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‘We propose a nonlinear statistical shape model for level set segmentation that can be effi-
ciently implemented. Given a set of training shapes, we perform a kernel density estimation
in the low-dimensional subspace spanned by the training shapes. In this way, we are able to
combine an accurate model of the statistical shape distribution with efficient optimization in
a finite-dimensional subspace. In a Bayesian inference framework, we integrate the nonlin-
ear shape model with a nonparametric intensity model and a set of pose parameters that are
estimated in a more direct data-driven manner than in previously proposed level set meth-
ods. Quantitative results show superior performance (regarding runtime and segmentation
accuracy) of the proposed nonparametric shape prior over existing approaches.

1. INTRODUCTION

Originally proposed in [1, 2] as a means to propagate interfaces in time,
the level set method has become increasingly popular as a framework for image
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segmentation. The key idea is to represent an interface I' C €2 in the image domain
Q2 C R? implicitly as the zero level set of an embedding function ¢ : R3 — Q:

'={xe€Q|¢(x)=0} (D

and to evolve I' by propagating the embedding function ¢ according to an appro-
priate partial differential equation. The first applications of this level set formalism
for the purpose of image segmentation were proposed in [3, 4, 5]. Two key ad-
vantages over explicit interface propagation are the independence of a particular
parameterization and the fact that the implicitly represented boundary I can un-
dergo topological changes such as splitting or merging. This makes the framework
well suited for the segmentation of several objects or multiply connected objects.

When segmenting medical images, one commonly has to deal with noise,
and missing or misleading image information. For certain imaging modalities
such as ultrasound or CT, the structures of interest do not differ much from their
background in terms of their intensity distribution (see Figure 1). Therefore, they
can no longer be accurately segmented based on the image information alone. In
recent years, researchers have therefore proposed to enhance the level set method
with statistical shape priors. Given a set of training shapes, one can impose in-
formation about which segmentations are a priori more or less likely. Such prior
shape information was shown to drastically improve segmentation results in the
presence of noise or occlusion [6, 7, 8, 9, 10, 11]. Most of these approaches are
based on the assumption that the training shapes, encoded by their signed distance
function, form a Gaussian distribution. This has two drawbacks: First, the space
of signed distance functions is not a linear space; therefore, the mean shape and
linear combinations of eigenmodes are typically no longer signed distance func-
tions. Second, even if the space were a linear space, it is not clear why the given
set of sample shapes should be distributed according to a Gaussian density. In fact,
as we will demonstrate in this work, they are generally not Gaussian distributed.
Recently, it was proposed to use nonparametric density estimation in the space of
level set functions [8] in order to model nonlinear distributions of training shapes.
(The term nonlinear refers to the fact that the manifold of permissible shapes is not
merely a linear subspace.) While this resolves the above problems, one sacrifices
the efficiency of working in a low-dimensional subspace (formed by the first few
eigenmodes) to a problem of infinite-dimensional optimization.

In the present chapter, we propose a framework for knowledge-driven level
set segmentation that integrates three contributions.! First, we propose a statistical
shape prior that combines the efficiency of low-dimensional PCA-based methods
with the accuracy of nonparametric statistical shape models. The key idea is to
perform kernel density estimation in a linear subspace that is sufficiently large to
embed all training data. Second, we propose to estimate pose and translation pa-
rameters in a more data-driven manner. Thirdly, we optimally exploit the intensity
information in the image by using probabilistic intensity models given by kernel
density estimates of previously observed intensity distributions.
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Figure 1. Segmentation challenges and estimated intensity distributions. The two curves
on the right correspond to the empirical probability of intensities inside and outside the left
ventricle (for the ultrasound image) and the prostate (for the CT image). The region-based
segmentation of these structures is a challenging problem, because objects and background
have similar histograms. Our segmentation scheme optimally exploits the estimated prob-
abilistic intensity models. See attached CD for color version.

2. LEVEL SET SEGMENTATION AS BAYESIAN INFERENCE

The goal of level set segmentation can be formulated as the estimation of the
optimal embedding function ¢: 2 — R given an image [ : 2 — R. In the Bayesian
framework, this can be computed by maximizing the posterior distribution

P(o|1) < P(I]¢) P(e)- )

The maximization of (2) results in a problem of infinite-dimensional opti-
mization. Given a set of training shapes encoded by their signed distance functions
{®i}i=1...n, Tsai et al. [7] proposed reducing the segmentation problem to one of
finite-dimensional optimization by constraining the optimization problem to the
finite-dimensional subspace spanned by the training shapes.

In this chapter we make use of this compact representation of the embedding
function. Given the distance d on the space of signed distance functions defined
by d?(¢1,¢2) = [, (¢1(x) — 2 ())? dz, we align the set of training shapes with
respect to translation and rotation. Subsequently, we constrain the level set function
¢ to a parametric representation of the form:

baeno(r) = ¢o(Rox +h) + Y a; ¢i(Rox + h), 3)
i=1

where ¢g(x) = % Zi\il @i (x) represents the mean shape, {¢;(x)};=1.., are the
eigenmodes of the distribution, and n < N is the dimension of the subspace spanned
by the N training shapes. The parameter vector o = (ay, . .., ay, ) models shape
deformations, while the parameters i € R? and 6 € [0, 271> model translation and
rotation of the respective shape. In our applications, where the scale of objects is
known, a generalization to larger transformations groups (e.g., similarity or affine)
did not appear useful.
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The infinite-dimensional Bayesian inference problem in Eq. (2) is therefore
reduced to a finite-dimensional one where the conditional probability,

Pla, h, 0|1) x P(I|a, h, 0) P(x, I, 6), 4)

is optimized with respect to the shape parameters «, and the transformation pa-
rameters h and 6. In the following, we will assume a uniform prior on these
transformation parameters, i.e., P(c, h, ) = P(c). In the next section we will
discuss three solutions to model this shape prior.

3. EFFICIENT NONPARAMETRIC STATISTICAL SHAPE MODEL

Given a set of aligned training shapes {¢; };=1...n, we can represent each of
them by their corresponding shape vector {; };—1.. n. In this notation, the goal of
statistical shape learning is to infer a statistical distribution P () from these sample
shapes. Two solutions that have been proposed are based on the assumptions
that the training shapes can be approximated by a uniform distribution [7, 9]:
P(cx) = const., or by a Gaussian distribution [6]:

_ 1
P(a) x exp (—aT rt a) ,  whereX = N zi:ai ozl-T. 5)

In the present chapter we propose to make use of nonparametric density esti-
mation [12] to approximate the shape distribution within the linear subspace. We
model the shape distribution by the kernel density estimate:

Pla) = Nin XN: K(a —0a> . where K (u) = (27;71/2exp (—“22) .

i=1
(6)
There exist various methods to automatically estimate appropriate values for the
width o of the kernel function, ranging from the kth nearest neighbor estimates to
cross-validation and bootstrapping. In this work, we simply set o to be the average
nearest neighbor distance: 02 = & S min;; |ay; — ]
In the context of level set-based image segmentation, the kernel density esti-
mator (6) has two advantages over the uniform and Gaussian distributions:

= The assumptions of uniform distribution or Gaussian distribution are gen-
erally not fulfilled. In Figure 3, we demonstrate this for a set of silhouettes
of sample shapes. The kernel density estimator, on the other hand, is
known to approximate arbitrary distributions. Under mild assumptions,
it was shown to converge to the true distribution in the limit of infinite
sample size [13].
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Figure 2. Schematic plots of different density estimates within a subspace. Darker shading
indicates areas of high probability density for the respective models. The kernel density esti-
mator adapts to the training data more flexibly since it does not rely on specific assumptions
about the shape of the distribution.

= The space of signed distance functions is known to not be a linear space.
Therefore, neither the mean shape ¢ nor a linear combination of eigen-
modes as in (3) will in general be a signed distance function. As a con-
sequence, the functions ¢(x) favored by the uniform or the Gaussian dis-
tribution cannot be expected to be signed distance functions. The kernel
density estimator (6), on the other hand, favors shape vectors «, which
are in the vicinity of the sample shape vectors «;. By construction, these
vectors correspond to signed distance functions. In fact, in the limit of
infinite sample size, the distribution inferred by the kernel density es-
timator (6) converges toward a distribution on the manifold of signed
distance functions.

Figure 2 shows schematic plots of the three methods for a set of sample data
spanning a two-dimensional subspace in R3. The kernel density estimator clearly
captures the distribution most accurately. As we shall see in Section 5, constraining
alevel set-based segmentation process by this nonparametric shape prior will allow
to compute accurate segmentations even for rather challenging image modalities.

Figure 3 shows a 3D projection of the estimated shape density computed for
a set of silhouettes of a walking person. The bottom row shows shape morphing
by sampling along geodesics of the uniform and the kernel density. These indicate
that the kernel estimator captures the distribution of valid shapes more accurately.

In analogy to shape learning, we make use of kernel density estimation to learn
the conditional probability for the intensity function I in (4) from examples. A
similar precomputation of intensity distributions by means of mixture models was
proposed in [14]. Given a set of presegmented training images, the kernel density
estimate of the intensity distributions p;, and p,¢ of object and background are
given by the corresponding smoothed intensity histograms. This has two advan-
tages. First, the kernel density estimator does not rely on specific assumptions
about the shape of the distribution. Figure 1 shows that the intensity distributions
for ultrasound and CT images are not well approximated by Gaussian or Lapla-
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Figure 3. Linear versus nonlinear shape interpolation. The upper row shows 6 out of 49
training shapes and a 3D projection of the isosurface of the estimated (48-dimensional)
shape distribution. The latter is clearly neither uniform nor Gaussian. The bottom row
shows a morphing between two sample shapes along geodesics induced by a uniform or
a kernel distribution. The uniform distribution induces a morphing where legs disappear
and reappear and where the arm motion is not captured. The nonlinear sampling provides
more realistic intermediate shapes. We chose human silhouettes because they exhibit more
pronounced shape variability than most medical structures we analyzed.

cian models. Second, in contrast to the joint estimation of intensity distributions
(cf. [15]), this simplifies the segmentation process, which no longer requires an
updating of intensity models. Moreover, we found the segmentation process to be
more robust to initialization in numerous experiments.

4. ENERGY FORMULATION AND MINIMIZATION

Maximizing the posterior probability in (2), or equivalently minimizing its
negative logarithm, will generate the most probable segmentation of a given image.
With the nonparametric models for shape and intensity introduced above, this leads
to an energy of the form

E(a,h,0) = —logP(I|a, h,d) —log P(cx). @)

The nonparametric intensity model permits to express the first term, and equation
(6) gives exactly the second one. With the Heaviside step function H and the short
hand Hy = H(dae,n,0(x)), we end up with

N
1
E(a, h,@):—/QH(z, log pin(I) + (1-H) log pout (I )dx—log Vo Z K(

i=1



EFFICIENT KERNEL DENSITY ESTIMATION OF SHAPE AND INTENSITY PRIORS 453

With e(z) = {log %}, K; = K(95%), and ¢ = (¢1,...,1n), we

obtain the following system of coupled gradient descent equations:

do 1YY (4 - K,
v Q/é(qﬁa,h,g(x))w(R(;x—i—h)e(ac) dx + =3 125\,:1 e ,
i / 5(euno(x)) Voans(z) elx) dr, ®)
Q
y- [ 8(6enal@) (Voana(e) - Vo) e(a) da.
Q

In all equations, the Dirac delta function ¢ appears as a factor inside the integrals
over the image domain 2. This allows to restrict all computations to a narrow
band around the zero crossing of ¢. While the evolution of translation and pose
parameters h and 6 are merely driven by the data term e(x), the shape vector
« is additionally drawn toward each training shape with a strength that decays
exponentially with the distance to the respective shape.

5. EXPERIMENTAL RESULTS AND VALIDATION

5.1. Heart Segmentation from Ultrasound Images

Figures 4-6 show experimental results obtained for the segmentation of the
left ventricle in 2D cardiac ultrasound sequences, using shape priors constructed
from a set of 21 manually segmented training images.

The segmentation in Figure 4 was obtained by merely imposing a small con-
straint on the length of the segmenting boundary. As a consequence, the segmen-
tation process leaks into all darker areas of the image. The segmentation of the left
ventricle based on image intensities and purely geometric regularity constraints
clearly fails.

The segmentation in Figure 5 was obtained by constraining the shape op-
timization to the linear subspace spanned by the eigenmodes of the embedding
function of the training set. This improves the segmentation, providing additional
regularization and reducing the degrees of freedom for the segmentation process.
Nevertheless, even within this subspace there is some leakage into darker image
areas.

The segmentation in Figure 5 was obtained by additionally imposing a non-
parametric statistical shape prior within this linear subspace. While the subspace
allows for efficient optimization (along a small number of eigenmodes), the non-
parametric prior allows to accurately constrain the segmentation process to a sub-
manifold of familiar shapes (see also Figure 2). This prevents any leakage of the
boundary and enables the segmentation of the left ventricle despite very limited
and partially misleading intensity information.
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Figure 4. Segmentation without prior. Since there is no shape constraint imposed upon
the contour — other than a small length constraint present in the Chan-Vese model —
the boundary gradually separates brighter from darker areas. This indicates that intensity
information is insufficient to induce the desired segmentation.

Figure 5. Boundary evolution for an ultrasound segmentation with uniform shape prior.
By constraining the level set evolution to the linear subspace spanned by the first few
eigenmodes computed from a set of training shapes, one can improve the segmentation of
the given image (see, e.g., [7]). Nevertheless, in our application, the uniform shape prior
does not sufficiently constrain the segmentation process, permitting the boundary to leak
into darker image areas.

Figure 6. Boundary evolution for an ultrasound segmentation with nonparametric shape
prior. Imposing a non-parametric shape prior within the eigenspace spanned by the training
shapes leads to a segmentation process that is sufficiently constrained to enable an accurate
segmentation of the left ventricle. In contrast to the uniform prior (see Figure 5, the
nonparametric one does suppress leaking of the boundary), because it constrains the level
set function to a well-defined submanifold around the training shapes (see also Figure 2).

As a quantitative evaluation we computed the percentage of correctly clas-
sified object pixels and that of misclassified ones. During energy minimization,
the percentage of correctly classified pixels increases from 56 to 90%, while the
percentage of false positives decreases from 27 to 2.7% by using the kernel prior.
Using the uniform prior, we attain 92% correctly classified, yet the percentage of



EFFICIENT KERNEL DENSITY ESTIMATION OF SHAPE AND INTENSITY PRIORS 455

Figure 7. Prostate segmentation for two patients with the same shape model. Each row
shows axial slices of the same segmentation for one patient. The manual segmentation is
in black and the automatic one white.

false positives increases to 42%. Merely constraining the boundary evolution to
the linear subspace spanned by the training shapes is insufficient to provide for
accurate segmentation results.

5.2. Prostate Segmentation from 3D CT Images
5.2.1. A single statistical shape model for different patients?

Segmentation of the prostate from CT images is an important and challenging
problem in radiotherapy. It may help to avoid the exposure to radiation of vital
organs that are not infected by the cancer. In this image modality, the prostate
appears with an intensity level very close to the one of adjacent organs like the
bladder. The key assumption of our work is that the shape of the prostate in a
given segmentation task is statistically similar to prostate shapes observed in a
training set. Most related works on prostate segmentation are indeed model-based
[7,10, 11]. In contrast to existing works, we will show that a single (sufficiently so-
phisticated) statistical shape model can be applied to the segmentation of different
patients.

To this end, we built a nonparametric 3D shape model of the prostate using 12
manually extracted prostates (with seminal vesicles) collected from two different
patients.

We employed a leave-one-out strategy by removing the image of interest from
the training phase. Figure 7 shows 2D cuts of a few results obtained using this
strategy. With a one-click initialization inside the organ, the algorithm led to a
steady-state solution in less than 10 seconds. We obtained 86% successfully clas-
sified organ voxels and 11% misclassified organ voxels. This compares favorably
to the intra-patient results reported in [11]. One should note that these quantitative
evaluations underestimate the quality of our results since the “ground-truth” seg-
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Figure 8. Comparison of the segmentations obtained with the kernel prior (white) and with
alternative approaches (black).

mentations are in general not perfect. Figure 7 provides qualitative comparisons
to the manual segmentation, as well as to the segmentations obtained with uniform
and Gaussian approximations of the shape distribution.

5.2.2. Quantitative analysis of segmentation accuracy

To further quantify the segmentation accuracy, we consider three different cri-
teria: the Dice coefficient, the average surface distance, and the centroid distance.
The Dice coefficient is defined as

2|Smanual N Saut0|
|Smanual| + |Sauto‘ ’

DSC = )

where |Smanual| and |Sauto| are the volumes of the manual and automatic segmen-
tations, and |Smanual N Sauto| is the volume of their intersection. This coefficient
can be expressed directly with the level set representations:

2 fQ ¢manua1 (¢auto) dx
fQ (bmanual dLL' fQ ¢aut0) dx’

In general, a value of D.SC superior to 0.7 is considered a good agreement. The
other two criteria can also be expressed in similar manner. The average surface
distance is given by

5 1 (fQ |VH(¢manual)||¢aUtO‘ dx fQ |VH(¢auto)||¢manual| d(E)
sur face 9 fQ |VH(¢manual)| dx fQ |VH(¢aut0)‘ dz .

DSC = (10)

11)

Essentially, this quantity amounts to averaging the distance of each contour point

on one contour to the nearest contour point on the other contour (and vice versa).
The centroid distance is the distance between the centers of mass:

fQ T H ¢manual/auto) dx

Cmanual/auto =
manual/au fQ ¢manual/auto) de
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Table 1. Quantitative Validation on 26 CT Images

DSC Dsu’r‘face (mm) Dentroid (mm)

Average 0.8172 3.38 2.86
Standard deviation  0.0807 1.11 1.63
Minimum 0.6573 2.07 0.50
Maximum 0.9327 5.42 5.75

One should point out, however, that the centroid distance has only a very limited
capacity to quantify shape differences. Obviously, it cannot distinguish between
any two segmentations that share the same centroid.

Table 1 gives the average value of all three criteria computed for the entire
dataset in the leave-one-out strategy mentioned above. In addition, we displayed
the standard deviation, minimum, and maximum value of each criterion. Overall,
these values show that our segmentations typically agree well with the manual
ground truth.

5.2.3. Robustness to initialization

The level set method for image segmentation and also its implementation
with nonparametric statistical shape priors are local optimization methods. As a
consequence, experimental results will depend on the initialization. This aspect
is a common source of criticism, it is generally believed that local indicates that
segmentations can only be obtained if contours are initialized in the vicinity of the
desired segmentation. Yet, this is not the case for the region-based segmentation
schemes like the one developed in this work. The segmentation without shape
prior in Figure 4 shows a drastic difference between initial and final boundary:
clearly contours can propagate over large spatial distances from the initialization
to the “nearest” local minimum.

In order to quantify the robustness of our method to initialization, we trans-
lated the initialization by a certain distance in opposite directions and subsequently
computed the accuracy of the resulting segmentation process with nonparametric
shape prior. Table 2 shows that the accuracy is quite robust with respect to dis-
placements of the initialization up to 10mm in each direction.

5.2.4. Robustness to noise

The prostate CT images are in themselves rather challenging, since prostate
and surrounding tissue have fairly similar intensities (see Figure 1, right side). The
combination of statistically learned nonparametric models of both the intensity
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Table 2. Robustness to Initialization

X Translation (mm) -10 -5 0 5 10

DSC 0.9287 0.9297 0.9327 0.9289 0.9300
Dsur face (mm) 2.1358 2.0910 2.0673 2.1080 2.1105
Dientroiq (mm) 1.3942 14657 1.4826 1.4685 1.5481

distribution and the distribution of the shape embedding functions nevertheless al-
lows to compute the desired segmentation. Yet, one may ask where the limitations
of our model are. At what point does segmentation accuracy break down?

To investigate this, we artificially added noise to the images, computing at each
time the segmentation accuracy. Figure 9 shows both the Dice coefficient defined
in (10) and the average surface distance defined in (11) of the final segmentation as
a function of the noise. While the segmentation is rather good over a large range
of noise values, it does decay at very large values of noise.

0_959 59 190 1?0 ZQO 2?0 390 3?0 408

Dice coefficient
Average surface distance

. 2
0 50 100 150 200 250 300 350 400
Noise (sigma)

Figure 9. Robustness to noise. See attached CD for color version.

5.2.5. Efficiency versus accuracy: How many eigenmodes are needed?

The efficiency of our implementations arises because we solve the level
set computation in the low-dimensional linear subspace spanned by the training
shapes. Given [V training shapes, this will typically amount to an optimization of
N — 1 parameters.
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Table 3. Segmentation Accuracy for Different Numbers of Modes

DSC Dsurface (mm) Dcentroid (mm)

3 modes 0.8015 3.55 3.32
10 modes  0.8172 3.38 2.86
25 modes  0.8173 3.46 2.95

While there exist many ways to parameterize this subspace, the representation
in terms of principal components (eigenshapes of the embedding function) has the
additional advantage that the principal components associated with the largest
eigenvalues by definition capture the largest variation of the embedding function.
Hence, one could further reduce the dimensionality of the problem, by using merely
the first few eigenmodes.

To quantify the loss in segmentation accuracy when using fewer eigenmodes
in the optimization, we show in Table 3 the values of the Dice coefficient, the
surface distance, and the centroid distance obtained when using 3, 10, and 25
eigenmodes. The reported quantities are averages computed for each of the 25 test
images. As expected, the higher-order eigenmodes contain very little additional
shape information, so that the accuracy increases only by a little amount when
going from 10 to 25 eigenmodes, while the computation time scales linearly with
the number of eigenmodes considered.

6. CONCLUSION

We proposed herein an efficient and accurate statistical shape prior for level set
segmentation that is based on nonparametric density estimation in the linear sub-
space spanned by the level set surfaces of a set of training shapes. In addition, our
segmentation scheme integrates nonparametric estimates of intensity distributions
and efficient optimization of pose and translation parameters.

We reported quantitative evaluation of segmentation accuracy and speed for
cardiac ultrasound images and for 3D CT images of the prostate. In particular,
we quantitatively validated that the proposed segmentation scheme is robust to
the initialization and robust to noise. Furthermore, we demonstrated that one
can increase efficiency by reducing the number of eigenmodes considered in the
optimization while losing a little accuracy of the average segmentation results.
These results indicate that the proposed nonparametric shape prior outperforms
previously proposed shape priors for level set segmentation.
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8. NOTES

1. A preliminary version of this work was presented in [16]

9. REFERENCES

10.

11.

. Dervieux A, Thomasset F. 1979. A finite element method for the simulation of Rayleigh-

Taylor instability. In Approximation methods for Navier-Stokes problems, pp. 145-158. Ed R
Rautmann. Berlin: Springer.

. Osher SJ, Sethian JA. 1988. Front propagation with curvature dependent speed: algorithms

based on Hamilton-Jacobi formulations. J Comput Phys 79:12-49.

. Caselles V, Catté F, Coll T, Dibos F. 1993. A geometric model for active contours in image

processing. Num Math 66:1-31.

. Malladi R, Sethian JA, Vemuri BC. 1994. A topology independent shape modeling scheme.

In Proceedings of the SPIE conference on geometric methods in computer vision, Vol. 2031,
pp. 246-258. Bellingham, WA: SPIE.

. Kichenassamy S, Kumar A, Olver PJ, Tannenbaum A, Yezzi AJ. 1995. Gradient flows and

geometric active contour models. In Proceedings of the fifth international conference computer
vision (ICCV’95), pp. 810-815. Washington, DC: IEEE Computer Society.

. Leventon M, Grimson W, Faugeras O. 2000. Statistical shape influence in geodesic active

contours. In Proceedings of the IEEE international conference on computer vision and pattern
recognition (CVPR), Vol. 1, pp. 316-323. Washington, DC: IEEE Computer Society.

. Tsai A, Yezzi AJ, Willsky AS. 2003. A shape-based approach to the segmentation of medical

imagery using level sets. IEEE Trans Med Imaging, 22(2):137-154.

. Cremers D, Osher SJ, Soatto S. 2006. Kernel density estimation and intrinsic alignment for

shape priors in level set segmentation. Int J Comput Vision. 69(3):335-351.

. Rousson M, Paragios N, Deriche R. 2004. Implicit active shape models for 3d segmentation

in MRI imaging. In Proceedings of the international conference on medical image computing
and computer-assisted intervention (MICCAI 2000). Lecture notes in computer science, Vol.
2217, pp. 209-216. New York: Springer.

Dam EB, Fletcher PT, Pizer S, Tracton G, Rosenman J. 2004. Prostate shape modeling based
on principal geodesic analysis bootstrapping. In Proceedings of the international conference
on medical image computing and computer-assisted intervention (MICCAI 2003). Lecture
notes in computer science, Vol. 2217, pp. 1008—1016. New York: Springer.

Freedman D, Radke RJ, Zhang T, Jeong Y, Lovelock DM, Chen GT. 2005. Model-based seg-
mentation of medical imagery by matching distributions. IEEE Trans Med Imaging 24(3):281—
292.

. Rosenblatt F. 1956. Remarks on some nonparametric estimates of a density function. Ann

Math Stat 27:832-837.

. Silverman BW. 1992. Density estimation for statistics and data analysis. London: Chapman

and Hall.

. Paragios N, Deriche R. 2002. Geodesic active regions and level set methods for supervised

texture segmentation. Int J Comput Vision 46(3):223-247.

. Chan LA Vese TF. 2001. Active contours without edges. IEEE Trans Med Imaging, 10(2):266—

271.

. Rousson, M., Cremers, D., 2005. Efficient Kernel Density Estimation of Shape and Intensity

Priors for Level Set Segmentation, International conference on medical image computing and
computed-assisted intervention (MICCAI 2005), 2: 757-764.



