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Abstract. We present a novel variational approach for segmenting the image plane into a set of regions of
parametric motion on the basis of two consecutive frames from an image sequence. Our model is based on a
conditional probability for the spatio-temporal image gradient, given a particular velocity model, and on a geometric
prior on the estimated motion field favoring motion boundaries of minimal length.

Exploiting the Bayesian framework, we derive a cost functional which depends on parametric motion models for
each of a set of regions and on the boundary separating these regions. The resulting functional can be interpreted as
an extension of the Mumford-Shah functional from intensity segmentation to motion segmentation. In contrast to
most alternative approaches, the problems of segmentation and motion estimation are jointly solved by continuous
minimization of a single functional. Minimizing this functional with respect to its dynamic variables results in an
eigenvalue problem for the motion parameters and in a gradient descent evolution for the motion discontinuity
set.

We propose two different representations of this motion boundary: an explicit spline-based implementation
which can be applied to the motion-based tracking of a single moving object, and an implicit multiphase level set
implementation which allows for the segmentation of an arbitrary number of multiply connected moving objects.

Numerical results both for simulated ground truth experiments and for real-world sequences demonstrate the
capacity of our approach to segment objects based exclusively on their relative motion.

Keywords: image segmentation, variational methods, motion estimation, Bayesian inference, level set methods,
multiphase motion, optic flow

1. Introduction

The estimation of motion from image sequences has
a long tradition in computer vision. Two seminal vari-
ational methods were proposed by Horn and Schunck
(1981) and by Lucas and Kanade (1981). Both of
these methods are based on a least-squares criterion
for the optic flow constraint, and some global or local
smoothness assumption on the estimated flow field.

∗Daniel Cremers is now with Siemens Corporate Research,
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In practice, flow fields are generally not smooth.
The boundaries of moving objects will correspond to
discontinuities in the motion field. At these discontinu-
ities, the smoothness assumption is strongly violated.
Yet, one cannot simply drop the regularization term,
since the problem of motion estimation is highly ill-
posed. Ideally, one would like to enforce a regularity
of the estimated motion field only in the areas corre-
sponding to the different moving objects, allowing for
discontinuities across the boundaries of objects. Yet
this requires knowledge of the correct segmentation.
In this sense, the segmentation of objects based on
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their motion has been considered a chicken and egg
problem.

Many researchers have addressed this coupling
of segmentation and motion estimation. Rather
than first estimating local motion and subsequently
segmenting or clustering regions with respect to
the estimated motion (Wang and Adelson, 1994),
some researchers have proposed to model motion
discontinuities implicitly by non-quadratic robust
estimators (Nagel and Enkelmann, 1986; Black and
Anandan, 1996; Memin and Perez, 1998; Kornprobst
et al., 1999; Weickert and Schnörr, 2001; Brox
et al., 2004). Others tackled the problem of seg-
menting motion by treating the problems of motion
estimation in disjoint sets and optimization of the
motion boundaries separately (Schnörr, 1992; Black,
1994; Caselles and Coll, 1996; Odobez and Bouthemy,
1998; Paragios and Deriche, 2000; Farnebäck, 2001).
Some approaches are based on Markov Random Field
(MRF) formulations and optimization schemes such
as stochastic relaxation by Gibbs sampling (Konrad
and Dubois, 1992), split-and-merge techniques (Heitz
and Bouthemy, 1993; Zheng and Blostein, 1995),
deterministic relaxation (Bouthemy and Francois,
1993), graph cuts (Shi and Malik, 1998) or expectation
maximization (EM) (cf. Jepson and Black, 1993; Ayer
and Sawhney, 1995; Weiss, 1997). As pointed out in
Weiss (1997), exact solutions to the EM algorithm are
computationally expensive and therefore suboptimal
approximations are employed.

In Cremers and Schnörr (2003), we presented a
variational approach to motion segmentation with
an explicit contour, in which motion estimation and
boundary optimization are derived by minimizing a
single energy functional by gradient descent. This
approach had two drawbacks: Firstly, satisfactory re-
sults were only obtained upon applying two posterior
normalizations to the terms driving the evolution of the
motion boundary (see also (Farnebäck, 1999)), which
is not consistent with the minimization of a single
energy. Secondly, due to the explicit representation of
this boundary, the segmentation of multiple moving
objects is not straight-forward.

In the present paper, we propose an approach which
will overcome these limitations. We formulate the
problem of motion estimation in the framework of
Bayesian inference. Related Bayesian formulations
have been proposed in the discrete MRF framework
(cf. Bouthemy and Francois, 1993). Our formulation
differs from the above approach in that it is continuous,

uses a contour representation of the motion disconti-
nuity set (spline or level set based), can be optimized
by a simple and fast gradient descent minimization and
is based on a different (normalized) likelihood in the
data term. We propose a geometrically motivated model
for the conditional probability of a spatio-temporal im-
age gradient given a particular velocity vector, and a
prior on the estimated motion field favoring motion
boundaries of minimal length. We derive a novel vari-
ational formulation for segmenting the image plane
into a set of disjoint regions of piecewise parametric
motion. The proposed functional can be interpreted as
an extension of the Mumford and Shah (1989) model
from the case of gray value segmentation to the case of
motion segmentation. Minimization leads to an eigen-
value problem for the motion parameters associated
with each region, and to a gradient descent evolution
for the boundary separating the regions.

This joint minimization of a single functional with
respect to motion parameters and motion boundaries
generates a pde-based solution to the above chicken
and egg problem. The resulting boundary evolution
can be interpreted in the way that neighboring regions
compete for the boundary in terms of their motion en-
ergy. In analogy to the corresponding gray value model,
which has been termed Region Competition (Zhu and
Yuille, 1996), we therefore refer to this process as
Motion Competition.

We propose two implementations of this boundary
set. The first one is based on a spline representation of
the boundary. Although such a sparse representation
of the object boundary is computationally efficient,
explicit contour representations have a number of
drawbacks. Firstly, they rely on a particular para-
meterization. During the evolution, some regridding
mechanism needs to assure that control points do not
overlap. Secondly, the explicit representation does not
permit topological changes of the boundary such as
splitting and merging. To overcome these limitations,
we revert to an implicit level set based representation of
the boundary. Level set based contour representations
(Osher and Sethian, 1988) have become a popular
framework in image segmentation (cf. Malladi et al.,
1995; Caselles et al., 1995; Kichenassamy et al., 1995;
Caselles and Coll, 1996; Paragios and Deriche, 2000;
Chan and Vese, 2001; Yezzi and Soatto, 2003). We
propose a multiphase level set implementation of the
motion competition functional, which is based on the
corresponding gray value model of Chan and Vese
(2001).
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This novel motion segmentation framework over-
comes the drawbacks of our previous approach. Firstly,
all normalizations comprised in the evolution equation
are derived in a consistent manner by minimizing the
proposed functional. Secondly, the level set formu-
lation permits the segmentation of several (possibly
multiply connected) objects, based on their relative
motion. The present paper extends work which was
presented on various conferences (Cremers, 2003a,
2003b; Cremers and Soatto, 2003).

The paper is organized as follows. In Section 2,
we formulate motion estimation as a problem of
Bayesian inference. In Section 3, we consistently
derive a variational framework for motion segmen-
tation. We present two alternative implementations
of the proposed functional: an explicit spline-based
formulation in Section 6 and an implicit multiphase
level set formulation in Section 7. Numerical results
of the proposed framework for simulated ground truth
data and real-world image sequences are given in
Section 8. Sections 9 and 10 provide a conclusion and
a discussion of the limitations of our framework.

2. From Motion Estimation to Motion
Segmentation

2.1. Motion Estimation as Bayesian Inference

Let � ⊂ R
2 denote the image plane and let f :�×R →

R be a gray value image sequence. Denote the spatio-
temporal image gradient of f (x, t) by

∇3 f =
(

∂ f

∂x1
,

∂ f

∂x2
,

∂ f

∂t

)t

. (1)

Let

v:� → R
3, v(x) = (u(x), w(x), 1)t , (2)

be the velocity vector at a point x in homogeneous
coordinates.1

With these definitions, the problem of motion es-
timation now consists in maximizing the conditional
probability

P(v | ∇3 f ) = P(∇3 f | v) P(v)

P(∇3 f )
, (3)

with respect to the motion fieldv. For a related Bayesian
formulation of motion segmentation in the discrete
case, we refer to Bouthemy and Francois (1993).

2.2. A Normalized Velocity Likelihood

In the following, we will assume that the intensity
of a moving point remains constant throughout time.
Expressed in differential form, this gives a relation
between the spatio-temporal image gradient and the
homogeneous velocity vector, known as optic flow
constraint:

d f

dt
= ∂ f

∂t
+ ∂ f

∂x1

dx1

dt
+ ∂ f

∂x2

dx2

dt
= vt ∇3 f = 0. (4)

The optic flow constraint has been extensively
exploited in the motion estimation community. Fol-
lowing the seminal work of Horn and Schunck (1981),
researchers commonly estimate motion fields by min-
imizing functionals which integrate this constraint in
a least-squares manner (while imposing a smoothness
constraint on the velocity field). In this work, we
propose an alternative geometric approach to interpret
the optic flow constraint. As we will argue in the
following, the resulting likelihood is more appropriate
in the context of motion segmentation.2

Except for locations where the spatio-temporal gra-
dient vanishes, the constraint (4) states that the ho-
mogeneous velocity vector must be orthogonal to the
spatio-temporal image gradient. Therefore we propose
to use a measure of this orthogonality as a condi-
tional probability on the spatio-temporal image gra-
dient. Let α be the angle between the two vectors
then:

P(∇3 f (x) | v(x)) ∝ e− cos2(α)

= exp

(
− (v(x)t∇3 f (x))2

|v(x)|2|∇3 f (x)|2
)

. (5)

By construction, this probability is independent of the
length of the two vectors and monotonically increases
the more orthogonal the two vectors. A normalization
with respect to the length of the velocity vector only
has been proposed in the context of motion estimation
(Bigün et al., 1991). For derivations of alternative like-
lihood functions from generative models of the image
formation process and associated noise models, we re-
fer to Nestares et al. (2000),Weiss and Fleet (2001) and
Cremers and Yuille (2003).

To account for vanishing gradient, we regularize ex-
pression (5) by replacing

|∇3 f (x)| −→ |∇3 f (x)| + ε (6)
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in the denominator. This guarantees that the probabil-
ity is maximal if the gradient vanishes (in which case
the optic flow constraint is also fulfilled), while not
affecting the result for gradients much larger than ε.
The regularizing constant ε can be interpreted as the
noise scale for the gradient. As long as ε is chosen suf-
ficiently small, we did not find a noticeable influence
of its precise value in numerical implementations.

2.3. A Geometric Prior on the Velocity Field

We discretize the velocity field v by a set of disjoint
regions �i ⊂ � with constant velocity vi :

v(x) = {vi , if x ∈ �i } (7)

An extension to piecewise parametric motion is pre-
sented in Section 4. We now assume the prior proba-
bility on the velocity field to only depend on the length
L(C) of the boundary C separating these regions:

P(v) ∝ exp(−ν L(C)) (8)

In particular, this means that we do not make any
prior assumptions on the velocity vectors vi . Such
a prior would necessarily introduce a bias favoring
certain velocities. Priors on the length of separating
boundaries are common in the context of variational
segmentation (cf. Kass et al., 1988; Mumford and
Shah, 1989). As we shall see in the next section, the
choice of velocity representation in (7) combined with
the prior in (8) will transform the motion estimation
framework into one of motion segmentation.

3. Variational Motion Segmentation

With the above assumptions, we can use the framework
of Bayesian inference to derive a variational method for
motion segmentation. The first term in the numerator
of Eq. (3) can be written as:

P(∇3 f | v) =
∏
x∈�

P(∇3 f (x) | v(x))h

=
n∏

i=1

∏
x∈�i

P(∇3 f (x) | vi )
h, (9)

where h = dx denotes the pixel size of the discretiza-
tion of �. The first step is based on the assumptions that
the velocity affects the spatio-temporal gradient only

locally, and that the gradient measurements at different
locations are independent. And the second step is based
on the discretization of the velocity field given in (7).

With the prior probability (8), maximizing the con-
ditional probability (3) with respect to the velocity field
v therefore amounts to

max
v

P (v | ∇3 f )

= max
vi ,C

{
e−ν L(C)

n∏
i=1

∏
x∈�i

P(∇3 f (x) | vi )
h

}
. (10)

Equivalently one can minimize the negative loga-
rithm of this expression, which is given by the energy
functional:

E(C, {vi })
= −

n∑
i=1

∫
�i

log(P(∇3 f (x) | vi )) dx+ν L(C). (11)

With the conditional probability (5) on the spatio-
temporal gradient, this gives:

E(C, {vi }) =
n∑

i=1

∫
�i

(
v t

i ∇3 f (x)
)2

|vi |2 | ∇3 f (x)|2 dx + ν L(C).

(12)

Let us make the following remarks about this func-
tional:

• The functional (12) can be considered an extension
of the piecewise constant Mumford and Shah (1989)
functional from the case of gray value segmentation
to the case of motion segmentation. Rather than hav-
ing a constant fi modeling the intensity of each re-
gion �i , we now have a velocity vector vi modeling
the motion in each region �i .

• Gradient descent minimization with respect to the
boundary C and the set of motion vectors {vi }, jointly
solves the problems of segmentation and motion esti-
mation. In our view, this aspect is crucial, since these
two problems are tightly coupled. Many alternative
approaches to motion segmentation tend to instead
treat the two problems separately by first (globally)
estimating the motion and then trying to segment the
estimated motion into a set of meaningful regions.

• Note that the integrand in the data term differs from
the one commonly used in the optic flow community
for motion estimation: Rather than minimizing
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the deviation from the optic flow constraint in a
least-squares manner, as done e.g. in the seminal
work of Horn and Schunck (1981), our measure (5)
of orthogonality introduces an additional normaliza-
tion with respect to the length of the two vectors. In
Section 5.3, we will argue that these normalization
are essential in the case of motion segmentation,
where differently moving regions need to be
compared.

• The functional (12) contains one free parameter
ν, which determines the relative weight of the
length constraint. Larger values of ν will induce
a segmentation of the image motion on a coarser
scale. As argued by Morel and Solimini (1995), such
a scale parameter is fundamental to all segmentation
approaches.

4. Piecewise Parametric Motion Segmentation

Minimizing functional (12) generates a segmentation
of the image plane into domains of piecewise constant
motion. In order to cope with more complex motion
regions, one can extend this approach to piecewise
parametric motion. An extension of the geometric
reasoning of Section 2.2 to parametric motion models
is as follows.

The velocity on the domain �i is allowed to vary
according to a model of the form:

vi (x) = M(x) pi , (13)

where M is a matrix depending only on space and time
and pi is the parameter vector associated with each
region. A particular model which allows for expansion,
contraction, rotation and shearing is the case of affine
motion given by the matrix

M(x) =




x1 x2 1 0 0 0 0

0 0 0 x1 x2 1 0

0 0 0 0 0 0 1


 , (14)

and a parameter vector pi = (ai , bi , ci , di , ei , fi , 1) for
each region �i .

Inserting model (13) into the optic flow con-
straint (4) gives a relation which—again interpreted
geometrically—states that the the vector Mt∇3 f must
either vanish or be orthogonal to the vector pi . We
therefore model the conditional probability that the
point x ∈ � belongs to the domain �i by a quan-
tity which only depends on the angle between pi and

Mt∇3 f :

P(∇3 f | pi ) ∝ exp

(
−

(
pt

i Mt∇3 f
)2

|pi |2 |Mt∇3 f |2
)

. (15)

The corresponding generalization of functional (12)
from piecewise constant to piecewise parametric mo-
tion segmentation is given by:

E(C, {pi }) =
∑

i

∫
�i

∣∣p t
i Mt∇3 f

∣∣2

|pi |2|Mt∇3 f |2 dx + ν L(C).

(16)

5. Energy Minimization

The functional (16) is of the form

E(C, {pi }) =
n∑

i=1

∫
�i

p t
i T (x) pi

|pi |2 dx + ν L(C), (17)

where, for notational simplification, we have intro-
duced the matrix

T (x) = ∇3 f Mt M∇3 f t

|Mt ∇3 f |2 , (18)

again regularized as done in (6).
This functional is minimized by alternating the two

fractional steps of optimizing with respect to the motion
parameters {pi } for fixed boundary C , and iterating the
gradient descent with respect to C for fixed parameters
{pi }. Particular representations of the boundary C will
be specified in Sections 6 and 7.

5.1. An Eigenvalue Problem
for the Motion Parameters

The functional (17) can be further simplified:

E(C, {pi }) =
n∑

i=1

p t
i Ti pi

|pi |2 dx + ν L(C), (19)

with a set of matrices

Ti =
∫

�i

T (x) dx, (20)

with T given in (18). For fixed boundary C , i.e. fixed
regions �i , minimizing this functional with respect to
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the motion parameters {pi } results in a set of eigenvalue
problems of the form:

pi = arg min
p

pt Ti p

pt p
. (21)

The parametric motion model pi for each region �i

is therefore given by the eigenvector corresponding to
the smallest eigenvalue of the matrix Ti defined in (20).
It is normalized, such that the third component is 1.
Similar eigenvalue problems arise in motion estima-
tion due to normalization with respect to the velocity
magnitude (cf. Biguen et al., 1991; Jepson and Black,
1993). Unal et al. (to appear) proposed in the context
of tracking an alternative solution which integrates the
motion information along the boundaries of the current
segmentation.

5.2. Motion Competition

Conversely, for fixed motion models pi , a gradient de-
scent on the energy (17) for the boundary C results in
the evolution equation:

∂C

∂t
= −∂ E

∂C
= (e j − ek) n − ν

dL(C)

dC
, (22)

where the indices ‘ j’ and ‘k’ refer to the regions ad-
joining the contour, n denotes the normal vector on the
boundary pointing into region � j , and

ei = p t
i T pi

p t
i pi

= pt
i ∇3 f Mt M∇3 f t pi

|pi |2 |Mt ∇3 f |2 (23)

is an energy density.
Note that we have neglected in the evolution Eq. (22)

higher-order terms which account for the dependence
of the motion parameters pi on the regions �i . An
Eulerian accurate shape optimization scheme as pre-
sented for example in Jehan-Besson et al. (2003) is the
focus of ongoing research.

The two terms in the contour evolution (22) have the
following intuitive interpretation:

– The first term is proportional to the difference of
the energy densities ei in the regions adjoining the
boundary: The neighboring regions compete for the
boundary in terms of their motion energy density,
thereby maximizing the motion homogeneity. For
this reason we refer to this process as Motion Com-
petition.

– The second term minimizes the length L of the sep-
arating motion boundary.

5.3. Effect of the Normalization

In Section 2.2 we argued that the proposed likelihood
(5) (in contrast to the commonly used least-squares for-
mulation) does not introduce a bias with respect to the
magnitude of the velocity or the image gradient.3 As a
direct consequence, the respective contour evolutions
differ, as we will detail for the case of piecewise con-
stant motion.

The proposed motion likelihood (5) results in
a contour evolution of the form (22) with energy
densities

ei = vt
i ∇3 f ∇3 f tvi

|vi |2 | ∇3 f |2 (24)

This means that the term driving the contour evo-
lution does not depend on the magnitude of the
spatio-temporal gradient and it does not depend on the
magnitude of the respective velocity models.

In contrast, a Horn and Schunck (1981) type likeli-
hood would induce contour driving terms which do not
include the normalizing denominator:

ei = vt
i ∇3 f ∇3 f tvi . (25)

This lack of normalization has two effects on the
boundary evolution and resulting segmentation: Firstly
the motion boundary will propagate much faster in ar-
eas of high gradient. Secondly the evolution direction
and speed will be affected by the magnitude of veloc-
ities: regions with larger velocity will exert a stronger
pull on the motion boundary.

6. An Explicit Spline-Based Implementation

In order to minimize the motion competition func-
tional (17), we need to specify an appropriate rep-
resentation for the boundary C . In the following, we
will present two alternative representations: an explicit
spline-based representation and an implicit level set
representation.

In this section, we propose an implementation of the
contour evolution (22) with a closed spline curve of the
form:

C :[0, 1] × R
+ → �, C(s, t) =

N∑
i=1

pi (t)Bi (s),

(26)
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with quadratic periodic B-spline basis functions Bi and
control points pi = (xi , yi )t . This representation al-
lows for a computationally efficient implementation of
the contour evolution, since the evolution Eq. (22) re-
duces to an evolution equation for a small number of
spline control points {pi }i=1,...,N . The number N of
control points defines a trade-off between the spatial
resolution of the contour approximation and the speed
of computation.

One difficulty of explicit contour parameterizations
is the fact that control points may cluster in one point.
This causes the normal vector to become ill-defined and
consequently the evolution along the normal becomes
instable. To prevent this behavior, we use the length
measure

L(C) =
∫ (

∂C

∂s

)2

ds, (27)

which corresponds to the elastic energy used in the clas-
sical snake approach (Kass et al., 1988). As discussed
in Cremers et al. (2002), minimizing this constraint en-
forces an equidistant spacing of control points which
strongly improves the numerical stability. The contour
evolution then reads:

∂C

∂t
= (e+ − e−) n − ν

∂2C

∂s2
, (28)

where the indices ‘+’ and ‘−’ denote the two regions
neighboring the respective contour point. Inserting the
spline definition (26), we obtain the equation:

∑
i

ṗi Bi = (e+ − e−) n − ν
∑

j

p j B ′′
j ∀ s ∈ [0, 1],

(29)

where ˙ and ′ denote derivatives with respect to t and s,
respectively.

By projecting Eq. (29) onto the basis functions
{Bk}k=1,...,n , we obtain a set of linear differential equa-
tions. The resulting evolution of spline control points
pi (t) is given by:

ṗi =
∑

k

B−1
ik

[∫
(e+ − e−) n Bkds − ν

∑
j

p j B̃ jk

]
.

(30)

Here B denotes the matrix of basis function overlap
integrals Bik = ∫

Bi Bk ds, and B̃k j = ∫
B j B ′′

k ds. The

first term in the brackets integrates the motion compe-
tition term over the part of the boundary affected by
control point pk , while the second term enforces an
equidistant spacing of control points.

In practice, we iterate this gradient descent for the
control points pi (t), in alternation with an update of the
motion models according to (21).

7. A Multiphase Level Set Implementation

Although they are computationally efficient, explicit
contour representations have a number of drawbacks.
Firstly, one needs to take care of a regridding of control
points which are not intrinsic to the contour. And sec-
ondly, the contour topology is fixed, such that no con-
tour splitting or merging is possible, unless it is mod-
eled explicitly by some (inevitably) heuristic method
(cf. McInerney and Terzopoulos, 1995; Delingette and
Montagnat, 2000).

An alternative are implicit level set representations
of the boundary (Osher and Sethian, 1988). Level set
based contour representations have become a popular
framework in image segmentation (cf. Caselles et al.
1995; Kichenassamy et al., 1995; Chan and Vese,
2001), because they do not depend on a particular
choice of parameterization, and because they do not
restrict the topology of the evolving interface. This
permits splitting and merging of the contour during
evolution and therefore makes level set representations
well suited for the segmentation of several objects or
multiply connected objects.

Based on a corresponding gray value model of Chan
and Vese (2001), we will first present a two-phase level
set model for the motion competition functional (17)
with a single level set function φ. This model is subse-
quently extended to a multi-phase model with a vector-
valued level set function.

7.1. The Two-Phase Model

In this subsection, we restrict the class of permissible
motion segmentations to two-phase solutions, i.e. to
segmentations of the image plane for which each point
can be ascribed to one of two velocity models p1 and p2.
The general case of several velocity models {pi }i=1,...,n

will be treated in the next subsection.
Let the boundary C in the functional (17) be repre-

sented as the zero level set of a function φ : � → R:

C = {x ∈ � | φ(x) = 0}. (31)
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With the Heaviside step function

H (φ) =
{

1 if φ ≥ 0

0 if φ < 0
, (32)

the energy (17) can be embedded by the following two-
phase functional:

E(p1, p2, φ) =
∫

�

pt
1T p1

|p1|2 H (φ) dx

+
∫

�

pt
2T p2

|p2|2 (1 − H (φ)) dx

+ν

∫
�

|∇ H (φ)| dx . (33)

The first two terms in (33) enforce a homogeneity of
the estimated motion in the two phases, while the last
term enforces a minimal length of the region boundary
given by the zero level set of φ.

The two-phase functional (33) is simultaneously
minimized with respect to the velocity models p1 and
p2, and with respect to the embedding level set func-
tion φ defining the motion boundaries. To this end, we
alternate the two fractional steps:

(a) Updating the Motion Models.
For fixed φ, minimization of the functional (33)
with respect to the motion vectors p1 and p2 results
in the eigenvalue problem:

pi = arg min
v

vt Ti v

vtv
, (34)

for the matrices

T1 =
∫

�

T (x) H (φ) dx and

T2 =
∫

�

T (x) (1 − H (φ)) dx . (35)

The solution of (34) is given by the eigenvectors
corresponding to the smallest eigenvalues of T1 and
T2, normalized such that its last component is 1.

(b) Evolution of the Level Set Function.
Conversely, for fixed motion vectors, the gradient
descent on the functional (33) for the level set func-
tion φ is given by:

∂φ

∂t
= δ(φ)

[
ν div

( ∇φ

|∇φ|
)

+ e2 − e1

]
, (36)

with the energy densities ei given in (23). As sug-
gested in Chan and Vese (2001), we implement the

Delta function δ(φ) = d
dφ

H (φ) by a smooth ap-
proximation of finite width τ :

δτ (s) = 1

π

τ

τ 2 + s2
. (37)

Thereby the update of φ is not restricted to the areas
of zero-crossing, but rather spread out over a band
of width τ around it. Depending on the size of τ ,
this permits to detect interior motion boundaries.
This will be demonstrated in Section 8.2.

7.2. The General Multiphase Model

Compared to the explicit contour representation, the
above level set representation permits to segment sev-
eral, possibly multiply connected, moving regions. Yet,
the representation of the motion boundary with a sin-
gle level set function φ permits to model motion fields
with only two phases (i.e. it permits only two different
velocity models). Moreover, one cannot represent cer-
tain geometrical features of the boundary, such as triple
junctions, by the zero level set of a single function φ.
There are various ways to overcome these limitations
by using multiple level set functions.

One approach, investigated e.g. in Zhao et al. (1996)
and Samson et al. (2000), is to represent each phase by a
different level set function φi : �i = {x ∈ � | φi (x) ≥
0}. Although this approach permits to overcome the
above limitations, it has two disadvantages: Firstly, it is
computationally expensive to represent a large number
of phases by a separate level set function for each phase.
And secondly, one needs to suppress the formation of
vacuum and overlap regions by introducing additional
energy terms.

An elegant alternative to model multiple phases was
proposed by Chan and Vese (2001). They introduce a
more compact representation of up to n phases which
needs only m = log2(n) level set functions.4 More-
over, by definition, it generates a partition of the image
plane and therefore does not suffer from overlap or
vacuum formation. We will adopt this representation
which shall be detailed in the following.

Consider a set of m level set functions φi : � → R

and let


 = (φ1, . . . , φm) (38)

be a vector level set function and let H (
) =
(H (φ1), . . . , H (φm)) be the associated vector Heavi-
side function. This function maps each point x ∈ � to
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a binary vector and therefore permits to encode a set of
n = 2m phases �i defined by:

R = {x ∈ � | H(
(x)) = constant}. (39)

In analogy to the corresponding level set formulation of
the Mumford-Shah functional (Chan and Vese, 2001),
we propose to replace the two-phase functional (33) by
the multiphase functional:

E({pi }, 
)=
n∑

i=1

∫
�

p t
i T pi

|pi |2 χi (
) dx

+ ν

n∑
i=1

∫
�

|∇ H (φi )| dx,
(40)

where χi denotes the indicator function for the region
�i . Note, that for n = 2, this is equivalent to the two-
phase model introduced in (33).

For the purpose of illustration, we explicitly give the
functional for the case of n =4 phases:

E({pi }, 
) =
∫

�

p t
11T p11

|p11|2 H1 H2 dx

+
∫

�

p t
10T p10

|p10|2 H1(1−H2) dx

+
∫

�

p t
01T p01

|p01|2 (1−H1)H2dx

+
∫

�

p t
00T p00

|p00|2 (1−H1) (1−H2) dx

+ ν

∫
�

|∇ H1| dx + ν

∫
�

|∇ H2| dx,

(41)

where we have used the short-hand notation

Hi ≡ H (φi (x)). (42)

Minimization of this functional with respect to the mo-
tion vectors {pi } for fixed 
 results in the eigenvalue
problems:

pi = arg min
v

vt Ti v

vtv
, (43)

with four matrices Ti given by


T11 = mean(T ) in {φ1 ≥ 0, φ2 ≥ 0}
T10 = mean(T ) in {φ1 ≥ 0, φ2 < 0}
T01 = mean(T ) in {φ1 < 0, φ2 ≥ 0}
T00 = mean(T ) in {φ1 < 0, φ2 < 0}

(44)

Conversely, for fixed velocity vectors, the evolution
equations for the two level set functions are given by:

∂φ1

∂t
= δ(φ1)

[
ν ∇

( ∇φ1

|∇φ1|
)

+ (e01 − e11) H2

+ (e00 − e10)(1 − H2)

]
,

(45)
∂φ2

∂t
= δ(φ2)

[
ν ∇

( ∇φ2

|∇φ2|
)

+ (e10 − e11) H1

+ (e00 − e01)(1 − H1)

]
,

with the energy densities ei defined in (23).

7.3. Redistancing

During their evolution according to Eqs. (36) or (45),
the level set functions φi generally grow to very large
positive or negative values in the respective areas of
the input image corresponding to a particular motion
hypothesis. At the zero crossings, they rise steeply, the
gradient can become arbitrarily large. Indeed, there is
nothing in the level set formulation of Chan and Vese
(2001) which prevents the level set functions from
growing indefinitely. In numerical implementations,
we found that a very steep slope of the level set func-
tions can even inhibit the flexibility of the boundary to
displace.

Many people have advocated the use of a redistanc-
ing procedure in the evolution of level set functions to
constrain the slope of φ to |∇φ| = 1, see also Gomes
and Faugeras (2000). In order to reproject the evolving
level set function to the space of distance functions, we
intermittently iterate several steps of the redistancing
equation (Sussman et al., 1994):

∂φ

∂t
= sign(φ̂) (1 − |∇φ|), (46)

where φ̂ denotes the level set function before redis-
tancing. Note that this transformation does not affect
the motion boundaries given by the zero-crossing of φ.

Although this regularization is optional in the pro-
posed level set model—see also Chan and Vese
(2001)—it improves and accelerates the convergence
of the boundary evolution. We applied the redistanc-
ing procedure in all experiments except the one in
Section 8.2. Since the data term given by the image mo-
tion information dominates the evolution of the bound-
ary, we found this simple redistancing process to be
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Figure 1. Data for ground truth experiments. Specific image regions
of the wallpaper shot (left) are artificially translated to generate input
data.

sufficiently accurate for our application. Therefore we
did not revert to more elaborate iterative redistancing
schemes such as the one presented in Sussman and
Fatemi (1999).

8. Numerical Results

8.1. Ground Truth Experiments

In order to verify the spatial precision of the level
set based motion segmentation approach introduced in
Section 7, we performed a number of ground truth ex-
periments in the following way. We took a snapshot
of homogeneously structured wallpaper. We artificially
translated certain image regions according to specific
motion models. The input image and the respective im-
age regions are highlighted in various shades of gray in
Fig. 1. The input frames and the computed segmenta-
tions are (or will be made) available on the first author’s
web page.

We determined the spatio-temporal image gradient
from two consecutive images and specified a particular
initialization of the boundary. We minimized the func-
tional (40) by alternating the three fractional steps of:

– updating the motion models for all phases by solving
the corresponding eigenvalue problem (43),

– evolving the level set functions according to (36) or
(45),

– and redistancing the level set functions according to
(46).

For all experiments, we show the evolving motion
boundaries (and in the first case also the corresponding
motion estimates) superimposed onto the ground truth
region information. It should be noted that in these ex-
periments the objects cannot be distinguished from the
background based on their appearance, as they corre-

sponds to homogeneously textured parts of the wallpa-
per. All results are obtained exclusively on the basis of
the motion information.

8.1.1. Segmenting Several Motion Phases. In this
experiment, we demonstrate an application of the four-
phase model (41) to the segmentation of up to four dif-
ferent regions based on their motion information. The
input data consists of two images showing the wallpa-
per from Fig. 1, left side, with three regions (shown in
Fig. 1, right side) moving away from the center. The
upper two regions move by a factor 1.4 faster than the
lower region.

Figure 2 shows several steps in the minimization
of the functional (41). Superimposed onto the ground
truth region information are the evolution of the zero
level sets of the two embedding functions φ1 (black
contour) and φ2 (white contour), and the estimated
piecewise constant motion field indicated by the black
arrows.

Note that the two contours represent a set of four
different phases:

�1 = {x ∈� | φ1 ≥0, φ2 ≥0},
�2 = {x ∈ � | φ1 ≥0, φ2 <0},
�3 = {x ∈ � | φ1 <0, φ2 ≥0},
�4 = {x ∈ � | φ1 <0, φ2 <0}.

Upon convergence, these four phases clearly separate
the three moving regions and the static background.
The resulting final segmentation of the image, which

Figure 2. Segmenting multiple moving regions. The two input im-
ages show the wallpaper of Fig. 1, left side, with three circular regions
moving away from the center. The magnitude of the velocity of the
upper two regions is 1.4 times larger than that of the bottom region.
Superimposed on the true region information are the evolving zero
level sets of φ1 (black contour) and φ2 (white contour), which de-
fine four different phases. The simultaneously evolving piecewise
constant motion field is represented by the black arrows. Both the
phase boundaries and the motion field are obtained by minimizing
the four-phase model (41) with parameters ν = 0.05, τ = 2 with
respect to the level set functions and the motion vectors. Note that in
the final solution, the two boundaries clearly separate the four phases
corresponding to the three moving regions and the static background.
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Figure 3. Accurate motion segmentation. Contour evolution ob-
tained with functional (33) and parameter values ν = 0.06, τ = 1,
superimposed on one of the two input frames. The input images
show the text region (Fig. 1, right side) of the wallpaper moving to
the right and the remainder moving to the left. The motion compe-
tition framework generates highly accurate segmentations, even if
the input images exhibit little in terms of salient features. Due to
the region-based formulation, the initial contour does not need to be
close to the final segmentation. We found that alternative initializa-
tions generate essentially identical segmentation results. The contour
evolution took approximately 10 seconds in Matlab.

is not explicitly shown here, is essentially identical to
the ground truth region information. Note that the seg-
mentation is obtained purely on the basis of the motion
information: In the input images, the different regions
cannot be distinguished from the background on the
basis of their appearance.

8.1.2. Accurate Motion Segmentation Without Fea-
tures. In the previous examples, the moving regions
were of fairly simple shape. The following example
shows that one can generate spatially accurate segmen-
tation results exploiting only motion information, even
when using image sequences that exhibit little intensity
variation or salient features. Figure 3 shows segmen-
tation the contour evolution generated by minimizing
functional (12). The input data consists of two wall pa-
per images with the text region (Fig. 1, right side) mov-
ing to the right and the remainder of the image plane
moving to the left. Even for human observers the dif-
ferently moving regions are difficult to detect—similar
to a camouflaged lizard moving on a similarly-textured
ground. The gradient descent evolution superimposed
on one of the two frames gradually separates the two
motion regions without requiring salient features such
as edges or Harris corner points.

8.2. Detecting Interior Motion Boundaries

Many level set based boundary evolutions propagate
the contour only locally and are therefore not able to
detect boundaries which are not connected to the evolv-
ing interface. Due to the finite width τ of the Delta
function approximation in (36), however, the embed-

ding surface is evolved in a band of width τ around its
zero crossing. As a consequence, for sufficiently large
values of τ this permits to also detect boundaries away
from the evolving interface. We will demonstrate this
property by segmenting a multiply-connected object
based on its relative motion, once with an initializa-
tion which intersects the true motion boundaries and
once with an initialization entirely outside the object
of interest. The segmentation of the latter requires the
detection of an interior boundary.

The two input images show a roll of adhesive tape
moving on a newspaper. Figure 4, top row, shows the
initial contour and the contour evolution obtained by
minimizing the two-phase functional (33), superim-
posed on one of the two consecutive frames. The figures
in the second row show the corresponding evolution of
the embedding surface φ, underlying the contour evo-
lution. It explains the change of contour topology from
the third to the fourth image.

Note that φ is less negative in image regions where
the newspaper is not sufficiently structured—these

Figure 4. Motion segmentation with the two-phase functional (33)
and parameters ν = 1.0, τ = 100 for two different initializations.
1st and 3rd row: One of the two input images (showing a roll of tape
moving on a newspaper) with the evolving contour and the estimated
motion superimposed. Note that the object of interest is hardly dis-
tinguishable from the background on the basis of its appearance. Yet,
minimization of the functional (33) generates both a segmentation of
the image plane and an estimate of the motion in each region. 2nd and
4th row: Corresponding evolution of the embedding surface φ. Note
that in the upper example, the evolving surface induces a change of
the contour topology from the third to the fourth image. The lower
example demonstrates the detection of an interior boundary from the
second to the third frame.
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areas are less easily ascribed to one or the other motion
hypothesis. In order to visualize this effect of a lack
of intensity variation on the evolution of the level set
function, we left out the redistancing procedure intro-
duced in Section 7.3 since the latter enforces a slope
of 1.

Figure 4, bottom rows, show the same segmentation
for a different initialization. In this case, the moving
ring lies entirely inside the initial contour. The numer-
ical scheme is capable of detecting the interior motion
boundary, as is apparent in the transition from the sec-
ond to the third frame. Yet, there is a trade-off: While
the ability of the scheme to detect interior boundaries
improves with the smoothing scale τ of the delta func-
tion in (37), the accuracy of the segmentation clearly
degrades for larger values of τ . Moreover, the capac-
ity to detect interior boundaries may be suppressed by
very strong redistancing.

Due to the region-based (rather than edge-based)
formulation of our approach, the contour converges
over fairly large distances. At the same time, the final
segmentation is quite accurate, given that it is purely
based on the motion information. Those image areas
which do not show sufficient gray value structure to
generate a motion estimate will be ascribed to one or
the other motion hypothesis according to the boundary
regularization.

These observations reflect the fact that motion-based
image segmentation is fundamentally different from
intensity-based segmentation: One can always ascribe
an intensity to a given image pixel, but a velocity com-
ponent can only be associated with it if there is suffi-
cient gray value variation along a given direction. This
fundamental limitation is commonly referred to as the
aperture problem. In the motion competition frame-
work it is dealt with by the boundary regularization
and by the fact that motion is only estimated for entire
regions (never locally).

8.3. Intensity Segmentation versus
Motion Segmentation

All image segmentation models are based on a number
of more or less explicitly stated assumptions about the
properties which define the objects of interest. The mo-
tion competition model is based on the assumption that
objects are defined in terms of homogeneously moving
regions. It extends the Mumford-Shah functional of
piecewise constant intensity to a model of piecewise
parametric motion.

In this example, we will show that despite this
formal similarity the segmentations generated by the
motion competition framework are very different from
those of its gray value analogue. The task is to segment
a real-world traffic scene showing two moving cars
on a differently moving background. We used two
consecutive images from a sequence recorded by D.
Koller and H.-H. Nagel (KOGS/IAKS, University of
Karlsruhe).5 The sequence shows several cars moving
in the same direction, filmed by a static camera. In
order to increase the complexity of the sequence, we
artificially induced a background motion by selecting a
subarea of the original sequence and shifting one of the
two frames, thereby simulating the case of a moving
camera.

Figure 5, top, shows the boundary evolution obtained
by minimizing the two-phase model of Chan and Vese
(2001) for the first of the two frames. The segmentation
process progressively separates bright and dark areas
of the image plane. Yet, since the objects of interest are
not well-defined in terms of homogeneous gray value,
the final segmentation inevitably fails to capture them.
The dark car in the lower left is associated with the

Figure 5. Intensity segmentation versus motion segmentation. Two
consecutive input frames show two cars moving to the top right, and
the background moving to the bottom left. Top row: Segmentation of
the first frame from a traffic scene according to the two-phase level
set model of the piecewise constant Mumford-Shah functional, as
introduced by Chan and Vese (2001). The assumption of homoge-
neous intensity is clearly not appropriate to segment the objects of
interest. Bottom: Motion segmentation of the same traffic scene. By
minimizing the motion competition functional (33) with parameters
ν = 1.5, τ = 5, one obtains a fairly accurate segmentation of the two
cars and an estimate of the motion of cars and background. Since the
objects of interest are better defined in terms of homogeneous motion
than in terms of homogeneous intensity, the segmentation is more
successful than the one obtained by the analogous gray value model.
Until convergence, the contour evolution took 41 seconds in Matlab
on a 2.4 GHz computer.
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darker parts of the street, whereas the car in the upper
right is split into its brighter and darker parts.

In this example, the cars and the street are mov-
ing according to different motion models. The motion
competition framework exploits this property. Figure 5,
bottom, show the contour evolution generated by min-
imizing the motion segmentation functional (33) and
the corresponding motion estimates superimposed on
the first frame.

The contour evolution generated by motion competi-
tion is fundamentally different from the one generated
by its gray value analogue. The energy minimization
simultaneously generates a fairly accurate segmenta-
tion of the two cars and an estimate of the motion of
cars and background. Minor discrepancies of the final
segmentation may be due to several factors, in partic-
ular the weak gray value structure of the street, which
prevents reliable motion estimation, and the reflections
on the cars which violate the Lambertian assumption.

8.4. Segmentation by Piecewise Affine Motion

The functional (17) allows to segment piecewise affine
motion fields. In particular, this class of motion models
includes rotation and expansion/contraction. Figure 6
shows contour evolutions obtained for a hand in a clut-
tered background rotating (in the camera plane) and
moving toward the camera. The energy minimization
allows to segment the object and estimate its rotational

Figure 6. Piecewise affine motion segmentation. Functional (17)
allows to segment objects based on the model of affine motion. The
above images show contour evolutions obtained for two image pairs
showing a hand rotating (top) and moving toward the camera (bot-
tom). Minor discrepancies of the final segmentation (right) are prob-
ably due to a lack of gray value variation of the table. Both results
were obtained with the same parameter values (ν = 8·10−5, τ = 2).

or divergent motion. The images on the right demon-
strate that the objects of interest can be extracted from
a fairly complex background based exclusively on their
motion.

8.5. An Application: Tracking with Multiple Motion

In the present section, we evaluate the explicit scheme
introduced in Section 6 on the Avengers sequence.6 In
this movie sequence, moving cars are captured by a
moving camera.

Figure 7 shows the segmentation results obtained on
the frames 18 through 34. We fixed an initial contour,
as shown in Fig. 7, top left. For each pair of consec-
utive images in the sequence, we then determined the
spatio-temporal derivative and performed a fixed num-
ber of steps in the minimization of energy (12) with
ν = 2.0, alternating the motion estimation (34) and
the contour evolution (30). Despite the model hypoth-
esis of constant motion per region, the segmentation is
fairly robust to non-translatory motion. Once the car
starts turning the segmentation slowly degrades—see
the last images in Fig. 7.

Minimizing energy (12) simultaneously generates a
segmentation of the image plane and an estimate for
the motion in the separate regions. The motion es-
timated for the first two frames in the sequence is
shown in Fig. 9. Both the car and the background

Figure 7. Motion segmentation for the frames 18–34 from the
Avengers sequence: Contour evolution for the functional (12) with
an explicit contour (using 100 spline control points and ν = 2.0) ini-
tialized as shown in the top left image. The first three images show
the evolution of the contour for the first pair of frames, the follow-
ing images show the segmentation results obtained for consecutive
frames. Both the car and the background are moving. Despite the
model hypothesis of constant motion per region, the segmentation
is fairly robust to non-translatory motion. Yet, the segmentation de-
grades once the car starts moving perpendicular to the viewing plane
(bottom right). The algorithm runtime was approximately 2 seconds
per frame.
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Figure 8. Motion segmentation for the frames 35–45 from the
Avengers sequence. The contour is initialized as shown in the top
left, then the minimization of (12) with ν = 2.0 is iterated for sev-
eral steps on each pair of consecutive frames (the first three images
showing frame 35). Since the computation relies on only two consec-
utive frames, there is no hypothesis of motion continuity. Therefore
the approach can be used for segmenting (temporally) discontinuous
motion and for tracking.

Figure 9. Motion estimate generated by minimizing energy (12)
for the first two frames from Fig. 7. The corresponding segmenta-
tion is shown in Fig. 7, third image. Note that both the car and the
background are moving at different velocities.

are moving, with velocities of different direction and
magnitude.

Figure 8 shows similar results for the frames 35–45
of the Avengers sequence. Interestingly, the co-moving
shadow is attributed to the car in the first few frames,
and attributed to the background in subsequent frames.
Since the street is visible within the shadow area, it is
indeed unclear whether the shadow region should be
associated with the car or with the street. The change
from one hypothesis to the other may be due to subtle
changes in brightness and background contrast.

9. Conclusion

Starting from a Bayesian formulation of motion
estimation, we derived a novel variational framework
for segmenting the image plane into a set of regions of
parametric motion. Our model is based on a conditional
probability for the spatio-temporal image gradient,

given a particular velocity model, and on a geomet-
ric prior on the estimated piecewise parametric motion
field favoring motion boundaries of minimal length.

The functional depends on parametric velocity mod-
els for a set of regions and the boundary separating
them. It can be considered as an extension of the
Mumford-Shah functional from intensity segmentation
to motion segmentation. The only free parameter in the
functional is the fundamental scale parameter intrinsic
to all segmentation schemes.

We presented two alternative implementations of the
motion discontinuity set. The first is an explicit spline-
based representation suited for tracking objects based
on their relative motion. The evolution of the boundary
reduces to an evolution of a small number of spline con-
trol points. Moreover, we proposed an implementation
of the motion segmentation functional in a multiphase
level set framework. The resulting model has the fol-
lowing properties:

• The minimization of a single functional with respect
to its dynamic variables jointly solves the problems
of motion estimation and motion segmentation. It
generates a segmentation of the image plane in terms
of piecewise parametric motion.

• The implicit representation of the motion discontinu-
ity set does not depend on a particular choice of pa-
rameterization. It allows for topological changes of
the boundary such as splitting or merging. The multi-
phase formulation permits a segmentation of the im-
age plane into several (possibly multiply-connected)
motion phases.

• Minimizing the proposed functional is straight-
forward. It results in an eigenvalue problem for the
motion vectors, and an evolution equation of the level
set functions embedding the motion boundary.

• Due to the region-based homogeneity criterion rather
than an edge-based formulation, the motion bound-
aries tend to converge over fairly large spatial dis-
tances.

• Segmentation and motion estimates are generated
for two consecutive frames of an image sequence.
Therefore the approach is in principle amenable to
real-time implementations and tracking.

• Once the motion of objects deviates from the model
hypothesis, then the segmentation gradually de-
grades.

We demonstrated these properties by experimental
results, both on simulated ground truth data and on
real-world sequence data.
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10. Limitations and Ongoing Research

The proposed motion segmentation framework exhibits
several limitations. We want to end our presentation by
pointing out the major limitations and hint at possi-
ble solutions to address these. Some of these can be
integrated into our framework and this is the focus of
ongoing research. In particular:

• The model is based on the assumption of small mo-
tion. This means that motion should not exceed four
pixels between frames. To address the segmentation
of larger motion, one can revert to multi-scale and
multi-resolution implementations of the proposed
functional. This is a common practice in the mo-
tion community (cf. Odobez and Bouthemy, 1995;
Memin and Perez, 2002; Brox et al., 2004).

• Our model is based on the assumption that objects
do not change their brightness throughout time. This
assumption may be violated due to lighting changes,
speckle noise or non-Lambertian reflectance such as
the specularities on a car. While we believe that our
region-based formulation can handle some deviation
from this assumption, it is possible to extend our
framework by incorporating constraints on gradient
constancy (cf. Brox et al., 2004).

• While the multi-phase level set scheme is in principle
able to handle an arbitrary number of motion phases,
it has several drawbacks. Firstly, it is a local scheme,
therefore it is not well-suited to deal with new ob-
jects entering the scene in locations very far from
the evolving boundary. Secondly, the computational
complexity does not scale well with the number of
regions—the number of necessary level set functions
scales with the logarithm of the number of possible
motion models. Certain phases may disappear dur-
ing the evolution, yet further studies will investigate
how well the proposed framework can deal with a
larger number of motion phases. In particular, re-
cent developments in the level set community may
present alternative more efficient solutions (cf. Lie
et al., 2003).

• Our framework allows the segmentation of images
in terms of piecewise parametric motion fields. In
numerous practical applications—such as the seg-
mentation of a moving heart—standard parametric
motion models (such as affine motion) are not ap-
plicable. A possible extension would be to learn
parametric models of the specific motion from
presegmented data and to impose these problem-

specific parametric models in the motion segmen-
tation framework.
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Notes

1. Since we are only concerned with two consecutive frames from a
sequence, we will drop the time coordinate in the notation of the
velocity field.

2. The optic flow constraint is violated if the brightness constancy
assumption does not hold or if the inter-frame motion is larger
than a few pixels. We will not treat these cases here. The first
case can be addressed by additional assumptions such as gradient
constancy (cf. Brox et al., 2004), the second case can be han-
dled by multi-scale processing (cf. Odobez and Bouthemy, 1995;
Brox et al., 2004). Our segmentation framework can be extended
accordingly.

3. In particular, the functionals (12) and (17) are invariant to global
scale transformations of the intensity: f → γ f .

4. During the optimization certain phases may disappear such that
the final segmentation may consist of less than n phases.

5. http://i21www.ira.uka.de/image sequences/
6. We thank P. Bouthemy and his group for providing us with the

image data from the Avengers sequence.
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