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Abstract. We propose a variational framework for the integration of multiple competing shape priors into level
set based segmentation schemes. By optimizing an appropriate cost functional with respect to both a level set
function and a (vector-valued) labeling function, we jointly generate a segmentation (by the level set function) and
a recognition-driven partition of the image domain (by the labeling function) which indicates where to enforce
certain shape priors. Our framework fundamentally extends previous work on shape priors in level set segmentation
by directly addressing the central question of where to apply which prior. It allows for the seamless integration
of numerous shape priors such that—while segmenting both multiple known and unknown objects—the level set
process may selectively use specific shape knowledge for simultaneously enhancing segmentation and recognizing
shape.

Keywords: image segmentation, shape priors, variational methods, level set methods, dynamic labeling,
recognition modeling

1. Introduction

Image segmentation and object recognition in vision
are driven both by low-level cues such as intensities,
color or texture properties, and by prior knowledge
about objects in our environment. Modeling the inter-
action between data-driven and model-based processes
has become the focus of current research on image seg-
mentation in the field of computer vision. In this work,
we consider prior knowledge given by the shapes asso-

ciated with a set of objects and focus on the problem of
how to exploit such knowledge for images containing
multiple objects, some of which may be familiar, while
others may be unfamiliar.

Following their introduction as a means of front
propagation (Osher and Sethian 1988),1 level set
based contour representations have become a popu-
lar framework for image segmentation (Caselles et
al., 1993; Malladi et al., 1995), They permit to el-
egantly model topological changes of the implicitly
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represented boundary, which makes them well suited
for segmenting images containing multiple objects.
Level set segmentation schemes can be formulated
to exploit various low level image properties such as
edge information (Malladi et al., 1995; Caselles et al.,
1995; Kichenassamy et al., 1995), intensity homogene-
ity (Chan and Vese, 2001; Tsai et al., 2001), texture
(Paragios and Deriche, 2002; Sagiv et al., 2001; Heiler
and Schnörr, 2005; Brox and Weickert, 2004), or mo-
tion information (Cremers and Soatto 2005).

In recent years, there has been much effort in try-
ing to integrate prior shape knowledge into level set
based segmentation. This was shown to make the seg-
mentation process robust to misleading low-level infor-
mation caused by noise, background clutter or partial
occlusion of an object of interest (cf. Leventon et al.,
2000; Tsai et al., 2001; Chen et al., 2002; Rousson and
Paragios, 2002).

All of these approaches were designed to segment a
single known object in a given image. Yet, in general
a given image will contain several familiar or unfamil-
iar objects. A key problem in this context is therefore
to ensure that prior knowledge is selectively applied
at image locations only where image data indicate a
familiar object. Conversely, lack of any evidence for
the presence of some familiar object should result in a
purely data-driven segmentation process.

Clearly, any use of shape priors consistent with the
philosophy of the level set method should retain the
capacity of the resulting segmentation scheme to deal
with multiple independent objects, no matter whether
they are familiar or not. One may instead suggest
to iteratively apply the segmentation scheme with a
different prior at each time and thereby successively
segment the respective objects. We believe, however,
that such a sequential processing mode will not scale
up to large databases of objects and that—even more
importantly—the parallel use of competing priors is
essential for modeling the chicken-egg relationship be-
tween segmentation and recognition.

In this paper, we propose a variational framework
for image segmentation which allows the integration
of multiple competing shape priors into a segmenta-
tion process which can simultaneously handle multi-
ple known and unknown objects in a given image. To
this end, we propose to introduce a labeling or deci-
sion function in order to restrict the effect of given
priors to specific domains of the image plane. Learnt
shape information is thereby applied in regions where
the image data indicates the presence of a familiar ob-

ject. For a recent variant of the labeling approach, we
refer to Chan and Zhu (2003). During optimization,
this labeling function evolves so as to select image
regions where given shape models are applied. The re-
sulting process segments scenes containing corrupted
versions of known objects in a way which does not
affect the correct segmentation of other unfamiliar ob-
jects. A smoothness constraint on the labeling function
induces the process to distinguish between occlusions
(which are close to the familiar object) and separate
independent2 objects (assumed to be sufficiently far
from the object of interest).

In this work, the term shape prior refers to fixed
templates with variable 2D pose and location. How-
ever, the proposed framework of selective shape priors
could be extended to statistical shape models which
would additionally allow certain deformation modes
of each template. For promising advances regarding
level set based statistical shape representations, we re-
fer to Charpiat et al. (2005).

This paper comprises and extends work which
was presented on two conferences (Cremers et al.,
2003, 2004). The outline of the paper is as follows:
In Section 2, we briefly review the level set for-
mulation of the piecewise constant Mumford-Shah
functional proposed in Chan and Vese (2001). In
Section 3, we augment this variational framework by
a labeling function which selectively imposes a single
shape prior in certain image regions. In Section 4, we
enhance this prior by explicit transformation parame-
ters for pose and location and demonstrate the effect of
simultaneous optimization of pose and location in an
image for which the exact transformation parameters
of the familiar object are unknown. The resulting seg-
mentation process not only selects appropriate regions
where to apply the prior, it also selects appropriate
pose and translation parameters associated with a given
prior. In Section 5, we extend the labeling approach
from the case of one known object and background to
that of two independent known objects. In Section 6,
we introduce the concept of multiphase dynamic label-
ing which allows the generalization of the labeling ap-
proach to an arbitrary number of known and unknown
objects by means of a vector-valued labeling function.
In Section 7, we derive the gradient descent equations
which minimize the proposed functional. In subsequent
sections we present numerical results to illuminate var-
ious properties of our approach: We demonstrate that
the segmentation scheme is capable of reconstructing
corrupted versions of multiple known objects displayed
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in a scene containing other unknown objects. The seg-
mentation of multiple partially occluded objects mov-
ing independently in image sequences exemplifies how
the evolution of the labeling or decision functions is
driven by the input data. This evolution can be inter-
preted in the sense that different shape models compete
for areas of influence. In the context of mutual occlu-
sion, we show that the segmentation process is forced
to decide for one or the other shape model. The exper-
imental results demonstrate that our variational frame-
work couples the input intensity data, the shape models
and the labeling or decision functions in a recognition-
driven segmentation process. We end with a discussion
of limitations and open problems.

2. Data-Driven Level Set Segmentation

Level set representations of moving interfaces (Osher
and Sethian, 1988; Dervieux and Thomasset, 1979;
Cremers et al., 2004b; Rousson and Cremers, 2005),
have become a popular framework for image segmen-
tation. A contour C is represented as the zero level
set of a function φ : � → R on the image domain
� ⊂ R

2:
C = {x ∈ � | φ(x) = 0}. (1)

During the segmentation process, this contour is prop-
agated implicitly by evolving the embedding function
φ. This removes the problem of contour self intersec-
tions and the need for control point regridding mech-
anisms. Moreover, the implicitly represented contour
can undergo topological changes such as splitting and
merging during the evolution of the embedding func-
tion. This makes the level set formalism well suited for
the segmentation of multiple objects. In this work, we
revert to a region-based level set scheme introduced
by Chan and Vese (2001). However, other data-driven
level set schemes could be employed.

Chan and Vese (2001) introduce a level set formu-
lation of the piecewise constant Mumford and Shah
(1989). In particular, they propose to generate a seg-
mentation of an input image f (x) with two gray value
constants µ1 and µ2 by minimizing the functional

ECV ({µi }, φ) =
∫

�

( f − µ1)2 Hφ + ( f − µ2)2

×(
1 − Hφ

)
dx + ν

∫

�

|∇Hφ|, (2)

with respect to the scalar variables µ1 and µ2 and the

embedding level set function φ. Here H denotes the
Heaviside function

Hφ ≡ H (φ(x)) =
{

1, φ(x) ≥ 0

0, else
. (3)

The last term in (2) measures the length of the zero-
crossing of φ.

The Euler-Lagrange equation for this functional is
implemented by gradient descent:

∂φ

∂t
=δ(φ)

[
ν div

( ∇φ

|∇φ|
)

−( f −µ1)2+( f −µ2)2

]
, (4)

where µ1 and µ2 are updated in alternation with the
level set evolution to take on the mean gray value of
the input image f in the regions defined by φ > 0 and
φ < 0, respectively:

µ1 =
∫

f (x)Hφdx∫
Hφdx

, µ2 =
∫

f (x)(1 − Hφ) dx∫
(1 − Hφ) dx

. (5)

Figure 1 shows a representative contour evolution ob-
tained for an image containing three figures, the middle
one being partially corrupted.

3. Selective Shape Priors by Dynamic Labeling

The evolution in Fig. 1 demonstrates the well-known
fact that the level set based segmentation process can
cope with multiple objects in a given scene. However,
if the low-level segmentation criterion is violated due
to unfavorable lighting conditions, background clutter
or partial occlusion of the objects of interest, then the
purely image-based segmentation scheme will fail to
converge to the desired segmentation (see Fig. 8, top
row).

To cope with such degraded low-level informa-
tion, it was proposed to introduce prior shape knowl-
edge into the level set scheme (Leventon et al., 2000;
Tsai et al., 2001; Rousson and Paragios, 2002). The
basic idea is to extend the image-based cost func-
tional by a shape energy which favors certain contour
formations:

Etotal(φ) = ECV(µ1, µ2, φ)

+ α Eshape(φ) (α > 0). (6)
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Figure 1. Purely intensity-based segmentation. Contour evolution generated by minimizing the Chan and Vese (2001) model (2). The central
figure is partially corrupted, i.e. one leg and two arms are missing.

Figure 2. Global shape prior. Contour evolution generated by minimizing the total energy (6) with a global shape prior of the form (7) encoding
the figure in the center. Due to the global constraint on the embedding function, the familiar object is reconstructed while all unfamiliar structures
are suppressed in the final segmentation. The resulting segmentation scheme lost its capacity to deal with multiple independent objects.

In general, the proposed shape constraints affect the
embedding surface φ globally (i.e. on the entire domain
�). In the simplest case, such a prior has the form:

Eshape(φ) =
∫

�

(φ(x) − φ0(x))2 dx, (7)

where φ0 is the level set function embedding a given
training shape (or the mean of a set of training shapes).
Uniqueness of the embedding function associated with
a given shape is guaranteed by imposing φ0 to be a
signed distance function (cf. Leventon et al., 2000).
For consistency, we also project the segmenting level
set function φ to the space of distance functions during
the optimization—see Sussman et al. (1994) for details
on redistancing.

Figure 2 shows several steps in the contour evolu-
tion with such a prior, where φ0 is the level set function
associated with the middle figure. The shape prior per-
mits to reconstruct the object of interest, yet in the
process, all unfamiliar objects are suppressed from the
segmentation. The segmentation process with shape
prior obviously lost its capacity to handle multiple (in-
dependent) objects.

In order to retain this favorable property of the level
set method, we proposed in Cremers et al. (2003) to
introduce a labeling or decision function L : � →
R, which indicates the regions of the image where a

given prior is to be enforced. During optimization, the
labeling evolves dynamically in order to select these
regions in a recognition-driven way. The corresponding
shape energy is given by:

Eshape(φ, L)

=
∫

(φ − φ0)2(L + 1)2dx

+
∫

λ2(L − 1)2dx + γ

∫
|∇L|dx, (8)

with two parameters λ, γ > 0. The labeling L enforces
the shape prior in those areas of the image where the
level set function is similar to the prior (associated
with labeling L = 1). In particular, for fixed φ, mini-
mizing the first two terms in (8) induces the following
qualitative behavior of the labeling:

L → +1, if |φ − φ0| < λ

L → −1, if |φ − φ0| > λ

In addition, the last term in Eq. (8) imposes a TV reg-
ularization on the labeling function stating that neigh-
boring pixels are a priori likely to be associated with
the same object (or the background). As is well-known
from literature Rudin et al. (1992), TV regularization
favors piecewise constant solutions.3
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Figure 3. Selective shape prior by dynamic labeling. Contour evolution generated by minimizing the total energy (6) with a selective shape
prior of the form (8) encoding the figure in the center. Due to the simultaneous optimization of a labeling function L(x) (middle and bottom
row), the shape prior is restricted to act only in selected areas. The familiar shape is reconstructed, while the correct segmentation of separate
(unfamiliar) objects remains unaffected. The resulting segmentation scheme thereby retains its capacity to deal with multiple independent
objects. In this and all subsequent examples, labeling functions are initialized by L≡0.

Figure 3, top row, shows the contour evolution gen-
erated with the prior (8), where φ0 encodes the mid-
dle figure as before. Again the shape prior permits
to reconstruct the corrupted figure. In contrast to the
global prior (7) in Fig. 2, however, the process dynam-
ically selects the region where to impose the prior.
Consequently, the correct segmentation of the two
unknown objects is unaffected by the prior. This se-
lection process is shown in the corresponding evolu-
tion of the labeling function in Fig. 3, middle row.
Its zero crossing (shown in the bottom row) sepa-
rates the regions associated with the familiar object
(where the shape model is enforced) from those asso-
ciated with the background (where no shape prior is
applied).

4. A Similarity-Invariant Formulation

In the above formalism of dynamic labeling, the pose
and location of the object of interest is assumed to be
known. In a realistic segmentation problem, one gen-

erally does not know pose and location of objects. If an
object of interest is no longer in the same location as the
prior φ0, the labeling approach will fail to generate the
desired segmentation. This is demonstrated in Fig. 4.
While the labeling still separates areas of known ob-
jects from areas of unknown objects, the known shape
is not reconstructed correctly, since the pose of the
prior and that of the object in the image differ.

A possible solution is to introduce a set of pose
parameters associated with a given prior φ0 (cf.
Rousson and Paragios, 2002; Chen et al., 2002;
Cremers and Soatto, 2003). The corresponding shape
energy

Eshape(φ, L , s, θ, h)

=
∫ (

φ(x) − 1

s
φ0(s Rθ x + h)

)2

(L + 1)2 dx

+
∫

λ2 (L − 1)2 dx + γ

∫
|∇L| dx (9)
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Figure 4. Missing similarity invariance. Evolution of contour (yellow) and labeling (light blue) with selective shape prior (8) and a displaced
template φ0. Without simultaneous optimization of transformation parameters, the familiar shape is forced to appear in the displaced position.

Figure 5. Similarity invariance. By simultaneously optimizing a set of transformation parameters in the shape energy (9), one jointly solves
the problems of estimating the area where to impose a prior and pose and location of the respective prior. Note that the estimates of the
transformation parameters are gradually improved during the energy minimization.

is simultaneously optimized with respect to the
segmenting level set function φ, the labeling function
L and transformation parameters, which account for
translation h, rotation by an angle θ and scaling s
of the template. The division by s guarantees that
the resulting shape remains a distance function.
Alternatively, one can analytically factor out certain
transformation groups by intrinsic alignment (Cremers
et al., 2004), we will not pursue this alternative here.

Figure 5 shows the resulting segmentation: Again
the labeling selects the regions where to apply the given
prior, but now the algorithm simultaneously estimates
pose and location of the object.

For the sake of simplifying the exposition, we will
assume for now, that the initial pose and location of
familiar objects is known. Moreover, we will drop the
transformation parameters associated with each shape
template from the equations, so as to simplify the
notation.

5. Extension to Two Known Objects

A serious limitation of the labeling approach in (8)
is that it only allows for a single known object (and
multiple unknown objects). What if there are several
familiar objects in the scene? How can one integrate
prior knowledge about multiple shapes such as those
given by a database of known objects? Before consid-

ering the general case, let us first study the case of two
known objects.

The following modification of (8) allows for two
different familiar objects associated with embedding
functions φ1 and φ2:

Eshape(φ, L) = 1

σ 2
1

∫
(φ − φ1)2 (L + 1)2dx

+ 1

σ 2
2

∫
(φ − φ2)2 (L − 1)2dx

+ γ

∫
|∇L| dx . (10)

The terms associated with the two objects were nor-
malized with respect to the variance of the respective
template: σ 2

i = ∫
φ2

i dx − (
∫

φi dx)2. The resulting
shape prior has therefore merely one (instead of two)
free parameters. The evolution of the labeling function
is now driven by two competing shape priors: each
image location will be ascribed to one or the other
prior.

Figure 6 shows a comparison: The upper row indi-
cates the contour evolution generated with the shape
energy (8), where φ0 encodes the figure on the left. The
lower row shows the respective evolution obtained with
the shape energy (10), with φ1 and φ2 encoding the left
and right figures, respectively. Whereas the object on
the right (occluded by a pen) is treated as unknown
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Figure 6. Extension to two priors. Evolutions of contour (yellow) and labeling (blue) generated by minimizing energy (6) with a selective
prior of the form (8) encoding the left figure (top) and with a selective prior of the form (10) encoding both figures (bottom). In both cases,
the left figure is correctly reconstructed despite prominent occlusions by the scissors. However, while the structure on the right is treated as
unfamiliar and thereby segmented based on intensities only (top row), the extension to two priors permits to simultaneously reconstruct both
known objects (bottom row).

in the original formulation (upper row), both figures
can be reconstructed by simultaneously imposing two
competing priors in different domains (lower row).

6. The General Case: Multiphase
Dynamic Labeling

The above example showed that the dynamic labeling
approach can be transformed to allow for two shape
priors rather than a single shape prior and possible
background.

Let us now consider the general case of a larger
number of known objects and possibly some further
independent unknown objects (which should therefore
be segmented based on their intensity only). To this
end, we introduce a vector-valued labeling function

LLL : � → R
n, LLL(x) = (L1(x), . . . , Ln(x)). (11)

We employ the m = 2n vertices of the polytope
[−1,+1]n to encode m different regions, L j ∈
{+1,−1}, and denote by χi , i = 1, . . . , m the in-
dicator function for each of these regions. See Vese
and Chan (2002) for a related concept in the con-
text of multi-region segmentation. For example, for
n = 2, four regions are modeled by the indicator

functions:

χ1(LLL) = 1

16
(L1 − 1)2 (L2 − 1)2,

χ2(LLL) = 1

16
(L1 + 1)2 (L2 − 1)2,

χ3(LLL) = 1

16
(L1 − 1)2 (L2 + 1)2,

χ4(LLL) = 1

16
(L1 + 1)2 (L2 + 1)2.

In the general case of an n-dimensional labeling
function, each indicator function will be of the
form

χi (LLL) ≡ χl1...ln (LLL)

= 1

4n

n∏
j=1

(L j + l j )
2, with l j ∈ {+1,−1}. (12)

With this notation, the extension of the dynamic
labeling approach to up to m = 2n regions can be cast
into a cost functional of the form:

Etotal(φ, LLL, µ1, µ2)

= ECV(φ,µ1, µ2) + αEshape(φ, LLL),
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Eshape =
m−1∑
i=1

∫
(φ − φi )2

σ 2
i

χi (LLL) dx

+
∫

λ2χm(LLL) dx + γ

m∑
i=1

∫
|∇Li |dx . (13)

Here, each φi corresponds to a particular known
shape with its variance given by φi .

As mentioned before, we have—for better
readability—omitted the transformation parameters as-
sociated with each template. These can be incorporated
by the replacements:

φi −→ 1

si
φi (si Rθi x + hi ) and Eshape(φ, LLL)

−→ Eshape(φ, LLL, ppp),

where ppp = (p1, . . . , pm) denotes the vector of trans-
formation parameters pi = (si , θi , hi ) associated with
each known shape.

7. Energy Minimization

In the previous sections, we have introduced varia-
tional formulations of increasing complexity to tackle
the problem of multi-object segmentation with shape
priors. The corresponding segmentation processes are
generated by minimizing these functionals. In this sec-
tion, we will detail the minimization scheme in order
to illuminate how the different components of the pro-
posed cost functionals affect the segmentation process.
Minimization of the functional (13) is performed by
alternating the update of the mean intensities µ1 and
µ2 according to (5) with a gradient descent evolution
for the level set function φ, the labeling functions Lj

and the associated pose parameters pj. These evolution
equations will be detailed in the following:

7.1. Evolution of the Segmentation

For fixed labeling, the level set function φ evolves
according to:

∂φ

∂t
= −∂ Etotal

∂φ
= −∂ ECV

∂φ
− 2 α

m−1∑
i=1

φ − φi

σ 2
i

χi (LLL).

(14)

Apart from the image-driven first component given by
the Chan-Vese evolution in Eq. (4), we additionally
have a relaxation toward the template φi in all image
locations where χ i > 0.

7.2. Evolution of the Decision Functions

For fixed level set function φ, minimization by gradi-
ent descent with respect to the labeling functions Lj

corresponds to an evolution of the form:

1

α

∂L j

∂t
= −

m−1∑
i=1

(φ − φi )2

σ 2
i

∂χi

∂L j

− λ2 ∂χm

∂L j
− γ div

( ∇L j

|∇L j |
)

, (15)

where the derivatives of the indicator functions χ i are
easily obtained from (12). The first two terms in (15)
drive the labeling L to indicate the template φi which
is most similar to the given function φ (or alternatively
the background). The last term imposes spatial regu-
larity of the labeling Lj. This has two effects: Firstly, it
induces the labeling to decide for one of the possible
templates (or the background), i.e. mixing of templates
with label values between +1 and −1 are suppressed.
Secondly, it enforces the decision regions (regions of
constant label) to be “compact”, because label flipping
is energetically unfavorable. This constraint reflects the
assumption that neighboring image locations are likely
to belong to the same object.

Figure 7 shows a contour evolution obtained with
the multiphase dynamic labeling model (13) and n = 2
labeling functions. The image contains three corrupted
objects which are assumed to be familiar and one un-
familiar object (in the top left corner). The top row
shows the evolution of the segmenting contour (yel-
low) superimposed on the input image. The segmen-
tation process with a vector-valued labeling function
selects regions corresponding to the different objects
in an unsupervised manner and simultaneously applies
three competing shape priors which permit to recon-
struct the familiar objects. Corresponding 3D plots of
the two labeling functions in the bottom rows of Fig. 7
show which areas of the image have been associated
with which label configuration. For example, the ob-
ject in the center has been identified by the labeling
L = (+1, −1).
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Figure 7. Coping with several objects by multiphase dynamic labeling. Contour evolution generated by minimizing energy (6) with a
multiphase selective shape prior of the form (13) encoding the three figures on the bottom. The appearance of the known objects is corrupted.
Due to the simultaneous optimization of a vector-valued labeling function, several regions associated with each shape prior are selected, in which
the given prior is enforced. All familiar shapes are restored while the correct segmentation of separate (unfamiliar) objects remains unaffected.
The images on the bottom show the final labeling and—for comparison—the segmentation without prior (right).

7.3. Pose Optimization

For fixed labeling L and level set function φ, local
optimization of the pose parameters pi can be imple-
mented by gradient descent. With gi ≡ si Rθi x +hi , the
evolution equations for translation hi, rotation θ i and
scaling si associated with each shape model φi , are
given by:

∂hi

∂t
=−∂ Etotal

∂hi
=

∫
(φ−φi )

σ 2
i si

χi (LLL)∇φi (gi ) dx, (16)

∂θi

∂t
= −∂ Etotal

∂θi

=
∫

(φ−φi )

σ 2
i

χi (LLL)∇φi (gi )
	 ∂ Rθi

∂θi
xdx, (17)

∂si

∂t
= −∂ Etotal

∂si

=
∫

(φ−φi )

σ 2
i si

χi (LLL)

[
∇φi (gi )

	 Rθi x − 1

si
φi (gi )

]
dx .

(18)

These equations are analogous to the ones derived for
a single shape prior (cf. Rousson and Paragios, 2002;
Cremers and Soatto, 2003)), except that the indicator
function χ i(L) constrains the integrals to the domain of
interest associated with shape φi, i.e. to the area where
χ i>0.

8. Competition of Shape Models

In the presence of multiple shape models, the evolution
of the decision boundaries is driven by a competition
of the respective shape models. By construction, the
energy minimization leads to a partition of the image
plane into areas of influence associated with each shape
model. Yet what happens if two known objects occlude
one another in the same image location?

Figure 8, top row, shows the purely intensity-based
segmentation of an image sequence showing two ob-
jects one of which is displaced until it is occluded by
the other one. We simply iterated the Chan-Vese model
until convergence on each frame of the sequence using
the segmentation from the previous frame as initializa-
tion. These images demonstrate that the objects of in-
terest are clearly not well-defined in terms of intensity
homogeneity: They are cut up into pieces according to
the brightness constraint.

Figure 8, bottom row, shows segmentation results
for the same sequence obtained by adding shape prior
of the form (10) to the Chan-Vese functional. Com-
parison with the purely intensity-based segmentation
demonstrates three properties of our approach: Firstly,
the integration of two shape priors allows the simul-
taneous reconstruction of the objects of interest. In
particular, the segmentation of background clutter is
suppressed by the shape prior. Secondly, the joint opti-
mization of pose parameters allows to keep track of the
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Figure 8. Competing shape priors in the context of mutual occlusion. Top row: The segmentation of the image sequence with functional
(2) shows that the objects of interest cannot be segmented based on the criterion of homogeneous intensity alone. Bottom row: Integration of
a shape energy of the form (10) allows to simultaneously reconstruct the two objects of interest. Simultaneous pose optimization keeps track
of the pose of each object. The labeling or decision function is driven by changes in the intensity data. Upon mutual occlusion, the process is
forced to decide for one of the two competing shape models (bottom right).

correct pose of each object. Thirdly, the competition
process is such that upon occlusion of one object by the
other, one shape model suppresses the other. Due to the
formulation each location can only be associated with
one shape model. In cases of occlusion, the algorithm
is therefore forced to decide for the shape model which
is favored by the image data.

9. Data-Driven Decision Process

In our last experiment, we will demonstrate in which
sense our variational approach couples the three lev-
els of input intensity data, shape models and deci-
sion functions in a segmentation process. Again, we

start with a purely intensity-based segmentation of a
sequence containing four objects and artificially in-
troduced occlusion. Figure 9 shows segmentation re-
sults obtained with functional (2), using the segmen-
tation of the previous frame as initialization for each
of the subsequent frames. The process separates bright
and dark areas thereby assigning brighter parts of ob-
jects and background (such as reflections on the ta-
ble and the moving hand in the later part of the se-
quence) to one phase and darker areas (such as the
legs of the chair and the occluded parts of the four
objects to the other phase. Again, the intensity infor-
mation is clearly insufficient to define the objects of
interest.

Figure 9. Intensity-based segmentation of partially occluded moving objects in an image sequence generated by minimizing the functional
(2). The segmentation process merely separates bright and dark areas, thereby associating the light reflection on the table with the objects and
the legs of the chair and occluded parts with the background. Obviously the brightness criterion does not permit a meaningful reconstruction
(lower row) of the objects of interest.
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Figure 10. Segmentation of the sequence in Fig. 9 with multiphase dynamic labeling allowing for the integration of four shape priors. The two
labeling functions (lower rows) identify regions of influence associated with each shape. Changes in the input data (the displacement of the cup)
will affect the evolution of these decision functions which in turn will affect the way shape information is integrated into the segmentation scheme.

Figure 10 shows the same segmentation process with
a multi-phase dynamic labeling allowing for four dif-
ferent shape models. The initial pose of each object is
assumed to be known. Energy minimization on the first
frame generates a partition of the image plane (by the
labeling functions) into four areas of influence associ-
ated with each template and a reconstruction of each
silhouette according to the shape models. The segmen-
tation of the subsequent frames of the sequence clearly
shows that this partition is data-driven: Changes in the
input data due to the motion of an object in the sequence
affect the decision functions and thereby modify the ar-
eas of influence. The decision functions, in turn, will
affect where a given shape information is imposed. In
this sense, our approach allows to work with shape
priors without forcing them onto the data: The data
information itself drives the decision process.

10. Dynamic Labeling as a Problem
of Bayesian Inference

In the previous sections, we introduced and evaluated
the concept of dynamic labeling. By gradually aug-
menting the complexity of the segmentation task, we

derived a variational framework which allows the in-
tegration of multiple competing shape priors into an
image segmentation process. In this section, we will
step back and try to illuminate the proposed frame-
work from a statistical point of view.

The task of image segmentation can be seen as a
problem of Bayesian inference: Given the observed
image f, we want to infer the most probable partition
of the image domain. Obviously this partition should
depend on the data. It should also depend on the prior
knowledge about expected shape(s). In this work, we
restrict our analysis to bi-partitions, where each pixel
can be assigned to one of two intensity models. A
generalization to multiple models is conceivable. We
assume that the gray values in each region are dis-
tributed normally with means µ1 and µ2 and the same
variance for both regions.4 We use a level set func-
tion φ to encode the partition. The best partition and
intensity models can be estimated by maximizing the
a-posteriori probability (MAP) given by:

P(φ ; µ1, µ2 | f ) = P( f | φ ; µ1, µ2) P(φ)

P( f )
(19)
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where P(φ) represents our knowledge and/or expec-
tation about the shape of the object(s) in the image.
We assumed a uniform prior for the model intensities
µi. According to the above assumption of Gaussian
intensity distributions, we have:

P( f (x) | φ ; µ1, µ2) ∝ e−( f (x)−µ(x))2
, (20)

where

µ(x) =
{

µ1, if φ(x) ≥ 0

µ2, if φ(x) < 0
(21)

Assuming that µ1 and µ2 are given and that the pixel
intensities are independent and identically distributed
(i.i.d.) samples, we get

P( f | φ ; µ1, µ2) ∝
∏

x

e−( f −µ)2

= e− ∫
( f −µ1)2 Hφ+( f −µ2)2(1−Hφ)) dx

Next we need to specify our prior on the segmenta-
tion. The prior is composed of two types: syntactic
and semantic. The syntactic part penalizes the length
of the separating curve and ensures its “compactness”
and smoothness. The semantic part penalizes accord-
ing to the distance of the segmenting shape from a
given known shape. In the most simple approach we
apply an isotropic Gaussian distribution:

P(φ) ∝ e−ν
∫

(φ−φ0)2
(22)

More elaborate approaches include the active shape
model (Cootes et al., 1992; Leventon et al., 2000; Tsai
et al. 2001; Rousson et al., 2004), in which the modeled
shape is constrained to a linear subspace:

φ = φ0 +
∑

j

λ j U j . (23)

Here φ0 is the sample mean and Uj are the eigenvectors
of the sample covariance matrix associated with a set
of training shapes. For an extensive discussion of the
concepts of sample mean and sample covariance for
implicit boundary representations, we refer to Charpiat
et al. (2005).

For the purpose of clarity we will constrain our anal-
ysis to the isotropic Gaussian (i.e. λj = 0) and use one
example only as φ0. Extensions to the more general

statistical distributions are conceivable. Such statisti-
cal shape models include low-dimensional linear sub-
spaces such as the active shape models (Cootes et al.,
1992; Leventon et al., 2000; Tsai et al., 2001; Rousson
et al., 2004), the (regularized) Gaussian distribution
Cremers et al. (2002), mixtures of Gaussians Cootes
and Taylor (1999) Gaussian distributions in feature
space Cremers et al. (2003) or distributions inferred
by non-parametric density estimation Cremers et al.
(2004b).

This can be generalized for the case of dynamic
labeling as follows: Assume for simplicity that there
is one familiar object and few unfamiliar objects in
the image. To correctly segment the image we need to
partition into regions of familiar and unfamiliar objects.
To this end, we introduce an indicator function L that
separates familiar and not familiar regions. The joint
probability of the segmentation and the labeling given
the image f is

P(φ, L ; µ1, µ2 | f )

∝ P( f | φ, L ; µ1, µ2)P(φ, L ; µ1, µ2)

= P( f | φ ; µ1, µ2)P(φ | L)P(L) (24)

where P( f | φ ; µ1, µ2) is given above and

P(φ | L) ∝ e− ∫
(φ−φ0)2(L+1)2

(25)

The prior P(L) is similar in structure to P(φ):

P(L) = Psyntax(L)Psemantics(L)

∝ e−γ
∫ |∇L| e− ∫

λ2(L−1)2
, (26)

where the semantic prior states that apriori classifica-
tion as background (L = +1) is more likely and that
spatially smooth labelings are prefered. Maximization
of the conditional probability (24) is indeed equivalent
to minimizing functional (6) with shape energy (8).

11. Limitations and Ongoing Research

In the previous sections, we introduced a variational
framework which allows to perform segmentation with
multiple shape priors. During energy minimization, a
vector-valued labeling function identifies areas of in-
fluence and pose parameters associated with each shape
model. This decision process is driven by a competi-
tion of the different shape priors for areas of influence
indicated by the image data. Yet there are several open
issues which we are currently investigating:



Multiphase Dynamic Labeling Model for Variational Recognition-driven Image Segmentation 79

– Each individual prior consists of a fixed silhouette
with a set of pose parameters allowing for transla-
tion, rotation and scaling. Current effort is focused
on extensions of the dynamic labeling approach to
also include statistical shape models. For the seg-
mentation of a single object in the level set frame-
work, linear (Leventon et al., 2000; Tsai et al., 2001;
Rousson and Paragios, 2002) and nonlinear Cremers
et al., 2004) statistical shape models have been pro-
posed.

– The pose of each object is estimated by local opti-
mization of associated pose parameters. In practice,
this implies that one needs to either know the ex-
act initial pose of each object (cf. Figs. 8 and 10)
or have a rough estimate of it (cf. Fig. 5). If this
is not the case then the present approach will fail
to reconstruct a given object. Current effort aims at
overcoming this limitation.

– We are investigating generalization of the pose in-
variance from similarity to perspective transforma-
tions as proposed in Riklin-Raviv et al. (2004).

– Our formulation is designed to associate each image
location with exactly one shape model (or the back-
ground). In the case of mutual occlusion of different
known objects—as the one shown in Fig. 8—the al-
gorithm therefore decides for one or the other shape
model. In certain applications this behavior may not
be desirable. Instead one may want to explicitly
model occlusions and allow for the simultaneous
presence of multiple objects in the same location.

– While the integration of multiple shape priors is
modeled as a competition process between differ-
ent shape models, modeling unknown background
objects requires the selection of an additional pa-
rameter λ in the shape energy (13) to balance the
competition between background region and shape
model regions. In practice, most segmentation tasks
can be solved with the same value for λ. Yet changes
in λ will certainly affect the outcome of the segmen-
tation process, increasing or decreasing the relative
size of the identified background region. We are cur-
rently investigating means to determine meaningful
values for λ in an unsupervised manner.

12. Conclusion

We introduced the framework of multiphase dynamic
labeling, which allows to integrate multiple competing
shape priors into level set based segmentation schemes.
The proposed cost functional is simultaneously opti-

mized with respect to a level set function defining the
segmentation, a vector-valued labeling function indi-
cating regions where particular shape priors should
be enforced, and a set of pose parameters associated
with each prior. Each shape prior is given by a fixed
template and respective pose parameters, yet an ex-
tension to statistical shape priors (which additionally
allow deformation modes associated with each model)
is conceivable.

We argued that the proposed mechanism fundamen-
tally generalizes previous approaches to shape priors in
level set segmentation. Firstly, it is consistent with the
philosophy of level sets because it retains the capacity
of the resulting segmentation scheme to cope with mul-
tiple independent objects in a given image. Secondly, it
addresses the central question of where to apply which
shape prior. We showed that the coupled processes of
segmentation and recognition-driven selection of areas
of influence associated with each object can be derived
in the framework of Bayesian inference.

The suggested cost functional couples the three lev-
els of a segmentation process given by the input inten-
sity information, the learnt shape information and the
decision functions indicating where to apply certain
shape information. As demonstrated in experimental
results, the selection of appropriate regions associated
with each prior is generated by the dynamic labeling
in a recognition-driven manner. In this sense, our work
demonstrates how a recognition process can be mod-
eled in a variational segmentation framework.
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Notes

1. Precursors containing key ideas of the level set method appeared
in Dervieux and Thomasset (1979, 1981).

2. In this paper, we assume that objects share the same Gaussian
intensity model, by “independent” we mean that their pose and
location are independent. Extensions which allow each object to
have its own intensity model are conceivable but they are beyond
the scope of this paper.

3. Note that the TV regulariztion on the labeling L differs from the
one we had erroneously reported in the conference versions of
this work Cremers et al. (2003, 2004)

4. For extensions to differing intensity variances or (in the vector-
valued case) full covariance matrices, we refer to the works of Zhu
and Yuille (1996) and Rousson and Deriche (2002), respectively.
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In the case of identical variance considered here, we can simply
fix the variance to 1.
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