data to this reconstruction are courtesy of Yasutaka Furukawa—-
see http://www.cs.washington.edu/homes/furukawa/research/mview/
index.html for the image data set and a reconstruction obtained with the
method in [12].



also depicts the reconstruction with only 4 percent of the
silhouette constraints (i.e., p ¼ 0:96). A direct comparison to
Fig. 9 reveals that many of the fine-scale details are over-
smoothed, while all relevant large-scale parts of the object are
preserved. We can conclude that due to the utilized silhouette
fusion scheme, the proposed approach enjoys considerable

resilience to missing silhouette information. This assures high

practical applicability of the proposed method.

6.7 Reconstruction from a Hand-Held Camera

The calibration of the input images is a crucial ingredient of

the reconstruction pipeline. While the above reconstructions
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Fig. 6. Hygeia sequence. Three out of 36 input images of resolution 2;008	 3;040 and multiple views of the reconstructed surface compared to the
reconstruction of Sinha et al. [26]. Our result exhibits a higher grade of smoothness while recovering surface details more accurately (for example,
the face and the creases of the cloth).

Fig. 7. Warrior sequence. Two out of 24 input images of resolution 1;600	 1;600 and multiple views of the reconstructed surface. Note that thin
structures (for example, the handle of the hammer) as well as concavities (for example, at the chest) are reconstructed accurately.



were all conducted with imagery obtained either from the
Internet or in controlled environments with precalibrated
cameras, one may ask if the proposed method is sufficiently
robust to also deal with outdoor sequences generated with a
hand-held camera. In many real-world applications, one
cannot precalibrate the camera possibly because the images
were acquired by another person or because it is not
possible to include calibration patterns in the scene.

In the following experiment, we demonstrate the robust-
ness of the proposed approach to operate with input images
lacking perfect color and camera calibration, even though the
imaged object is well-textured and does not feature complex
reflectance properties. We acquired 28 photographs of an
ancient statue with a hand-held camera (see Fig. 11). We
estimated calibration parameters directly from the images
using the Bundler software [28], [1] (which performs feature

point matching, five-point algorithm, and RANSAC, fol-
lowed by bundle adjustment refinement). Fig. 11 depicts
multiple views of the recovered surface. Generally, the
reconstruction exhibits a high grade of accuracy despite the
severe intensity changes in the images and the imprecisions
of the calibration. Note, in particular, the detailed recovery of
the creases of the cloth. Note also the correct handling of the
nontrivial topology of the reconstructed surface.

6.8 Energy Bound and Runtimes

As detailed in Section 3, the proposed approach does not give
a global minimum of the underlying energy functional (5).
Yet, the computed solution lies within an energy bound,
dependent on the particular input data, around the global
minimum (see Proposition 2). Here, we present the perimeter
of this upper bound for all demonstrated experiments.

Apart from robustness, another crucial issue for a
silhouette and stereo integration approach is the computa-
tional time needed. To this end, we used a GPU implementa-
tion of the proposed approach where the SOR optimization
in a red-black strategy runs on the GPU. For comparison, we
implemented the simple iterative projection method (see
Section 4.2) as well as the more accurate euclidean projection
method (see Section 4.3). Note, however, that due to their
sequential nature, a GPU implementation is not possible. As
a result, the backprojection dominated the overall computa-
tional time of the optimization.

Table 1 summarizes the energy bounds and runtimes for
all presented experiments. In order to deliver insight into
how tight the bounds are, we estimated the energy gap as
the ratio of the energy at the computed solution (i.e., after
thresholding) and the solution of the relaxed problem (i.e.,
before thresholding). The variations seem to correlate with
the accuracy of the photoconsistency map and the geometry
of the imaged object (e.g., the presence of concavities). The
computational times were measured on a PC with 2.83 GHz
and 8 GB of main memory, equipped with an NVIDIA Tesla
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Fig. 8. Iterative versus euclidean projection. Imposing silhouette
consistency by means of euclidean projection onto the feasible set of
surfaces is particularly important to correctly handle occluded concave
parts (see the marked area). While the iterative projection described in
Section 4.2 often produces artifacts in such cases, the more accurate
euclidean projection overcomes the numerical difficulties and gives
better reconstructions.

Fig. 9. Sow sequence. First row: Three out of 27 input images of resolution 1;024	 768. Second row: Multiple views of the reconstructed surface.
Despite a lack of prominent texture, the proposed method allows an accurate reconstruction even of fine-scale details of the object.



C1060 graphics card. Note that the optimization runs
partially on the GPU (SOR scheme) and partially on the
CPU (constraint enforcement). Note also that the runtime of
the proposed approach strongly depends on the resolution
of the input images since it gives the number of constraints
to be considered. The runtime also depends on the
particular choice of the projection method. However, the
dependence on the volume resolution is less relevant since
the evolution scheme runs on the GPU. For all experiments,

the volumetric resolution was within the range of 15-20

million voxels. The reported times do not include the

photoconsistency estimation as the latter is very sensitive to

the choice of methodology.

7 CONCLUSION

We proposed a novel framework for integrating silhouette

and stereo information in 3D reconstruction from multiple
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TABLE 1
Energy Bounds and Runtimes for All Experiments

The optimization runs partially on the GPU (SOR scheme) and partially on the CPU (constraint enforcement). For all experiments, the volumetric
resolution was between 15 and 20 million voxels.

Fig. 11. Reconstruction from the hand-held camera. Two out of 28 input images of resolution 2;048	 3;072 and multiple views of the reconstructed
surface. Despite severe illumination variations in the input images, the creases of the cloth are recovered in high detail.

Fig. 10. Robustness to missing silhouette information. Left: Completeness of the reconstruction obtained with the proposed approach applied on the
image sequence in Fig. 9 for the reduced number of silhouette constraints. The omitted constraints of type (14) were chosen randomly. As a ground
truth served the reconstruction obtained with complete information (see Fig. 9), the deviation from it was estimated by evaluating (20). Right:
Reconstruction obtained with only 4 percent of the constraints of type (14). The corresponding deviation value is about 0.018. Although the accuracy
of fine-scale details degrades by reducing the number of silhouette constraints, the overall large-scale accuracy remains high, even when ignoring
96 percent of them.



images. The key idea is to cast multiview stereovision as
a convex variational problem and to impose exact
silhouette constraints by restricting the domain of feasible
functions. Relaxation of the resulting formulation leads to
the minimization of a convex functional over the convex
set of silhouette-consistent functions, which can be
performed in a globally optimal manner using classical
techniques. A solution of the original problem is obtained
by projecting the computed minimizer onto the corre-
sponding restricted domain. We presented an algorithm
which allows us to efficiently compute the projection of
the current solution onto the convex set of silhouette-
consistent configurations. We also proved that the final
reconstruction is within an energetic bound of the
optimum.

In contrast to classical techniques for silhouette and
stereo integration, the proposed approach of minimizing
convex energies over convex sets leads to a more robust and
tractable numerical scheme. The method makes no hard
decisions about voxel occupancy and does not exhibit any
bias near the visual hull boundary. It allows us to efficiently
compute highly accurate silhouette-consistent reconstruc-
tions for challenging real-world problems (shiny metallic
objects, low-texture objects, multiply connected objects with
fine-scale structure, and outdoor reconstructions from a
hand-held camera).

APPENDIX

Here, we will discuss some properties of the optimization
procedure proposed in Section 5.2.

Proposition 5. The linearized fixed-point iteration scheme in
(18) can be interpreted as a specific quasi-Newton method.

Proof. We will prove the claim in a constructive way. For
simplicity, we will consider the case when the diffusiv-
ity terms are updated after each iteration and the
implicit Gauss-Seidel step is replaced by an explicit
Jacobi one. A generalization to the procedure in (18) is
straightforward.

We start with some notations. Without loss of
generality, we can assume V ¼ ½0; 1�3 � IR3. Let

G :¼ f ði1h; i2h; i3hÞ j i1; i2; i3 ¼ 0; . . . ; Ng � V ;

with h ¼ 1
N denoting a discretization of V , where N 2 IN

is the sampling density along each dimension. Again, let
~u 2 IRd, where d ¼ N3 summarizes the values of u on G.
Furthermore, let gðuÞ :¼ �

jruj denote the nonlinear diffu-
sivity term in (10).

First, we observe that if E denotes the functional in
(8), its gradient in a continuous setting reads

rEðuÞ ¼ �div �
ru
jruj

� �
;

which, after discretization, leads to rEð~uÞ 2 IRd. A
quasi-Newton step is given by

~utþ1 ¼ ~ut � !ðBtÞ�1rEð~utÞ;

where Bt 2 IRd	d and ! 2 IR is a time-step parameter.
Now, we can focus on the components of rEð~utÞ:

ðrEð~utÞÞl;m;n ¼ � div �l;m;n
rutl;m;n
jrutl;m;nj

 !

¼ � div


gtl;m;nrutl;m;n

�
¼ � @

@x



gtutx

�
l;m;n
� @

@y



gtuty

�
l;m;n
� @

@z



gtutz

�
l;m;n

;

where l;m; n 2 f0; . . . ; Ng. Note that the diffusivity gt

depends on ut, which is omitted in the above expressions

for simplicity. For an interior point onG, we can discretize

the arising partial derivatives by evaluating the corre-

sponding terms between the respective neighboring grid

points, i.e.,

@

@x
ðgtutxÞl;m;n ¼



gtutx

�
lþ1=2;m;n

�


gtutx

�
l�1=2;m;n

;

and analogously for the other terms. Next, we can

discretize the partial derivatives of ut by means of forward

or backward differences, respectively. For example, the

expressions for utx read

utx
�
lþ1=2;m;n

¼ utlþ1;m;n � utl;m;n;

utx
�
l�1=2;m;n

¼ utl;m;n � utl�1;m;n:

Finally, we specify Bt ¼ ðbtikÞi;k¼1;...;d as

btik ¼

X
j2NðiÞ

gti�j; if i ¼ k;

0; otherwise;

8<
:

where gti�j denotes again the diffusivity between voxels i

and j, i.e., gti�j :¼ ðgti þ gtjÞ=2. Summarizing all computa-

tions and reverting to the notations in Section 5.2 leads to

the following evolution scheme:

utþ1
i ¼ ð1� !Þ uti þ !

P
j2NðiÞ g

t
i�ju

t
jP

j2NðiÞ g
t
i�j

:

ut

Remarks.

1. All matrices Bt and ðBtÞ�1 arising in the optimi-
zation are diagonal matrices with positive diag-
onal elements. Hence, they are symmetric and
positive-definite, which guarantees that each
update direction is a descent direction.

2. A closer look at the evolution scheme reveals that
the matrices ðBtÞ�1 are designed in a way that
some small gradient components are encouraged
while too large components are damped. For
example, in areas where u is approximately
constant, the corresponding gradient components
will be small in magnitude. Yet, the respective
matrix value is expected to be large due to
1=jruj 
 1. Analogously, at locations of high
variation of u, the diffusivity terms g ¼ �=jruj
may become smaller than 1 and damp the
corresponding gradient components. This results
in favorable properties of the proposed fixed-
point iteration scheme, which is both fast and
numerically stable.
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