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Abstract

This paper discusses fast and accurate methods to solve
Total Variation (TV) models on the graphics processing
unit (GPU). We review two prominent models incorporating
TV regularization and present different algorithms to solve
these models. We mainly concentrate on variational tech-
niques, i.e. algorithms which aim at solving the Euler La-
grange equations associated with the variational model. We
then show that particularly these algorithms can be effec-
tively accelerated by implementing them on parallel archi-
tectures such as GPUs. For comparison we chose a state-of-
the-art method based on discrete optimization techniques.
We then present the results of a rigorous performance eval-
uation including 2D and 3D problems. As a main result
we show that the our GPU based algorithms clearly out-
perform discrete optimization techniques in both speed and
maximum problem size.

1. Introduction

Variational methods are among the most successful
methods to solve a number of inverse problems in Com-
puter Vision. Basically, variational methods aim to mini-
mize an energy functional which is designed to appropri-
ately describe the behavior of a certain Computer Vision
task. The variational approach provides therefore a way to
implement unsupervised processes by simply looking for
the minimizer of the energy functional. Minimization is
usually carried out by solving the Euler Lagrange (EL) dif-
ferential equation associated with the energy functional.

In particular, variational models incorporating Total
Variation regularization are of great interest for a large class
of Computer Vision problems due to its discontinuity pre-
serving property. Total Variation methods were introduced
for non-linear image denoising [28] but in the last years they
also showed great success for a much wider class of Com-

puter Vision problems. Examples include real-time optical
flow computation [34], medical image registration [27], 3D
reconstruction [20], range image fusion [35] and image seg-
mentation [30].

Variational optimization techniques are commonly used
to compute the solution of Total Variation models. Due to
their iterative nature they are often considered to be slow,
but we show that especially these algorithms can be effec-
tively accelerated on streaming processors such as GPUs.
This leads to high performance algorithms actually outper-
forming state-of-the-art discrete optimization techniques.

The structure of the paper is as follows. In Section 2 we
review two prominent Total Variation models. In Section 3
we discuss different algorithms to solve these models. In
section 4 we give details to its numerical implementation
on the GPU. Experimental details are presented in Section
5. In the last Section we give some conclusions.

2. Total Variation models

The history of L' estimation procedures goes back to
Galileo (1632) and Laplace (1793) and has also received a
lot of attention from the robust statistics community [19].
The first who introduced Total Variation methods to Com-
puter Vision tasks were Rudin, Osher and Fatemi (ROF)
in their paper on edge preserving image denoising [28].
The model is designed to remove noise and other unwanted
fine scale details, while preserving sharp discontinuities
(edges). The ROF model is defined as the following vari-
ational model:

min{/ |vu|d9+i/ (u—f)%m} NG

where () is the image domain, f is the observed image func-
tion which is assumed to be corrupted by Gaussian noise,
and u is the sought solution. The free parameter \ is used
to control the amount of smoothing in w. The aim of the



ROF model to minimize the Total Variation of wu:
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Its main property is that it allows for sharp discontinuities
in the solution while still being a convex in u [28].

Similar to the ROF model, the TV-L!
model [2], [23], [11] is defined as the variational problem

min{/ \Vu\dQ—i—)\/ |u—f|dQ} . 3)
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The difference compared to the ROF model is that the
squared L? data fidelity term has been replaced by the L'
norm. Moreover, while the ROF model in its unconstrained
formulation (1) poses a strictly convex minimization prob-
lem, the TV-L! model is not strictly convex. This means
that in general, there is no unique global minimizer.

The TV-L' model also offers some desirable improve-
ments. First, it turns out that the TV-L! model is more ef-
fective than the ROF model in removing impulse noise (e.g.
salt and pepper noise) [23]. Second, the TV-L! model is
contrast invariant. This means that, if u is a solution of (3)
for a certain input image f, then cu is also a solution for
cf for ¢ € R*. Therefore the TV-L! model has a strong
geometrical meaning which makes it useful for scale-driven
feature selection [13] and denoising of shapes [24].

3. Computing the Solution of Total Variation
models

Algorithms
Explicit time marching [28], [21]
Linearization of the EL equation [32], [31], [8]
Nonlinear primal-dual method [12]

Duality based methods [12], [6], [5], [18], [7], [22]
Non-linear multigrid methods [15], [4], [29], [10], [9]
First order schemes from convex optimization [33]
Second-order cone programming [16]

Graph cut methods [14], [7], [17]

Table 1. A selected list of numerical algorithms to solve Total Vari-
ation models.

Computing the solution of Total Variation models is
a challenging task. The main reason lies in the non-
differentiability of the L' norm at zero. It is therefore not
surprising that one can find many items about this topic in
the literature. Tab. 1 gives a selected overview of numeri-
cal methods to solve Total Variation models. Describing all
these approaches in detail is clearly beyond the scope of this
paper. We rather proceed by restricting our investigations to
the variational approach. We do this mainly for three rea-
sons. First, variational methods are very general and can

easily be adapted to different applications. Second, varia-
tional algorithms provide a continuous solution to the un-
derlying optimization problem. Third, variational methods
are well suited to be computed on highly parallel computer
architectures such as graphics processing units (GPUs).

3.1. Computing the Solution of the ROF Model

The aim of the variational approach is to minimize an
energy functional by solving its associated Euler-Lagrange
(EL) differential equation. For the unconstrained ROF
model the EL equation is given by
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When looking at this equation, one can make two obser-
vations: First, due to the ﬁ term, the equation is highly
non-linear. Second, the equation is not defined for Vu = 0.
To overcome the second limitation, a simple and commonly
used approach is to replace |Vu| by a regularized version
|Vule = /|Vul|? + . However, for small € the equation
is still nearly degenerated and for larger ¢ the ability of the
ROF model to preserve sharp discontinuities is lost.

In [32], Vogel and Oman proposed a fixed point algo-
rithm to solve (4). The basic idea is to linearize (4) by tak-
ing the non-linear terms ﬁe from the previous iteration.
Therefore, at each iteration n, their method requires to solve
a sparse system of linear equations

v n+1 1
V<$Lk>+A@M1ﬁO' )

This can be done with any sparse solver (e.g. Jacobi, Gauss-
Seidel, SOR). In practice, the system of linear equations
needs not to be solved exactly during each iteration. A few
iterations of a Jacobi or Gauss-Seidel algorithm are suffi-
cient to achieve a reasonable convergence of the entire al-
gorithm. One serious limitation of this method is still the
choice of the regularization parameter €. Again, for small
¢ the algorithm becomes slow in flat regions and for large
¢ edges get blurred. We will refer to this algorithm in the
following as ROF-primal.

Chan et al. in [12], Carter et al. in [5] and Chambolle
in [6] studied the dual formulation of the ROF model. All
three approaches exploit the dual formulation of the TV
norm:

|Vu| = max {p-Vu: |p|<1}. (6)
By substituting this expression into the ROF model (1) one

arrives at the so-called primal-dual formulation of the ROF
model
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Since this expression is convex, we can interchange the min
and the max. Furthermore, the optimality condition with
respect to u is readily given by

u=f+AV-p. (8)

Using this relation, the primal variable u can be eliminated
and one arrives at the dual ROF model

. A 9
- . dQ) + — . ao b 9
ﬁﬁ%{ /Qp Vf +2/Q(v p) } 9)

Note that in order to be consistent with the other ap-
proaches, we have turned the original maximization prob-
lem with respect to the dual variable (see (7)) into a mini-
mization problem. We do this by flipping the sign of the en-
tire functional. The Euler-Lagrange equation of (9) is given
by

—V(f+AV:-p)=0, |pl<1. (10)

The major advantage of the dual ROF model is that it is con-
tinuously differentiable and therefore does not suffer from
the problem of the primal model which gets degenerated
if Vu = 0. On the other hand, the dual problem has the
constraint that ||p|| < 1, which requires sophisticated op-
timization techniques. In [5], Carter studied several algo-
rithms (interior-point primal-dual method with three relax-
ation methods: dual, hybrid, and barrier) to solve the dual
ROF model. However, the algorithms are not very useful for
practical problems due to a heavy runtimes and dependence
on additional parameters.

It is somehow astonishing that there exists a very ba-
sic algorithm which has not been considered by Carter
in [5]. In fact, a simple but efficient algorithm is obtained
by a straightforward gradient descent and subsequent re-
projection of (10).

p"+ 3 (V(f+AV-p"))
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This algorithm has been proposed by Chambolle in [7] as a
variant of a more comprehensive algorithm [6]. In practice,
convergence is achieved as long as 7 < 1/4. The primal
variable can be recovered via u = f + AV - p. Besides its
simplicity, a further promise of this algorithm is its robust-
ness an a fast convergence. We will refer to this algorithm
in the following as ROF-dual.

Very recently, Aujol [1] established connections between
the projected gradient descend algorithm [7], and a class
of more general algorithms proposed almost 30 years ago
in [3].

3.2. Computing the Solution of the TV-L! Model

Unfortunately, the TV-L! model (3) makes use of two L'
norms, one for the TV term and one for data term. Therefore

the TV-L! model is not strictly convex meaning that many
solutions may exist. This gives us raise to the assumption
that the TV-L! model is even more difficult to solve than
the ROF model. Let us take a look at the Euler-Lagrange
equation of the TV-L! model:

Vu (u—f)_
—V~<|vu|>+>\|u_f|—0. (12)

We can easily see that this equation is degenerated either
if Vu = 0oru— f = 0. Therefore a first idea is
to apply the same trick we used to regularize the Euler-
Lagrange equation of the ROF model. Doing so, we sim-
ply replace |Vu| by |Vul. = /|Vu|+¢ and |u — f| by
lu— fls = /|u— f|?> + 0.

To find a convergent algorithm to solve the regularized
Euler-Lagrange equation, we follow the approach of Vogel
and Oman. For each iteration n + 1 we have to solve the
following sparse system of linear equations:

VunJrl) (un+1 _ f)
-V - AL =
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where the non-linear terms have been taken from the previ-
ous iteration n. We note that the performance of this algo-
rithm is very sensitive with respect to the particular choice
of the parameters € and . Basically, small values of € and §
slow down the algorithm a lot and large values of ¢ and ¢ in-
duce large errors with respect to the original TV-L' model.
We will refer to this algorithm in the following as TVL!-
primal.

A natural question is, whether we can solve the TV-L!
model exactly? More precisely, can we make use of the
same duality principles, we used to solve the ROF model
exactly? Unfortunately, it turns out that we cannot use the
duality principles directly. The reason is that the TV-L!
model is not strictly convex.

In order to make the TV-L' model strictly convex, Aujol
et al. proposed the following convex approximation [2]:

1
min{/ |vu\dsz+—/ (u—v)2d9+)\/ |v—f|dQ} .
u,v Q 20 Jq Q
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For § > 0 (14) is a convex approximation of the TV-L!
model and as § — 0 (14) approaches the original TV-L!
model (3).

Unlike the original TV-L! model (14) is now a optimiza-
tion problem in two variables, v and v. Therefore we have
to perform an alternating minimization with respect to u and
v. The outline of the alternating minimization procedure is
as follows:

0, (13)

1. For fixed v, solve (14) for wu.

min{/ |vu|d§z+i/ (uv)2d9} . (15)
v /g 20 Jo
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Figure 1. (a, b) Convergence time for the ROF and TV-L! algorithms in dependence of number of internal iterations. (c) Overall iterations

per second in depenence of number of internal iterations.

This optimization problem is exactly the ROF model,
with 6 being the regularization parameter. We can use
the projected gradient descend algorithm to solve this
sub-problem.

2. For fixed u, solve (14) for v.

min{l/ (u—u)2dQ+)\/ |v—f|dQ} . (16)

(16) is a point-wise convex minimization prob-
lem which can be solved via the following soft-
thresholding scheme:

u—N if u—f > A0
v=<¢ u+ A if u—f < =X 17
f if lu—f] < XN

3. Goto 1. until convergence.

We note that the algorithm is very robust with respect to the
choice of the approximation parameter . We found that
a good choice is to set § such that the soft-threshold Af is
1 — 5% of the maximum gray-level interval of f. We will
refer to this algorithm in the following as TVL*-dual.

4. Implementation on the GPU using CUDA

We implemented the following variational variational al-
gorithms: ROF-primal, ROF-dual, TVL-primal and TVL' -
dual on the graphics card. The implementation is basically a
straight-forward implementation of the presented schemes.
We used Jacobi’s method to solve the systems of linear
equations in the primal methods. Our implementations can
handle 2D and 3D problems.

With the introduction of the 8-series [25], NVidia also
introduced the CUDA (Compute Unified Device Architec-
ture) framework [26]. CUDA provides a standard C lan-
guage interface for programming on the GPU. It can handle

a massive number of parallel threads that are scheduled to
the processor. CUDA also provides the user with a pro-
gramming interface that handles scheduling and execution
on the GPU.

The processing units of the GPU are arranged into
groups of so-called multiprocessors. One multiprocessor,
can execute several independent threads having access to
the same shared memory. While reading data from the
global GPU memory is still fast (about 50 — 100 GB/s),
reading from the shared memory is even 75 times faster. We
exploited this feature by loading a local image patch into the
shared memory and ran the algorithms for several iterations
before writing the results back into global memory. High
speedups can be gained using the shared memory. On the
other hand, the number of such internal iterations should
also be limited. The information at block borders cannot be
exchanged during computation leading to a slower conver-
gence of the entire algorithm. The effects of internal itera-
tions versus the convergence behavior the algorithms are il-
lustrated in Fig. 1 shows the performance of our algorithms
depending on the number of internal iterations. We found
that using 5 internal iterations gives the best overall perfor-
mance.

5. Experimental Results

For evaluation we used a standard personal computer
equipped with a 2.13 GHz Core2-Duo CPU, 2 GB of main
memory and a NVidia 8800GTX graphics card. The com-
puter runs a 32-bit Linux operating system. Basically, with
our GPU based implementation we achieved a speedup fac-
tor of approximately 1000 compared to an optimized Mat-
lab implementation. However, in this paper we do not com-
pare our GPU-based algorithms to CPU-based variants, be-
cause this question is of minor interest. The more inter-
esting question is weather GPU-accelerated Total Variation
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Figure 2. Test images: (a) Summit image: 256 x 256. (b) Basecamp image: 512 x 512. (c) Sunset image: 1024 x 1024. (d) Brain data

set: 256 x 320 x 256 . (e) Liver data set: 512 x 512 x 128

methods can compete with discrete optimization techniques
such as graph cuts. Note that TV models and graph cuts can
solve problems of equal complexity. So far, it is not clear
which method will be the clear winner. Maybe, the work
presented in this paper can shed further light on this ques-
tion. We therefore decided to compare our algorithms to a
recently published method based on parametric max-flow
algorithms [17]. The algorithm of [17] was downloaded
from Wotao Yin’s homepage. It was executed on the same
machine as the GPU-based algorithms using Matlab 7.0.3.
Note that the core of this algorithm is based on a high per-
formance C/C++ implementation.

Unfortunately, there exist no sharp L2, or even bet-
ter, L error bound for variational methods. A common
method is to compute the residuum norm of the Euler-
Lagrange equations and to stop the iterations when the
residuum norm is below a certain threshold. On the other
hand, the residual norm does not give any information about
the error of the solution with respect to the true solution.
Note that graph-cut based algorithms come along with such
an error bound [7], [17]. This is can be seen as a clear
advantage of graph cut methods over variational methods.
We applied the following procedure to estimate the L? er-
ror bound. We first run our algorithms for a long time to
produce a ground truth. We can then measure the time the
algorithms need to fall below a predefined L? error bound.

On the other hand, graph cut methods suffer from the so-
called metrication error. In contrast to variational methods,
one cannot use the Euclidean vector norm to approximate
the TV norm. Instead, one has to rely on a weighted L'
vector norm based on connected graph nodes. Fig. 3 points
out the metrication error of graph cut methods. When using
a 4-connected graph the results become very blocky. When
using a 16-connected graph, the results are very close to the
results of the variational methods. We therefore decided to
compare our algorithms to the max-flow algorithm based on
a 16-connected graph. Note that both the required memory
and the computing time increase for a higher connectivity
in the graph-structure.

(@) (b) ©

Figure 3. Metrication error of the max-flow algorithm compared
to the variational methods. (a) Blocky structures when using a
4-connected graph. (b) 16-connected graph. (c) Our algorithms.

5.1. Test Data

Fig. 2 depict our 2D and 3D test images. The 2D images
are of 8-bit and are rescaled in order to have pixel intensities
lying in the interval [0, 1]. We used a L?-error threshold of
1e~% to determine the runtimes. The max-flow algorithms
were computed using 8-bit accuracy. Note that our L2-error
is equivalent to a 10-bit accuracy. The Brain data set is
also of 8-bit accuracy, so that we used a L2-error threshold
of 1e7%3. The Liver data set is of 16-bit accuracy, so we
adjusted the L2-error threshold to be 1e~%4.

5.2. Numerical Results for the 2D ROF model

The parameters for the evaluation of the algorithms to
solve the ROF model were as follows: For ROF-primal,
the ¢ parameter was set to le~%4. Clearly, larger values
of € would speed up the convergence of ROF-primal. But
for ¢ > 1le~% ROF-primal did not converge to a solution
within the L? error bound with respect to the exact solution
of the duality based methods. ROF-dual does not depend
on any additional free parameters.

Tab. 2 shows the runtimes needed to compute the solu-
tion of the ROF model for different values of A, and for dif-
ferent image sizes. In general, as A increases, all algorithms
become slower since the regularization becomes stronger
and makes the problem more difficult to solve. For small
values of A one can see that the variational methods are up
to 1000 times faster than ROF-max-flow. For larges value of
A the relative performance decreases but the speedup is still



Image Basecamp Summit | Basecamp | Sunset

A 0.01 \ 0.05 \ 0.10 \ 0.20 \ 0.50 \ 1.00 0.20
ROF-primal (GPU) 0.0011 | 0.0859 | 0.3161 | 0.8661 | 2.9414 | 8.3621 || 0.2825 0.8661 2.4000
ROF-dual (GPU) 0.0013 | 0.0054 | 0.0213 | 0.0596 | 0.3312 | 1.4667 || 0.0175 0.0596 0.5041
ROF-max-flow (CPU) || 1.4665 | 2.5433 | 3.6647 | 5.1440 | 8.3739 | 12.449 || 1.0169 5.1440 25.072

Table 2. Runtimes (in seconds) to solve the ROF model for different values of A, and for different sizes.

more than a factor of 10. The evaluation on different image
sizes was done with fixed A = 0.2. We can see that ROF-
primal and ROF-dual have superior performance compared
to ROF-max-flow. The runtime of ROF-max-flow increases
slightly faster than linear, which is also reported in [17].
In contrast, the runtimes of ROF-primal and ROF-dual in-
crease slightly slower than linear. Again, ROF-dual is the
fastest algorithm.

5.3. Numerical Results for the 2D TV-L! model

We used the following parameters for the evaluation of
the TV-L! algorithms. For TV L!-primal, the ¢ and ¢ pa-
rameters were both set to 1e =93, We also tried smaller val-
ues but it took extremely long to fall beyond the L2-error
threshold of 1e%. For TV L'-dual the 6 parameter was
dynamically adjusted such that the soft threshold A@ re-
mains constantly Ad = 0.01 for all values of A\ (see also
7).

Tab. 3 shows the runtimes needed to compute the solu-
tion of the TV-L! model for different values of \ and differ-
ent image sizes. T'V L'-dual performs extremely well com-
pared to TV L'-primal and TV L'-max-flow. On the other
hand, the advance of TV L'-primal over TV L'-max-flow
is not very high since the primal Euler-Lagrange equation
of the TV-L' model is very difficult to solve. One can in-
crease € and § parameters but this leads to wrong results.
As TV L'-primal, TV L'-dual is also a convexification of
the original TV-L' model, but in a very different way. It
does only depend upon one additional parameter which can
be automatically chosen.

Also note that the relative performance of TV L'-max-
flow over the variational TV-L' methods is much better than
the relative performance of ROF-max-flow over the varia-
tional algorithms to solve the ROF model. A possible ex-
planation could be that since the TV-L! problem is purely
geometric, it it more suitable to be computed on graphs
than the ROF model. For the comparison of different im-
age sizes we used A = 0.5. One can see that TV L!-
dual scales very well with increasing image size, whereas
TV L'-primal gets much slower. The runtime of TV L'-
max-flow also heavily increases for larger images.

Fig. 4 shows a comparison of the ROF model to the TV-
L' model. One can clearly observe the contrast invariance
of the TV-L! model, that is to remove structures of a certain
scale. For example the snow covered mountain has a large

contrast to the background but is of a small scale.

a o o
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(a) ROF model:A = 1.0 (b) TV-L! model:\ = 0.1
Figure 4. This figure shows an comparison of the ROF model to
the TV-L' model. Due to the contrast invariance of the TV-L?
model, structures of a certain scale are removed.

5.4. Numerical Results for the 3D ROF model

We used the following parameters for the ROF-primal al-
gorithm. In case of the Brain data set we used £ = 1le — 04.
In case of theLiver data set we used € = le — 05 since the
resolution of the intensity values is about 10 times higher.
For the ROF-dual algorithm we did not have to set any ad-
ditional algorithms. ROF-max-flow was computed using a
6-connected graph and 8-bit accuracy.

Tab. 4 shows the results of the ROF model applied to
the Brain data set and the Liver data set for different values
of A. Unfortunately, ROF-max-flow cannot be executed for
the Liver data set, due to a heavy memory requirement. We
even tried it on a 64-bit machine equipped with 16GB of
main memory, but the algorithm failed. On the other hand,
using ROF-dual, the solution was obtained after approxi-
mately 20 seconds. This enables our method to be applica-
ble for clinical practice even for large data sets. Fig. 5 gives
an example of the denoising capability of the ROF model
applied to the Liver data set.

One can see that ROF-dual has always a superior perfor-
mance compared to ROF-primal and ROF-max-flow. One
can also see that the relative performance of the variational
methods of the graph based method decrease in case of
larger values of A. This also reflects the results we obtained
from our 2D experiments. In contrast to the 2D experiments
the relative performance of ROF-primal compared to ROF-
dual is considerably better. In case of the primal formula-
tion of the ROF model, the size of the optimization problem
is exactly the size of the input image. In case of the dual



Image Basecamp Summit | Basecamp | Sunset
A 0.10 \ 0.20 \ 0.30 \ 0.50 \ 0.70 \ 1.00 0.50
TV L'-primal (GPU) 2.9564 | 1.0967 | 0.3588 | 0.3553 | 0.2093 | 0.1848 || 0.3401 0.3588 0.9113
TV L'-dual (GPU) 0.1567 | 0.0636 | 0.0372 | 0.0456 | 0.0437 | 0.1610 || 0.0684 0.0456 0.0513
TV LY -max-flow (CPU) || 3.9400 | 2.5600 | 2.0000 | 1.5600 | 1.2900 | 1.0600 | 0.3200 1.5600 7.1900
Table 3. Runtimes (in seconds) to solve the TV-L' model for different values of X and different image sizes.
Brain Liver
A 0.5 0.2 1.0
TV L'-primal (GPU) || 37.10 | 137.00 [[ 113.41
TV L'-dual (GPU) 14.40 | 16.60 97.63
TV L -max-flow (CPU) || 50.10 | 142.00 || failed

(a) Original image

(b) Denoised image

Figure 5. Denoising capability of the ROF model for the Liver data
set using A = 0.01.

formulation the size of the optimization problem is three
times larger (two times in 2D). This leads to a higher mem-
ory bandwidth on the GPU and hence to a higher processing
time. However, note that the dual algorithm is still faster.

Brain Liver

A 0.05 0.1 0.01
ROF-primal (GPU) 13.00 60.00 51.71
ROF-dual (GPU) 1.68 3.59 18.16
ROF-max-flow (CPU) | 106.00 | 124.00 || failed

Table 4. Runtimes (in seconds) to solve the ROF model for the
Brain data set and the Liver data set.

5.5. Numerical Results for the 3D TV-L! model

We used the following parameter setting for the TV L!-
dual algorithm: For the Brain data set we used A\ = 0.01
and for the Liver data set we used A0 = 0.005. For TV L!-
primal we used ¢ = 0 = le — 03 in case of the Brain data
set and € = § = le — 04 in case of the Liver data set. ROF-
max-flow was computed using a 6-connected graph and 8-
bit accuracy.

Tab. 5 shows the results of the TV-L! model applied to
the Brain data set and the Liver data set for different values
of A. One can observe similar results to the 2D experiments.
In any case, TV L'-dual is the best performer. Note that
TV L'-dual is 4 — 9 times faster than TV L' -max-flow. As
for the ROF model, TV L'-max-flow could not be executed
on the large Liver data set.

Fig. 6 shows a comparison between the results of 7V L -
dual and TV L'-max-flow applied to the Brain data set. One

Table 5. Runtimes (in seconds) to solve the TV-L* model for the
Brain data set and the Liver data set.

can clearly observe the metrication error of the discrete
method leading to the development of unnatural blocky
structures.

(@) TV L -dual (b) TV L' -max-flow

Figure 6. Results of the TV-L' model applied to the Brain data set.
The figure shows a comparison between TV L'-dual and TV L*-
max-flow for A = 0.5. One can clearly see the metrication error of
the discrete method.

6. Conclusion

In this paper we have evaluated the different variational
algorithms to solve the ROF model and the TV-L' model.
We have compared our GPU-based implementation to a
recently published method based on discrete optimization
techniques. Based on our observations we can give the fol-
lowing conclusions: Variational methods are easy to imple-
ment and can be effectively computed on GPUs. Graph-
based methods are difficult to implement and their paral-
lelization is still an open problem. Variational methods do
not suffer from metrication errors. Variational methods do
not provide an explicit error-estimate, which makes it hard
to define a stopping critereon. In contrast discrete optimiza-
tion techniques come along with such an estimate. Finding
such an estimate would be a great benefit for the variational
methods.
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