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Abstract The Geodesic Active contour model is a very
flexible model for variational image segmentation. Unfor-
tunately the Geodesic Active Contour model exhibits local
minima making segmentation results strongly dependent on
its initialization. We propose a flexible, interactive segmen-
tation method in two and three dimensions that yields the
globally optimal solution with respect to local constraints
introduced by the user. A fast numerical scheme is used to
minimize the proposed energy which is based on a weighted
Total Variation energy functional. With our GPU-based im-
plementation, real-time performance is achieved for both
2D and 3D segmentation problems. We show experimental
results on various medical datasets, and discuss the proper-
ties of the segmentation framework.

1 Introduction

Image segmentation is one of the most fundamental prob-
lems in computer vision. It aims at partitioning an image
into a set of non-overlapping (disjoint) regions. Segmented
images are further used as input for various applications
such as classification, recognition and measurement. More
specifically, in the case of medical applications image seg-
mentation is an important step towards the study of anatom-
ical structures, diagnosis and the planning of surgeries or
other forms of treatment [19].

Many approaches have been developed to tackle the
problem of image segmentation. One of the most basic ap-
proaches is to rely on homogeneity criteria inside the ob-
ject of interest (e.g. uniform intensity distribution). The
most simple algorithm which relies on such an assumption
is segmentation by thresholding [18]. As a matter of fact this
method often fails, if the desired object can not be character-
ized solely by intensity distributions. Unfortunately, medi-
cal images often suffer from such problems. Fig. 1 depicts a
typical medical image, where a user selected intensity range
is insufficient to separate the bones from the background. In
contrast, the method proposed in this paper is solely based
on edge information. By providing a little high-level infor-
mation (seed regions), our method can easily segment the
bones. Moreover, it is quite obvious that the problem of
image segmentation is highly ambiguous. In many cases it
would therefore be necessary to incorporate some informa-
tion from the user into the segmentation process.

Our aim is therefore not to develop a fully automatic seg-

(a) Thesholding (b) Proposed method

Figure 1: Segmentation of a typical medical image.

mentation algorithm, but to provide a flexible framework
to the user allowing to incorporate high-level knowledge.
The major advantage of our approach is that our algorithm
is guaranteed to yield a globally optimal solution with re-
spect to the constraints provided by the user. Our algorithm
is based on continuous optimization techniques. In contrast
to the very popular graph cut methods our method does not
suffer from any metrication errors. Moreover, our algorithm
can effectively be accelerated by implementation on parallel
architectures such as graphics hardware leading to real-time
performance. In summary, we propose an interactive general
purpose segmentation tool for both 2D and 3D problems.

The remainder of the paper is organized as follows: In
Section 2 we review the current state-of-the-art in image
segmentation. In Section 3 we describe our variational seg-
mentation model and will develop an efficient algorithm
which allows to compute the global minimizer of it. More-
over we will show that our segmentation model is a general-
ization of the continuous maximal flow algorithm of Apple-
ton and Talbot [1]. In Section 4 we give details about imple-
mentation issues. In fact, we show that the algorithm can be
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effectively accelerated by implementing it on the graphics
processing unit (GPU). This leads to real-time performance
for both 2D and 3D segmentation problems. In Section 5
we present various segmentation examples showing the ef-
fectiveness of our method. In the last Section we give some
conclusions and discuss possible directions for future inves-
tigations.

2 Related Work

In the following previous work is discussed, and its relation
to the presented segmentation approach is shown.

2.1 The Active Contour/Snake Model

One of the major advances in image segmentation was the
introduction of the Active Contour/Snake model by Kass,
Witkin and Terzopoulos in [14]. Here, a contour is deformed
according to internal and external forces. A standard ap-
proach to implement the curve evolution is via the level set
approach of Osher and Sethian [16]. However, the curve
evolution approach solely acts locally and is therefore prone
to get stuck into a local minimum. To overcome this one has
to put the initial contour very close to the final segmentation.

2.2 Geodesic Active Contours

Geodesic active contours (GAC) in 2D and minimal surfaces
in 3D were introduced by Caselles et al. in [6, 7], as an
enhanced version of the snake model of Kass et al. [14]. The
GAC model is defined as the variational problem:

IC]
m(/in{EGAC<C) :/0 9(|VI(C(5))|)CU} (D

where |C| is the Euclidean length of the the curve C and dl
is the Euclidean element of length. The function g € (0, 1]
is an edge detection function which is close to 0 at strong
edges in the image I. A quite common choice is

g (V1)) = exp (~a[v1)%) | @

for some suitable parameters « and 5. The GAC model
therefore integrates up the Euclidean element of length dl
weighted by a term depending on the boundary informa-
tion in the image. Moreover, Caselles et al. showed that
minimizing (1) is equal to finding a geodesic curve in a
Riemannian space. Note that the trivial solution C' = (}
is always a global minimizer of this energy. Therefore the
Geodesic Active Contour model is only meaningful in com-
bination with certain constraints (e.g predefined foreground
and background seed regions).

In order to minimize Eg 4¢, the standard approach is to
apply the gradient descend method to the Euler-Lagrange
equation of the GAC model:

oC(t)

ot
where « is the curvature of C and N is the unit normal to
C'. Similar to the Active Contour/Snake model, the level

set method can be used to implement the evolution process,
however it also does not yield a global optimum.

2

2.3 Graph Based Approaches

Graph based approaches have also been used to find a so-
lution for the GAC model. Graph based methods rely on
the partitioning of a graph that is build to match the corre-
sponding image. An undirected graph G = (V, £) contains
a set of nodes V corresponding to pixels (in 2D) or voxels
(in 3D), and a set of undirected edges £. The connectiv-
ity of the graph is based on the chosen neighborhood sys-
tem. Based on the image data, a non-negative weight w,
is assigned to each edge. These weights correspond to the
weighted length of the GAC model. Additionally there are
other nodes, called terminals, representing the background
and foreground seed regions. To find a solution of the graph
based approach, a minimum cut C' C & is computed [3]
which separates the graph around the terminals. The energy
of this cut is obtained by summing up all edges which are
intersected by the cut:

Clg =S w, . @)

ecC

It is well-known that the quality of this approximation, de-
pends highly on the order of connectivity of the underly-
ing graph structure. In fact, Boykov et al. showed that for
successively finer grids, the discrete approximation of the
contour length |C|[; approaches the Euclidean length of the
contour. Note that in order to obtain a reasonably good ap-
proximation, a high degree of connectivity is needed. Graph
based methods suffer from a metrication error induced by
the neighbourhood system. Fig. 2 shows the effects of a
typically used 4-neighbourhood.

(a) 4-neighbourhood (b) Our approach

Figure 2: Effects of metrication error.

Another graph based approach was taken by Grady. The
random walker algorithm [13] starts with a random walker
at each unlabeled pixel, and then finds the probability that
it first reaches one of the foreground-background terminals.
In order to obtain the final segmentation, each pixel is as-
signed the most probable seed destination. The probability
of a random walker is obtained by the solution of a weighted
Dirichlet problem [13].

Dlu) = 5 [ 9(a)Val’ ®)
Q

Note that the Dirichlet problem is quadratic and therefore
easy to solve, but on the other hand does not correspond to
the weighted length of the contour. Grady showed how to set
up the graph correctly and derived a sparse linear equation
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system that has to be solved. This system can be solved in
closed form by a LU decomposition or with iterative meth-
ods like the multigrid method or the method of conjugate
gradients.

2.4 Continuous Maximal Flows

In [1], Appleton and Talbot presented an approach to com-
pute minimal surfaces using continuous maximal flows. The
continuous maximal flow system is defined as following:

oP
5= "VF, (©)
OF
T —-VP, (7)
subject to
F[<g. (®)

P is a scalar potential field and F is a vector flow field, that is
evolving over time. The foreground can be defined as source
by P(x) = 1 and the background as a sink by P(z) = 0.
With (6) the potential P is updated according to the flow
field F. (7) makes the flow dependent on the gradients in
P. Together they form a system of wave equations. The
constraint (8) on the magnitude of F regulates the diffusion
process according to the Riemmanian metric g. At strong
borders the propagation is slowed down, while in flat re-
gions evolution is almost unopposed. The algorithm is im-
plemented as an iterative scheme with an artificial timestep
At < —= for D-dimensional images. The final segmenta-
tion is obtained as the 0.5 levelset of P.

2.5 Weighted Total Variation

In [4, 5], Bresson et al. introduced the g-weighted Total
Variation Norm

TVy(u) = /Qg(bL)|Vu|dQ )

He showed that if « is a characteristic function 1, (9) is
equivalent to Egac in (1). Note that the characteristic func-
tion 1¢ is a closed set in the image domain €2 and C stands
for its boundary. The promise of this formulation is that if
w is allowed to vary smoothly between [0, 1], (9) becomes a
convex functional, meaning that one can compute the global
minimizer of it. The final segmentation can in turn be ex-
tracted from u by selecting a level set in [0, 1].

As mentioned above, the trivial solution © = const is
always a global minimizer of (9). To account for this, one
has to restrict the space of possible solutions by incorpo-
rating some constraints. In [4], Bresson et al. coupled the
minimization of (9) with the piecewise Mumford Shah func-
tional [10]. This effectively prevents the GAC model from
yielding a trivial solution but on the other hand reduces the
flexibility of the model. In [15], Leung and Osher unified
denoising, segmentation and inpainting. The idea is to use
(9) together with a spatially varying L' data fidelity term.

Instead of coupling the minimization of the GAC model
with some unsupervised data driven constraints we propose
to include local constraints provided by the user into the
functional (9). We will describe this in the next Section.

3 Method

In this Section we will first formulate our variational image
segmentation model. Then we will present a fast algorithm
to compute the minimizer of our image segmentation model.
Furthermore, we will show that our algorithm can actually
be seen as a generalization of the continuous max-flow al-
gorithm of Appelton and Talbot [1].

3.1 Proposed Segmentation Model

We propose to minimize the following variational image
segmentation model:

min {/ g(x)|VuldQ + 1/ Az) (u— f)? dQ} .
u€[0,1] Q 2 Ja

(10)
The first term of the energy is exactly the g-weighted Total
Variation of u (see also (9)). Note that u is no longer a char-
acteristic function but can vary continuously between [0, 1].
The function f € [0, 1] is provided by the user and con-
tains information about foreground (f = 1) and background
(f = 0) seed regions. The spatially varying parameter \(x)
is used to give a certain weight to the information contained
in f. Note that for (A = o0) the information in f is said
to be a hard constraint and for (A = 0) the information in
f is not used. In addition we allow that the edge detection
function g(x) can also be altered by the user, i.e. edges can
be deleted or added in an interactive manner. Finally, we
mention that the constraint v € [0,1] can be omitted since
fe€10,1].

Our segmentation functional has a close connection to the
Total Variation denoising model of Rudin, Osher and Fatemi
(ROF) [17]. However, there are some significant differences
between (10) and the original ROF model. First, our func-
tional relies on the g-weighted Total Variation, second the
parameter ) is spatially varying.

3.2 Computing the Solution

The standard approach to minimize our model is to solve the
Euler-Lagrange equation associated with (10)

Vu

v. (g@'w) M@ - f)=0. ()

When looking at this equation, one can make two observa-
tions: First, due to the ﬁ term, the equation is highly
non-linear. Therefore, we can not expect to find a closed-
form solution to it. Second, the equation is not defined for
Vu = 0. To overcome this limitation, a simple and com-
monly used approach is to replace |Vu| by a regularized
version |Vule = +/|Vul? +e. However, for small ¢ the
equation is still nearly degenerated and for larger € the prop-
erties of the model are lost.

In [8, 9], Chambolle proposed a simple fixed point algo-
rithm in order to solve the original ROF model. The advan-
tage of Chambolle’s approach is that no e-regularization of
the Total Variation term is needed. Unfortunately, Cham-
bolle’s approach can not be used with spatially varying pa-
rameter A(z). To account for this, we introduce an auxiliary
variable v and propose to minimize the following approxi-
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mation of (10):

u,v

2—1(9/9(u—v)2d9+
%/ﬂ)\(x) (v—f)2dQ} . (12)

min {/Qg(:z:)|Vu|dQ +

We first note that as § — 0, (12) approaches (10). Moreover
we note that (12) is still convex. This means that we can
compute the global minimizer of it. However, unlike (10),
(12) is now an optimization problem in two variables, u and
v. Therefore we have to perform an alternating minimiza-
tion with respect to u and v. The outline of the alternating
minimization procedure is as follows:

1. For fixed v, solve (12) for u.

min {/ g(2)|VuldQ + L (u—v)° dQ} . (13)
u 9 20 Jq

We can see that this optimization problem is exactly the
ROF model, where 6 is now a spatially constant regu-
larization parameter. The only difference to the original
ROF model lies in the g-weighting of the Total Variation
norm, which does not induce any additional complexity.
We can therefore use an adapted version of the projected
gradient descend algorithm presented in [9] in order to
solve this sub-optimization-problem exactly.

f)7z+1 — pn_i_gvun
~n+1
p7z+1 _ P i
max{l,@}
g
u"tt = " OV pt Tt (14)

where p is the so-called dual variable and 7 is the
time step which ensures that the scheme remains stable.
In [9] it has been shown that for D-dimensional prob-
lems 7 < %. We do not need to exactly solve this
sub-optimization-problem. One iteration of this scheme

is sufficient to make the entire algorithm converge.

2. For fixed u, solve (12) for v.

1 1
min 7/ (u—v)2dQ—|—f/ Mz) (v — f)?dQ
v 29 Q 2 Q
5)
is a point-wise convex minimization problem and there-
fore easy to solve. The Euler-Lagrange equation for (15)
is given by:

v—u-+Ax)f(v—f)=0. (16)

which can be solved in closed form via

n+1 —_ un+1 + A(l)ef

1+ A(z)0 {17)

3. Goto 1. until convergence.

4

The algorithm presented above is valid for an arbitrary A(x).
However, only two values of A\ are meaningful. For a fixed
6 > 0 we can identify the following to cases:

1. A = oo accounts for fixed foreground or background
seeds provided by the user. Therefore the second step

of our algorithm is given by v = limy 1ﬁt_>;\90f = f.

2. A = 0 enables the algortihm to minimize the Geodesic

. T utA0f
Active contour energy and hence v = limy_.o 5 e =
U.

Fig. 3 shows the evolution process of the variable u dur-
ing the minimization of the proposed segmentation model.
Before running the minimization algorithm the variable u
was initialized to © = 0.5 and the dual variable p was ini-
tialized to p = 0. The approximation parameter 6 was set
to 0.5. The edge detection function was chosen as in (2).
Fig. 3(a) shows the constraints f as provided by the user.
The border was set to be background, the foreground regions
were drawn by the user. Specified regions in f correspond
to A = oo, unspecified (grey) regions correspond to A = 0.
Fig. 3(b) and Fig. 3(c) show intermediate steps of the itera-
tive minimization algorithm, Fig. 3(d) shows the final result
of u.

3.3 Connection to Continuous Maximal Flows

We now show that in case of A = 0 our algorithm is equiva-
lent to the continuous maximal flow algorithm of Appleton
and Talbot [1].

Let us first write down our algorithm for. For A = 0,
the second step of our algorithm given by v = u. We can
therefore simplify our algorithm as

~Nn n T n
PPt o= p +4Vu
pn—i-l — ﬁn+1
max{l,w}
g
u"tt = 4oV .pntl. (18)

Based on (6), (7) and (8) let us now write down the iterative
algorithm of Appleton and Talbot:

Pt = P" 4 AV -F"
F'tl = F* 4+ AtvPr !
) S (19)
It is now easy to see that for Az = 6 = 7 and up to a order-

ing of the updates both schemes are equivalent. Therefore,
the continuous maximal flow algorithm of Appleton and Tal-
bot essentially computes the minimizer of the weighted To-
tal Variation functional. In other words, the projected gradi-
ent descend algorithm [9] is in principle equivalent to maxi-
mal flow algorithm of Appleton and Talbot.

4 Implementation

In this Section we discuss the implementation on the graph-
ics device. We show the benefits of parallel hardware, and
address some performance issues. Further the importance of
the graphical user interface is discussed.
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(a) Initialization (b) Intermediate Step 1
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(c) Intermediate Step 2 (d) Final Result

Figure 3: Evolution process of the continuous variable v during minimization of the proposed image segementation model.

4.1 Graphics Hardware

Graphics hardware has to deal with a huge amount of data
to render realistic 3D scenes. In the early years, graphics
hardware offered a fixed rendering pipeline that could not
be altered. In order to compute more complex illumina-
tion models programmable shader units were introduced at
the vertex and pixel levels. They offered the possibility to
apply a small program to each pixel. In turn, the massive
parallelisation potential of rendering tasks led graphic pro-
cessing units (GPUs) towards more and more parallelisation
on the hardware side. The latest generation combines the
vertex and pixel shader units in the so-called unified shader
architecture. State-of-the-art graphics hardware offers the
impressive performance of up to 576 GFlops and a memory
bandwidth of up to 103.7GB/s.

With the introduction of the GeForce 8-series, NVidia
also introduced the CUDA (Compute Unified Device Ar-
chitecture) framework [11]. CUDA provides a standard C
language interface for programming on the GPU [12]. It
can handle a massive number of parallel threads that are
sheduled to the processor. Moreover, CUDA provides the
user with a programming interface that handles sheduling
and execution on the GPU. As variational methods are per-
fectly suited for parallelisation we chose to implement our
algorithms using CUDA.

When one takes a close look to the developement of
graphics hardware, one can see that the computation perfor-
mance increases more rapidly than the memory bandwidth.
On the GeForce 8800 already 24 floating point operations
can be performed while a single operand is fetched from the
global GPU memory. Consequently it is sometimes faster to
make computations several times, than to store the result in

global memory. This also means that algorithms with high
arithmetic intensity are best suited for the GPU.

4.2 Implementation on the GPU

The processing units of the GPU are arranged into groups
of so-called multiprocessors. One multiprocessor, can exe-
cute several independent threads having access to the same
shared memory. While reading data from the global GPU
memory is still fast (about 75 — 100 GB/s), reading from the
shared memory is even 75 times faster. We exploited this
feature by loading a local block (e.g. image patch) into the
shared memory and ran the algorithms for several iterations
before writing the results back into global memory. High
speedups can be gained with this scheme, but the number of
such internal iterations should also be limited. The informa-
tion at block borders can not be exchanged during computa-
tion leading to a slower convergence of the entire algorithm.
Experiments showed that a number of 5-10 internal itera-
tions provides the best overall performance.

Due to the high costs of accessing global memory and
the fact that it is not cached, it is of great importance to
obey a continuous access pattern to obtain maximum mem-
ory bandwidth. CUDA can load 128-bit words from global
memory in a single instruction. Aquisition of memory has to
be organized in a way that the simultaneously requested data
can be coalesced into as few as possible memory accesses.
As we work on higher dimensional blocks, the data has to be
appropriately padded to meet the alignment requirements.

In CUDA the warp size indicates the number of threads
that are physically executed at the same time on a multi-
processor. Therefore it is important to chose the number of
threads per block as a multiple of the warp size. Further-
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more if conditionals take different branches in a warp they
are serialized. If possible one should account for this to gain
optimal speed.

The execution of the algorithm on the GPU has only
marginal overhead that has to be executed on the CPU. The
CPU can therefore be used for other tasks.

4.3 Graphical User Interface

The graphical user interface is designed to provide the user
with simple and fast methods to simplify the segmentation
process. We therefore implemented brushes of different
functionality:

e Foreground / Background: This hard constraints force the
pixels to be of a certain class. At least one foreground and
one background seedpoint has to be set.

e FErase Edges: By modifying the edge image with the erase
tool, strong edges that are near the desired segmentation
border can be deleted.

e Draw Edges (freehand or lines): If certain edges are too
weak or missing one can draw additional edges to the
image.

For 3D segmentations the user can choose between different
views, namely in axial, sagittal or coronal direction. In turn
the brushes can be applied to the selected view. Clearly, a
user interface working fully in 3D would be of great benefit.
The work in [2] suggests some possible directions.

5 Experimental Results

In this Section we demonstrate the effectiveness of our ap-
proach by applying our segmentation algorithm to different
2D and 3D medical segmentation tasks. We emphasize that
the presented segmentation results should only demonstrate
the potential of our method. A rigorous clinical evaluation
of our method is an issue of future work. Since our segmen-
tation algorithm solely relies on edge information it is often
necessary to apply a smoothing filter to the image before
computing the edges.

5.1 2D Results

Fig. 4(a) shows an example where the selection of fore-
ground seeds does not provide enough information to yield
the desired segmentation of the liver. By using the erase
brush, the edge causing the wrong segmentation is deleted
effecting the algorithm to snap to the next stronger edge.
Similar, the drawing tool is used to introduce an additional
edge that effectively attracts the segmentation border (see
Fig. 4(b)). Since our algorithm is guaranteed to yield
a global optimum, the algorithm immediately converges
against the new optimum after drawing onto the image. Fig.
4(c) depicts the result of the new global optimum after tak-
ing into account the local constraints provided by the user.
Fig. 5 shows an segmentation example of a heart MRI
data set. Note that any approach that relies on the homo-
geneity of the intensity distribution would fail in this case.
On the other hand only a few inputs from the user are needed
to obtain a meaningful segmentation result. The foreground

6

Figure 5: Segmentation of a heart MRI data set.

seed regions are shown in light red, and the erased edges are
shown in green.

5.2 3D Results

Due to the large number of voxels in 3D the algorithm usu-
ally needs more time to converge to the global minimizer
(approximately a few seconds). On the other hand the user
also needs more time to draw the constraints to the slices.
The interactivity of the segmentation process is therefore
not affected at any time. Limited by the GPU memory of
768 MB the largest data set we were currently able to load
has a size of 512 x 512 x 128 voxels. Note that this is ac-
tually a large data set which can not be processed by most
graph cut based approaches.

In the following, we will present three datasets that were
segmented in 3D. The first data set is a 512 x 416 x 96
Liver MRI data set. The voxel size of this data set is
0.72 x 0.72 x 2mm. Fig. 6 depicts the segmentation re-
sult superimposed to a ortho-slice view of the original data
set. Note the typical varying contrast frequently found in

Figure 6: Segmentation of the liver in the Liver MRI dataset.
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(a) Only seed regions

(b) Local constraints

(c) Final segmentation

Figure 4: Segmentation process of a liver in a CT image. (a) The segmentation using only a foreground seed point and the border set to
background. In the highlighted area segmentation is wrong. (b) Modifying the edge information with the erase and the draw tool. (c) The

final segmentation.

MRI images. However, contrast variations do not affect the
performance of our algorithm since we solely rely on edge
information.

The second data set is a 512 x 512 x 96 CT data set
of the Abdomen. The voxel size is 0.55 x 0.55 X 2 mm.
We segmented the liver, the spleen and the kidneys. Fig. 7
shows a 3D rendering of the segmented viscera. It took us
about 8 minutes to obtain a segmentation of the liver. The
kidneys and the spleen were obtained after approximately 5
minutes each.

The third 3D dataset presented here is a 256 X 256 x 256
MRI data set of the Knee. The voxel size of this data set
is 1.36 x 1.56 x 1 mm. Fig. 8 depicts one characteristic
slice of this data set. Note that this data set has a low signal
to noise ratio and the edges are very weak. Fig. 9 shows
a 3D rendering of the segmented femur superimposed to a
ortho-slice view of the original data set.

6 Conclusion and Future Work

In this paper, we proposed an interactive general purpose
segmentation algorithm. Our approach is based on mini-
mizing an energy functional incorporating a weighted Total
Variation regularization and a data term taking into account
high-level information from the user. Being convex our al-
gorithm is guaranteed to yield a globally optimal solution.
Moreover, since our energy is defined in a continuous setting
we do not suffer from metrication errors. We also showed
that our algorithm can be seen as a generalization of the con-
tinuous maximal flow algorithm of Appleton and Talbot [1].

We have implemented our algorithm on state-of-the-art
graphics hardware leading to a interactive segmentation tool
usable for 2D and 3D segmentation problems. We proposed
to incorporate different types of local constraints provided
by the user: Foreground and background seed regions, re-
moval and adding of wrong or missing edge information. If
a new constraint is incorporated into the segmentation pro-
cess, the algorithm immediately adapts the current segmen-
tation to the new situation.

In experimental results we showed that reasonable seg-
mentations of different datasets can be obtained in a few
minutes.

Figure 7: Segmentation of various viscera in the Abdomen dataset.

Currently, the memory of the GPU is a limiting factor
for the maximum size of the data set that can be processed.
However we are currently able to process a maximum size
of 512 x 512 x 128 voxels.

In future work we will concentrate on the simultaneous
segmentation and rendering of the result by distributing the
data over several GPUs. We are also planning to improve
the user interface for 3D applications.
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