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Abstract

While the majority of competitive image segmentation
methods are based on energy minimization, only few allow
to efficiently determinegloballyoptimal solutions. A graph-
theoretic algorithm for finding globally optimal segmenta-
tions is given by the Minimum Ratio Cycles, first applied to
segmentation in [8]. In this paper we show that the class of
image segmentation problems solvable by Minimum Ratio
Cycles is significantly larger than previously considered.In
particular, they allow for the introduction of higher-order
regularity of the region boundary.

The key idea is to introduce an extended graph represen-
tation, where each node of the graph represents an image
pixel as well as the orientation of the incoming line seg-
ment. With each graph edge representing a pair of adjacent
line segments, edge weights can depend on the curvature.
This way arbitrary positive functions of curvature can be
introduced into globally optimal segmentation by Minimum
Ratio Cycles. In numerous experiments we demonstrate that
compared to length-regularity the integration of curvature-
regularity will drastically improve segmentation results.

Moreover, we show an interesting relation to the Snakes
functional: Minimum Ratio Cycles provide a way to find one
of the few cases where the Snakes functional has a meaning-
ful global minimum.

1. Introduction and Related Work

Energy minimization is a popular means for image seg-
mentation. While many approaches in the field penalize cer-
tain regularity properties of the curve, only a small percent-
age considers the curvature. This is surprising as curvature-
based segmentation can be much closer to human percep-
tion than simple length regularization. Kaniza’s experi-
ments on illusory contours [9], for example, indicate that
humans tend to perform line completion by finding closed
curves of minimal curvature. Figure1 shows segmentation
results on test images which demonstrate that curvature-
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Figure 1. Effects of length-based and curvature-based regulariza-
tion in image segmentation on artificial images. Results were gen-
erated using functionals (1) and (7), the latter with absolute cur-
vature (q = 1). Note that curvature-regularity gives rise to funda-
mentally different segmentations and contour completion.

based regularization may have favorable properties with re-
spect to line completion.

A large body of literature is dedicated to curvature-based
regularity in areas such as image inpainting [12, 3] and per-
ceptual grouping [14, 18]. Such approaches, however, are
based on local optimization, either in a discrete setting or
using partial differential equations and curve evolution.In
the latter case, the resulting fourth-order terms in the Euler-
Lagrange equations require highly sophisticated discretiza-
tion schemes and small time steps to prevent numerical in-
stabilities. In addition, these methods usually require ap-
propriate initialization.

Approaches to image segmentation can be split into
region-based functionals and edge-based ones. A prototype
of a region-based approach is the functional of Mumford
and Shah [13]. Its piecewise constant formulation can be
seen as a spatially continuous generalization of the Ising
model [7]. Further restricted to two phases with known
mean intensities, the discrete version can be optimized glob-
ally via graph cuts [5]. We are aware of no other region-
based approach where global optima are found efficiently.

Edge-based approaches are often line integrals along the
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region boundary. In their seminal work, Kass et al. [10]
proposed to integrate the negative squared image gradient
plus the squared absolute of first and second derivative of
the curve. While this effectively imposes length and curva-
ture as regularity terms, theglobalminimum of this energy
is typically not useful: for most weighting parameters it is
given by an infinitesimally short curve or an infinitely long
one. The choice of sensible parameters depends highly on
the image.

Casselles et al. [2] proposed to drop the regularity terms
and replace the negative squared absolute of the gradient by
an edge indicator functiong(·) which is a monotonically de-
creasing function of the image gradient. It is always strictly
positive. Again the global minimum (with energy zero) is
given by an infinitesimally short curve. Meaningful global
optima can be determined when seed points are given for
foreground and background [1].

Closely related to this are the normalized cuts of Shi and
Malik [15]. Their approach works with very few seed pix-
els already. The functional is not minimized globally as the
problem is NP-hard (see [15], Appendix A). Instead, a re-
laxed version is solved by spectral methods.

With their ratio regions, Cox et al. [4] proposed an edge-
based functional where a useful global minimum can be
found in polynomial time. In practice the complete search
over all starting points takes prohibitively long. Integrating
curvature appears very hard as the underlying graph theo-
retic approach is limited to planar graphs.

In their seminal work Jermyn and Ishikawa [8] proposed
to consider the ratio of two line integrals. Many function-
als of this form have a sensible global minimum. Moreover,
thanks to a graph theoretic approach this minimum can be
found efficiently. In subsequent works the approach was
applied for the simultaneous segmentation of multiple im-
ages [16, 6] and to connecting pre-extracted line segments
[17]. The latter considered curvature, but only for the pre-
extracted segments.

To date the approach did not support the estimation of
curvature integrals of entirely unknown curvesduring op-
timization. Exactly this will be developed in this paper.
To the best of our knowledge this is the first time that a
curvature-dependent regularization is imposed in globally
optimal image segmentation.

2. Segmentation by Searching Region Bound-
aries

Given an imageI : Ω → IR we consider the task of
segmenting the image planeΩ into a connected foreground
region and background. Equivalently one can search for the
region boundary, a closed curveC : S

1 → Ω, whereS
1

is the unit sphere in the two-dimensional plane. To ease
notation, throughout this paper the curve is assumed to be

parameterized uniformly. While we cannot exclude self-
intersecting curves from the space of permissible solutions
they did not arise in any of our experiments.

2.1. Energies for Region Boundaries

Finding the optimal region boundary can be stated as
an energy minimization problem: each conceivable closed
curve is assigned an energy, the curve with minimal energy
is considered the optimal boundary.

A popular approach is to formulate the functional as an
integral of costs along the curve. Globally minimizing such
energies is usually an either trivial or ill-defined task: If
the costs are positive everywhere, the minimum (with zero
costs) is given by an infinitesimally short curve. If the costs
are negative in a small region a minimum does not exist as
the curve would grow infinitely in this region.

As a remedy, Jermyn and Ishikawa [8] proposed to min-
imize a ratio of two line integrals, a well-defined task for
many functionals: Consider the task of minimizing

min
C

∫

S1 ∇I(C(s)) · ~nC(s) ds

|C| (1)

which will be referred to aslength ratio in the following.
Here|C| denotes the length of the curve, “·” the scalar prod-
uct of two vectors and~nC(s) is the curve normal at point
C(s). When a curve is traversed in opposite orientation all
normals are inverted. Hence all scalar products change sign
and one obtains the same energy with opposite sign. This
implies a negative minimum and that the absolute of (1) is
effectively maximized. This task is usually well-defined:
for a continuous image gradient the numerator terms in-
tegrated over a small closed curve will essentially cancel,
giving rise to energy values close to zero. More generally
Jermyn and Ishikawa considered energies of the form

min
C

∫

S1 ~v(C(s)) · ~nC(s) ds +
∫

Cin

f(x) dx
∫

S1 g(C(s)) ds
(2)

Here~v : Ω → IR2 is an arbitrary vector field andg : Ω →
IR+ is strictly positive. The functionf : Ω → IR is inte-
grated over the area enclosed by the curve.

2.2. Region Terms

In most applications region terms are not useful. For one
thing the arising minimizations task are often ill-defined,
e.g. there is no minimum for the ratio of area over boundary
length. Moreover, the algorithm in [8] can only handleori-
entedareas, which leads to problems with self-intersecting
curves as illustrated in figure2. We will therefore not con-
sider region terms in this paper.
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Figure 2. Region integrals are hard to handle for self-intersecting
curves: When using the approach in [8] the integral off is cal-
culated as±2 although actually0 is correct. This is as all areas
areoriented. When this is not desired one has to make sure that
the incorrect costs assigned to self-intersecting curves are always
higher than the global optimum of the non self-intersectingones.

3. Introducing Curvature-regularity

Minimizing functionals of form (2) is generally a well-
defined task. However, in practice usually very small re-
gions are found: the optimal curve needs strong numerator
terms along the entire curve. If a region boundary passes
through an area of low contrast, it will most likely not be
assigned the optimal energy. Typically this results in very
small curves enclosing a few pixels only.

In this paper we therefore propose to integrate the curva-
ture of the curve in the ratio functional, thereby enabling
meaningful segmentations even in the presence of low-
contrast areas. Consider the functional

min
C

∫

S1 ∇I(C(s)) · ~nC(s) ds
∫

S1 |κC(s)| (3)

where κC(s) denotes the curvature of the curveC at
C(s). This minimization task is well-defined as a closed
curve must have non-zero curvature somewhere, implying a
strictly positive denominator. Now, for any straight line the
numerator terms are accumulated along the line while the
denominator term stays constant. A straight line segment
passing a region of zero contrast will therefore not affect
the total energy. This is demonstrated in Figure1.

In this paper we consider a class of functionals which
drastically generalizes functional (3): in the numerator and
denominator integrals we consider functions depending on
the location in the imageC(s), the tangent angleαC(s) and
the curvatureκC(s). That is, we solve minimization prob-
lems of form

min
C

∫

S1 h(C(s), αC(s), κC(s)) ds
∫

S1 g(C(s), αC(s), κC(s)) ds
(4)

The numerator functionh :Ω × IR × IR → IR can be arbi-
trary, the denominator functiong : Ω × IR × IR → IR+

0 is
non-negative. Whileg(·) may become0 in some places, for
any closed curve the integral ofg(·) along the curve must
be strictly positive.

4. Estimating Curvature via Product Graphs

To solve problem (4) it is discretized and reduced to the
problem of searching cycles with minimal ratio in a graph.
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Figure 3. A sample image and a part of its associated graph (using
a 4-neighborhood). A node in the graph encodes a pixel in the
image together with the incoming direction. E.g. when goingfrom
pixel b to c the direction is0 and one ends in the node(c, 0). This
construction allows for edge weights depending on curvature.

In this section we describe the graph, then give a brief de-
scription of the optimization algorithm in the next one.

4.1. Graph Construction

In the discretized problem the region boundary is com-
posed of a finite set of pre-defined straight line segments.
These are obtained by connecting each pixel to all pixels
within a certain neighborhood of the pixel. The precise
neighborhood relation is described in section4.2.

This discrete problem can be expressed via a graph
where each edgee is assigned a numerator weightn(e) and
a denominator weightd(e) reflecting the numerator and de-
nominator integrals in (4) along the line segmentrespec-
tively. The curvature is considered fixed for the entire line
segment. Minimizing the discretized ratio (4) is now equiv-
alent to searching a cycle in the graph which minimizes

min
C

∑

e∈C n(e)
∑

e∈C d(e)
(5)

The key challenge is that for the estimation of curvature one
needs to considerpairs of adjacent line segments, but the
algorithm only supports weights defined forsingleedges.
Hence edges cannot directly correspond to line segments as
in [8]. To enable access to the previous line segment, it is
stored in the nodes. More precisely its direction is stored as
this suffices for the estimation of curvature. The node set is
then

V = P ×A

whereP is the set of pixels andA is a finite set of directions
of the incoming line segment, expressed as tangent angles
between0 and2π. While this product space was used for
several works involving curvature [14], to the best of our
knowledge it is novel to path-based search.

Edges are constructed as follows: for a line segment
from a pixel~p to a pixel~q in the image, there are several
edges in the graph. All these edges end in the node repre-
senting the pixel~q as well as the tangent angle of the line



segment. They start in the various nodes corresponding to
~p for all incoming directions of~p, as illustrated in Figure3.
Hence edges now correspond topairs of line segments in
the image: the current one connects~p and~q, the previous
is given by the tangent angle stored in the root node of the
edge.

The curvature of the pair of line segments corresponding
to an edge from(~p, β) to (~q, α) is approximated by

κ(e =
(

(~p, β), (~q, α)
)

) =

1
l(α)+l(β) ·







β − α if |β − α| ≤ π

2π − β + α if β − α > π

−2π − β + α if β − α < −π

wherel(α) denotes the length of a line segment with tangent
angleα. Notice that the edge weightsn(e) andd(e) reflect
the numerator and denominator integrals along thecurrent
line segment. The tangent angle of the previous line seg-
ment is only used to calculate the curvature. The numerator
edge weights are computed as (abbreviatingκ(e) asκ)

n(e =
(

(~p, β), (~q, α)
)

) =

|~p − ~q| ·
[

1
4h (~p, α, κ) + 1

2h
(

~p+~q
2 , α, κ

)

+ 1
4h (~q, α, κ)

]

and – replacingh(·) by g(·) – likewise for the denominator
weightsd(e). This discretization scheme balances two is-
sues: Mathematically the tangent angle is not well-defined
at the beginning and end of a line segment, so the center is
emphasized. On the other hand the curve integrals should
be sampled in intervals close to the pixel width. As some
of our line segments skip several pixels, multiple samples
along the edge are necessary.

4.2. Dealing with Large Graphs

To well approximate the continuum we need a suffi-
ciently large set of directionsA. Directions are obtained by
considering all line segments connecting pixels in a certain
neighborhood1. Due to the discretization on a uniform grid
directions are not sampled in equidistant intervals. The size
of the neighborhood determines the spatial scale at which
curvature is approximated and with it the number of direc-
tions considered. We use a neighborhood of radius

√
13,

corresponding to32 directions.
With aboutN ·|A| nodes andN ·|A|2 edges for an image

with N pixels, the resulting graphs are rather large. Already
for an image of size256 × 256 the available2 GigaByte
were exceeded. In such cases we do not store edges explic-
itly. Rather a node computes its edge list on demand. The
same graph then fits into140 MegaByte. The corresponding
increase in run-time was about a factor of4.

1 We only consider those pixels where in the same direction there is no
pixel with smaller distance.

5. Optimization of Ratio Functions

To minimize ratios of form (5) we use the variant in
[8] of the Minimum Ratio Cycle algorithm [11]. It can
be shown that a graph with same topology but with edge
weightsw(e) = n(e) − τd(e) must possess a negative cy-
cle for all ratiosτ > τopt, with τopt the optimal ratio. Neg-
ative cycle detection can be done efficiently using distance
calculations via the Moore-Bellman-Ford algorithm. The
algorithm also returns a negative cycle if existent.

Starting with an upper bound on the ratio (e.g. the ratio
of any cycle in the graph), the ratio is repeatedly correctedto
the ratio of the found negative cycle until all negative cycles
vanish. The last extracted cycle has optimal ratio. For in-
tegral edge weightsn(e) andd(e) the algorithm terminates
in a finite number of steps and has pseudo-polynomial com-
plexity2. If – as in all our experiments – the maximal abso-
lute edge weight does not depend on the number of nodes,
it has polynomial complexity. In practice the algorithm al-
ways terminated after less than50 ratio adjustments. See
[8, 11] for more details.

6. Minimum Ratio Cycles and Snakes

In [8] Jermyn and Ishikawa pointed out that the Min-
imum Ratio Cycle algorithm effectively minimizes a cost
function consisting of the sum of two terms, where the sec-
ond is weighted such that the optimal energy is exactly0.
With the extended class of functionals introduced in this
paper, this allows us to shed a new light on the well-known
Snakes functional [10]: Consider the task of minimizing

τopt = min
C

∫

S1

[

β |Cs(s)|2 + |κC(s)|2
]

ds
∫

S1 |∇I(C(s))|2ds
(6)

For this functional the proposed algorithm finds aτ so that

min
C

∫

S1

[

β |Cs(s)|2+|κC(s)|2
]

ds − τ

∫

S1

|∇I(C(s))|2ds = 0

This is essentially the Snakes energy3. Given a weighting
factor for the relation between the two regularity terms, the
algorithm hence finds a relative weight between the data
term and the regularity terms such that the optimal Snakes
energy becomes0. This allows us to find one of the few
parameter configurations for which the Snakes have a non-
trivial global minimum.

7. Experiments

In several experiments we demonstrate that the proposed
algorithm compares favorably to the length ratio (1) and the

2 The algorithm in [11] is weakly polynomial but much slower in prac-
tice.

3More precisely, the Snakes functional is obtained by replacing the
squared curvature by the squared second derivative and dividing byτ .
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Figure 4. While length regularization typically does not yield use-
ful regions, this is different for the elastic ratio.

±3.8· area / ±3.9· area / ±4.0· area / elastic ratio
length length length (λ = 0.1)

Figure 5. The length ratio enhanced by a balloon force is sensitive
to weighting parameters.

Mumford-Shah functional. We use a functional of form
∫

S1 ∇I(C(s)) · ~nC(s) ds
∫

S1 |κC(s)|q ds + λ|C| (7)

Forq=2 and positiveλ the denominator integral is the well-
known expression used in theElastica. We will therefore
refer to this combination aselastic ratio. Unless otherwise
stated a length parameter ofλ=0.2 was used.

7.1. Object Segmentation via the Elastic Ratio

Figure4 shows that while the length-ratio typically finds
small curves enclosing a few pixels only, curves with opti-
mal elastic ratio often correspond to real objects in the im-
age. As shown in Figure5 enhancing the length ratio by
a balloon force is usually not competitive compared to the
elastic ratio: the resulting functional is extremely sensitive
to the weighting factor for area.

Figures6 and7 demonstrate that segmentation with the
elastic ratio is often closer to human perception than region-
based approaches. Here we compare with a piecewise con-
stant and a piecewise smooth Mumford-Shah, both with two
phases. They are optimized locally via alternating mini-
mization with graph cut segmentation. Results for different
length weights are shown, for the piecewise smooth func-
tional the smooth approximations are depicted.

For λ = 0 the denominator is minimized by convex
shapes for absolute curvature and by circles for squared cur-

piecewise constant piecewise smooth elastic
Mumford-Shah Mumford-Shah ratio

Figure 6. The elastic ratio often provides more meaningful (ob-
ject) segmentations than the Mumford-Shah functionals (shown
for different length weights).

Figure 8. Regularization via squared curvature favors circle-like
shapes.

vature. This effectively imposes a shape prior. The effects
of absolute curvature are demonstrated in Figure1 (page
1). For squared curvature Figure8 indicates a certain noise-
robustness.

7.2. Contrast-reversing Boundaries

The functionals7 and 1 assign near-zero energies to
contrast-reversing boundaries: if the region inside is darker
than the outside in some places and lighter in others, the
scalar products cancel as the gradient changes direction.
To find contrast-reversing boundaries we therefore integrate
the gradient absolute into a modified elastic ratio:

−
∫

S1 |∇I(C(s))|p ds
∫

S1 |κC(s)|q ds + λ|C| (8)

Figure9 demonstrates the difference to the elastic ratio. For
p = q = 2 minimizing (8) (and hence maximizing its abso-
lute) is equivalent to minimizing the Snakes ratio (6): max-
imizing a ratio is equivalent to minimizing its reciprocal4.

Conclusion

In this paper we developed a framework which allows
to integrate curvature into global shape optimization. The
key idea is to introduce product graphs with edge weights
corresponding topairs of line segments in the image. This
allows to represent discrete approximations of curvature in

4The Snakes integrate thesquaredabsolute of the first derivative. How-
ever, for uniform parameterizations this is equivalent to considering the
length of the curve.



piecewise constant Mumford-Shah piecewise smooth Mumford-Shah elastic ratio

Figure 7. The elastic ratio is often more useful for object-based segmentations than region-based approaches (shown for different length
weights) .

scalar gradient- scalar gradient-
product absolute product absolute

Figure 9. The gradient-absolute allows to find contrast-reversing
boundaries (p = 1, q = 2, λ = 0.1).

the graph structure. Globally optimal segmentations are
computed efficiently using Minimum Ratio Cycles.

Experiments on artificial and real images demonstrate
that the proposed curvature regularization allows to gener-
ate contour completion in the sense that it finds segmenting
boundaries which minimize the average curvature. More-
over, it provides more robust and meaningful segmentations
on many real images than the previously considered length
regularization. From a theoretical point of view, the pro-
posed framework allows for the first time to study the ef-
fects of higher order regularity in a global shape optimiza-
tion framework.
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