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Abstract—Supervised learning has demonstrated to be an
effective strategy in training neural networks for vehicle nav-
igation. However, it requires labeled data, which may not be
available when a large number of vehicles need to be controlled
simultaneously. In contrast, Deep Reinforcement Learning (DRL)
circumvents the necessity for ground truth labels through en-
vironmental exploration. However, most concurrent DRL ap-
proaches either tend to operate in the discrete action/state space
or do not consider the vehicle kinematics. In this paper, we use
DRL to control multiple vehicles while also considering their
kinematics. The task is for all the vehicles to reach their desired
destination/target while avoiding collisions with each other or
static obstacles in an unconstrained environment. For this, we
propose a decentralized Proximal Policy Optimization (PPO)
based DRL agent that independently provides control commands
to each vehicle. The agent is based on two separate PPO models.
The first is used to drive each vehicle to the proximity of its
target. Once within the target’s proximity, the second model is
used to park that vehicle at the correct position and orientation.
The decentralized nature of the algorithm allows each agent
to rely only on information about its current state and target,
along with details regarding the closest obstacle/agent. By scaling
this approach to all vehicles, simultaneous navigation of multiple
vehicles can be achieved. Experimental results show a collective
strategy that allows consistent results across a wide range of
scenarios while scaling to situations with up to 20 vehicles and
12 stationary obstacles.

Index Terms—Multi-Agent Navigation, Multi-Vehicle Environ-
ment, Reinforcement Learning

I. INTRODUCTION

In recent years, Deep Learning has established itself as
a viable method for autonomous vehicle control, as demon-
strated in [1], [2], [3]. However, scaling these methods tends
to be constrained by the requirement of having supervised
labels recorded by an expert driver. This matter is further
complicated when not just one but multiple vehicles have to
be controlled simultaneously. The labels for these multiple
vehicles can be obtained using optimization-based algorithms
[4]. However, the optimization suffers from scalability issues
when control commands for an increasing number of vehicles
must be determined.
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A viable alternative to the aforementioned problem is to
use Deep Reinforcement Learning (DRL), which has shown
increasingly good results across various problem domains [5],
[6], [7]. Of particular interest to this paper is where DRL has
been used for multi-agent navigation tasks [8], [9], [10], [11],
[12], [13]. However, an issue of concern with these methods is
that they either operate in the discrete action space, consider
the vehicles to be holonomic, or both. This does not necessar-
ily align with reality, where a car’s longitudinal and lateral
controls operate in the continuous action space. Moreover,
the non-holonomic nature of the vehicles necessitates that the
vehicle kinematics be considered when determining the control
commands. Otherwise, it may lead to erratic driving.
In this paper, we also propose a DRL approach. It is meant
for the task of navigating multiple vehicles to their desired
destination while avoiding collisions with other vehicles and
static obstacles. The distinguishing feature of our method
from previous DRL approaches is that the vehicles navigate
in continuous state and action space, and the non-holonomic
behavior of the vehicles is integrated with the control com-
mands to render realistic driving characteristics. In particular,
our approach calculates control commands for each vehicle
independently. It uses two separate Proximal Policy Opti-
mization (PPO) models to simplify the navigation problem.
The first covers large distances until the vehicle reaches a set
distance threshold of the target. The other model then parks
the vehicle on the target with precise controls. The models
control each vehicle separately, which allows for decentralized
calculation of all actions. The approach considers the current
vehicle’s state and destination as well as that of the closest
vehicle/obstacle to determine the next action. This information
is in the individual first-person view of each vehicle.
To evaluate the effectiveness of our framework, we benchmark
against [4]. It operates on a continuous state/action space and
models the vehicle kinematics using the bicycle model [14]
and is therefore used as a baseline in the experiments. It
utilizes a centralized attention-based Graphical Neural Net-
work (A-GNN) controller to retrieve information from the
surrounding vehicles and the control commands. The central-
ized nature of the A-GNN architecture necessitates redundant
computations even for a pair of agents that do not necessarily
influence each other’s actions. These redundant computations



may slow down the real-time inference. In contrast, our
method uses decentralized computation across the vehicles and
does not require supervised labels for training, allowing for
better scalability and faster real-time inference. In this regard,
the contributions of our work are as follows:

1) Unlike other Reinforcement Learning (RL) methods, our
framework for multi-agent navigation operates on the
continuous state/action space while also considering the
vehicle kinematics in the motion model.

2) In contrast to the supervised A-GNN baseline, our
method scales better as the number of vehicles/obstacles
increases without needing labeled data for training.

3) The decentralized nature of our algorithm allows infer-
ence of multiple vehicles in parallel. This results in a
speedup that is an order of magnitude faster than the
A-GNN baseline.

The application areas of our method in unstructured envi-
ronments include warehouses where transportation platforms
carry goods from a starting point to a destination.

II. RELATED WORK

There are many facets to autonomous driving, focusing on
single or multiple agents, navigating in structured traffic or
unstructured/unconstrained road environments, selecting the
appropriate input state representation, deciding on the mode of
training, or even platforms for assessing performance. In this
section, we refer to related works that allude to the aspects
above. It is pertinent to mention that this work is meant for
multi-vehicle control in unconstrained environments using
RL, while also considering vehicle kinematics. Furthermore,
our approach does not need any supervised ground truth labels.

BEV State Representation: In [15] and [16], a bird’s
eye view (BEV) state representation is used for single
vehicle control in structured environments. They use an
extensive amount of labeled data for training. This results in a
comprehensive effort to create supervised ground truth labels.
We also use a BEV-inspired state representation wherein the
current, target, and closest obstacle state on a 2D plane are
known to the network.

Evaluation Platforms: It is critical to evaluate vehicle
control algorithms to assess their driving performance. While
preliminary experiments in the real world might be tedious,
many platforms simulate real-world road traffic to evaluate
autonomous driving performance. Depending on the platform,
they might include other cars, pedestrians, traffic regulations,
and much more. Examples are StreetLearn [17], [18] and
Carla [19]. Some approaches, such as [20], [21], [22], use
Carla for evaluating single vehicle control algorithms in
structured environments. Furthermore, the racing environment
of Gymnasium also focuses on single vehicle control [23].
In our experiments, the simulation platform from [4] is
used for evaluating multi-vehicle control in unconstrained
environments.

Multi-Agent Trajectory Prediction and Control:
Approaches using Graphical Neural Network (GNN)
architectures have shown promising results in multi-agent
trajectory prediction [24], [25], [26], [27] in structured
environments. This work, in contrast, is meant for multi-agent
control in unstructured/unconstrained environments using RL.
The work of [8], [9], [10], [11], [12], [13], [28] also use RL
for multi-agent navigation, but they either do not consider
vehicle kinematics, act in discrete state/action space, or both.
Meanwhile, [29], [30] can also navigate multiple agents
towards their desired destination, as in this work. However,
the critical difference is that they either consider the agents
as particles or do not consider the non-holonomic constraints
of the vehicles.

Formation Control: Furthermore, there have been
approaches that control multiple vehicles through formation
[31], [32], [33]. However, rather than being independent of
each other, they use a lead vehicle to build up a formation to
guide other vehicles.

Baseline: We use [4] as the baseline for comparisons in
the evaluation section. The approach discusses an Attention
Based Graphical Neural Network (A-GNN) paradigm that
controls multiple vehicles. It considers the state and target
of all vehicles and stationary obstacles to calculate each
vehicle’s action. For training, it uses labeled data based on
an optimization-based procedure. With this data, a model can
be trained to achieve good results in reaching targets with
only a few collisions. It even generalizes to higher numbers of
vehicles with decent results while outperforming other GNNs.
Two main differences exist between the baseline A-GNN
approach and the RL one presented in this project. First, the
A-GNN uses data with extensive labeling effort. This limits
the training data to only 1-3 vehicles and 0-4 obstacles due to
the computational complexity of obtaining labels for a larger
number of vehicles. Furthermore, the A-GNN chooses its
action based on the information on all vehicles and obstacles.
This information is inefficient and excludes many application
areas where this data is unavailable. Moreover, all the actions
are calculated by a centralized network rather than offering
the possibility of decentralization [4].

III. FRAMEWORK

There are two main components regarding the approach that
we propose. First, a custom RL environment is designed to
simulate vehicle kinematics and return feedback to the agent.
Second, the agent architecture determines the fundamental
navigation capabilities of the agent. The following section will
go into the details of the respective design decisions.

A. Reinforcement Learning Environment

Vehicle Kinematics: For each vehicle, there are two vari-
ables with which the vehicle can be controlled: pedal acceler-
ation (p) and steering (φ). The state of a vehicle is determined



by the x and y position, its orientation ζ, and velocity v. The
actions can change this state based on the equations and order:

ζt+1 = ζt + vt ·
tan(φt) ·∆t

L
vt+1 = β · vt + pt ·∆t

xt+1 = xt + vt · cos(ζt) ·∆t

yt+1 = yt + vt · sin(ζt) ·∆t

(1)

where β represents environmental friction and L the wheel
base. Using these equations results in a fast and accurate
way of calculating the future car’s states. Note that this
calculation method is only reliable for a small ∆t. For this
reason, ∆t = 0.1 is a good trade-off between accuracy and
computational expenses. In addition, this allows the agent to
update its actions with a quick reaction time.

Initialization and Termination: The initialization of an
episode is specialized to generate difficult scenarios. To
achieve a challenging scenario, we place obstacles in the path
of the training vehicle. In addition, other vehicles are placed
so that it is more likely that they cross paths with the primary
training vehicle.
There are two conditions that could lead to the termination of
the current episode. First, the maximum number of timesteps
avoids unnecessarily long episodes where the vehicle is stand-
ing still or moving away from the desired area. In addition,
there is the success state, which terminates the episode when
reached. The exact conditions are discussed in detail later.

B. Reward Function
The reward function is another key part of the environment.

It gives the agent feedback on its performance. The reward is
constructed from the perspective of the environment and is the
same for both the long and short-range models. More details
on Task Splitting can be found in subsection III-C. Introducing
subgoals is a great way to avoid sparse rewards. Sparse
rewards would be highly data inefficient because reaching the
goal by coincidence is almost impossible in such a challenging
environment. The overall received reward at time t (rtotal,t)
is a combination of 4 sub-rewards: position rdis,t, angle
rangle,t, time rtime,t, and collision avoidance robs,t. Each sub-
reward constitutes achieving a particular subgoal. For example,
rdist,t is the reward received for getting closer to the correct
target position. We discuss this in detail in the subsequent
paragraphs.

rtotal,t =



rdis,t + robs,t + rangle,t + rtime,t,

if St ∈ S ∧ t ≤ tmax

rsucc,

if St /∈ S ∧ t ≤ tmax

rtrunc,

if t > tmax

(2)

The combinations of all reward components represent the
total reward rtotal. Note that S is the set of all nonterminal

states and St the current vehicle state at timestep t. All
components are carefully balanced so that the model tries
to maximize all of them instead of a subset. This is why
all components contain an individual constant scaling factor
α to balance them against each other (Equations 3, 4, 5,
and 6). The respective subscript depicts the corresponding
reward. The following subsections will describe all reward
components in more detail.
The success reward sets the basic motivation for the agent
to reach a goal state. Meanwhile, truncation provides
additional punishment in case no goal state is reached
after tmax timesteps. If an agent reaches a goal state in
time, the model receives a high success reward rsucc,
which results in rtotal = rsucc, St /∈ S ∧ t ≤ tmax. When
reaching the maximum number of timesteps tmax, the
model receives a truncation reward rtrunc. This results in
rtotal = rtrunc, t > tmax. Note that rtrunc is usually negative
and punishes the agent.

Distance Reward, rdis,t: The distance reward incentivizes
the agent to minimize the distance to the target position. It
increases the closer the vehicle is to the target. In the case that
it is really far away, a minimal positive reward γ is maintained.

r̂dis,t = max {γ, αdis · (cdis − dt)}

rdis,t =

{
r̂dis,t, if dt < dt−1 ∨ dt < dc

−r̂dis,t, if dt ≥ dt−1 ∧ dt ≥ dc

(3)

Equation 3 formulates this linear distance reward concept,
where dt is the distance of the vehicle from its target
destination at the timestep t and cdis is a constant determined
by the environment size. In addition, we introduce the
requirement that the agent only receives a positive distance
reward if the vehicle decreases its target distance in the
corresponding timestep dt. If this is not the case, the agent
receives the same reward but negatively. This condition is
disabled if the agent is closer than dc to the target because
the agent is sometimes forced to move away to improve its
angle.

Angle Reward, rangle,t: One of the subgoals is orienting
the vehicle at the correct angle when stopping on the target.
The agent is motivated by the angle reward to achieve this.
This reward component is mainly based on the angle differ-
ence ζdiff , 0 ≤ ζdiff ≤ π between the car’s and target’s
orientation. Based on this angle difference, the angle reward
is calculated as described in equation 4.

rangle,t =


αangle · (0.5− ζdiff,t

π ) ·
∣∣rdis,t∣∣ ,

if dt < da min

0,

if dt ≥ da min

(4)

The angle reward improves proportionally to the angle
difference. In addition, the angle reward is more important
the closer the vehicle is to the target. This is considered



by multiplying by the absolute distance reward. It is
important to note that the reward is only used in case the
vehicle is closer to the target than da min because there is no
point in rewarding an accurate angle if the vehicle is far away.

Obstacle Reward, robs: The obstacle reward tells the agent
to avoid collisions. There are three possible scenarios. First,
the vehicle is far away from all obstacles. In this case, the
agent is doing everything right. Because this will be the case
most often, it is rewarded with a neutral score of robs = 0. If
the vehicle is close to an obstacle but has not yet collided, the
environment punishes the agent in proportion to its proximity
to the obstacle. Last but not least, the agent receives a high
negative reward rcoll in case of a collision. A collision appears
if the center points of the vehicle and obstacle are less than
dcoll apart. The combined function can be seen in equation 5
with do,i being the distance to the obstacle i, n the maximum
number of obstacles (including vehicles), dmin being the
minimal distance to receive no punishment, and dcoll the
distance at which the vehicle collides. do,0 is the vehicle itself
and therefore excluded.

robs =

n∑
i=1


rcoll, if do,i ≤ dcoll

αobs · rcoll
do,i

, if dcoll < do,i < dmin

0, if do,i ≥ dmin

(5)

Time Reward: If the rewards are not balanced appropri-
ately, there is a risk that the RL agent tries to find the easiest
way to gain as much reward as possible. For example, if the
αangle is high, the vehicle might orient itself to the target
and then remain stationary, as this will grant it huge rewards
at every subsequent timestep. Therefore, we introduce a time
reward to disincentivize this behavior, as given in Equation 6.
The longer it takes the vehicle to reach the target, the more
negative reward it receives.

rtime = −αtime · µ · t (6)

Note that µ is the step size in the environment. These un-
intended strategies run for the entire duration, while intended
strategies that reach a successful state do not. The environment
uses this difference and punishes the agent the longer it takes
to reach a successful state, which results in a massive punish-
ment for these trivial techniques. In addition, it introduces a
motivation to finish quickly.

C. Reinforcement Learning Agent

We train the RL agent using the PPO-Clip on-policy algo-
rithm, based on the following objective [5]:

qt(θ) =
πθ(at|st)
πθold(at|st)

LCLIP (θ) =

Êt

[
min(qt(θ)Ât, clip(qt(θ), 1− ϵ, 1 + ϵ)Ât

]
(7)

LCLIP+V F+S
t (θ) =

Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2κ[πθ](st)

]
(8)

where κ is an entropy bonus that encourages the algorithm to
explore, and qt(θ) is the probability ratio of the old and new
policy based on the parameters θ, and ϵ is a hyperparameter
used for clipping. Furthermore, c1 and c2 are coefficients,
LV F
t represents the learned state-value function, and Ât is

an estimator of the advantage function at timestep t. A more
detailed explanation of the PPO-Clip optimization objective
can be found in the original work [5].
The task of each agent is to output the pedal and steering
action command at every timestep.

Observation Space: The input values to a model need to
represent the state of the environment sufficiently. However,
redundant information could add to the complexity. The
most important information necessary to fully display the
environment is the position of the car, the target, the speed
and angle of the car, and additional information about
obstacles and other vehicles.
Using the absolute position and angle values as input leads
to additional complexity for the agent because different
values represent situations that are the same from the agent’s
perspective. This is why the information the agent gets is in
the respective first-person perspective. This means that the
agent’s vehicle corresponds to (x, y) = (0, 0) and ζcar = 0.
This transformation reduces the number of input values
because the vehicle’s x and y positions and its angle are
fixed. Most obstacles are likely to be irrelevant because they
are not close to the vehicle being controlled. We therefore
only consider information about the obstacle closest to the
vehicle of interest. The position and angle of obstacles are
also adapted based on the agent’s first-person perspective.

Model Size: Both PPO models contain an input layer
corresponding to the observation space, two linear layers with
256 neurons each, and an output layer with the two respective
actions. This results in ∼137k parameters for each model.
While trying different model sizes, models with this size have
empirically demonstrated that they can generalize well while
maintaining stability when exposed to shifts in the training
data distribution, like a varying number of obstacles and
vehicles. It strikes the right balance by being computationally
manageable and expedient for the task.

Task Splitting: The central task to solve can be decomposed
into two subtasks, which are both solved by a separate policy.
The first subtask is navigating a vehicle to its target’s proximity
without collisions. For this task, we utilize the first policy
πθl , which navigates a vehicle across large distances while
avoiding collisions. The second subtask is precisely reaching
and stopping at the target with the correct orientation and
position. To address this, we use the second policy πθs , which
handles short distances that require precise vehicle navigation.
A threshold radius Rswitch from the target position is used to



decide when to use each policy. Equation III-C defines this
strategy more formally:

πt(dt) =

{
πθs , if dt < Rswitch

πθl , else

with πt being the policy used at timestep t and θs, θl represent-
ing the short and long-range policy parameters, respectively.

IV. EXPERIMENTS

Training Process: The final short-range and long-range
PPO models were trained for 40 million and 30 million
timesteps, respectively. All timesteps are only seen once
because of the on-policy property of the PPO algorithm. The
long-range version is trained exclusively on scenarios with
4 vehicles and 3 stationary obstacles, while the short-range
model is based on 1-8 vehicles and 0-8 stationary obstacles.
One of the vehicles is used as the primary training vehicle.
This means we update its policy every timestep based on
the reward for its action. To simulate the other cars, we
frequently copy the primary vehicle policy to all other cars
in the environment. This way, the primary training vehicle
interacts with vehicles based on almost the same policy.

Evaluation: The evaluation is based on the datasets used
in the baseline A-GNN paper [4]. Furthermore, other test
datasets containing more vehicles and stationary obstacles
were added. The complete test suite includes 1-20 vehicles
and 0-12 stationary obstacles. Each test case is tested on 4062
scenarios. Note that cases with 6 or more vehicles only contain
up to 8 stationary obstacles because otherwise, there would
not be enough space for the vehicles to navigate. None of the
test datasets were ever used during training. The goal is that
all vehicles stop at their target position, including the correct
angle, without colliding. Two criteria track the performance:

1) The success-to-goal rate defines the percentage of ve-
hicles reaching their target state without collisions. A
vehicle is in a target state if its center is closer to its
target than 1.25 meters and the angle difference is less
than 0.2 radians. In addition, the vehicle has to be slower
than 0.05m/s. For this metric, a higher number is better.

2) The collision rate is the total number of collisions
divided by the total distance traveled. For this metric,
a lower number is better.

The quantitative results of the evaluation can be seen in
table I. One preference of the model is evading obstacles by
moving to the left. This seemingly unimportant detail plays
an enormous role when scaling the number of vehicles. It is
difficult to notice this preference for less than four vehicles,
but it shows massive benefits for scenarios of ten or more
vehicles. In these cases, the individual preference of each
agent contributes to a collective strategy. This collective
strategy is driving in a clockwise circle until the agent’s target
is reached. Because all agents are doing this, the number of
collisions can be minimized.
While a heuristic approach could imitate this clockwise

movement, introducing and exiting this motion is not as
simple to achieve. In addition, vehicles potentially encounter
stationary obstacles or parked vehicles, which have to be
avoided. Considering these challenges, a complex heuristic
approach would be necessary in combination with manual
fine-tuning. In contrast, the ability to manage these challenges
emerges naturally for our RL based approach.
The success-to-goal rate of the proposed Proximal Policy
Optimization based DRL approach is relatively stable across
all test cases. A consistent performance emerges if the number
of other vehicles and stationary obstacles increases. The group
behavior of the agents can explain this. In dense situations,
the vehicles align themselves in a structure that allows them
to move relatively safely. This explains the relatively high
success-to-goal and low collision rates for many vehicles.
This is especially impressive, considering the models were
only trained on up to eight vehicles and obstacles, and only
have information about themselves and their closest obstacle.

Comparison: Table I compares our approach against the
baseline Attention-based Graphical Neural Network. This
A-GNN Network was trained on labeled data generated by
an optimization algorithm. In addition, it uses information
about all vehicles, targets, and obstacles for its calculations
rather than only the ego-vehicle, its target, and the closest
obstacle. There is one difference in the physics simulation of
the A-GNN. The physics simulation adapts the coordinates
every timestep based on the old velocity and steering angle.
Afterward, the respective vehicle velocity and steering angle
will be updated. This means the actions taken do not affect
the imminent resulting coordinates but only the ones after
them. Because the RL agent receives an immediate reward for
its action, it is important that the action that is taken actually
affects the coordinates that the reward is based on. For this
reason, the order of the physics simulation was changed so
that the RL agent could update velocity and steering angle
and then update the vehicle position. The old order was used
to evaluate the baseline A-GNN to keep consistency with the
physics used in training.
While the A-GNN performs better on a small number of
vehicles and stationary obstacles, it rapidly drops when they
are increased. Our approach performs more consistently and
clearly outperforms in cases of ten or more vehicles. It is
also more resilient to a high number of stationary obstacles.
Sometimes, the collision rate is higher compared to the
A-GNN model. The most severe difference is evident in
cases with a large number of obstacles. In these scenarios,
the A-GNN model follows a conservative approach, resulting
in vehicles not moving and, therefore, leading to relatively
low collision rates.
The RL model performs consistently regarding the collision
and success-to-goal rates for more than ten vehicles, while
the A-GNNs drop rapidly in performance. There are two
plausible reasons for that. The first one is that the DRL
model only consists of 274k parameters compared to the
474k of the A-GNN. Small models tend to generalize better



success to goal rate ↑ collision rate ↓

Number of Vehicles Number of Stationary
Obstacles Our Agent Baseline A-GNN Our Agent Baseline A-GNN

1* 0* 0.93822 0.9963 - -
1* 4* 0.8943 0.6829 1.07E-03 6.74E-04
1 8 0.8223 0.8114 3.83E-03 4.69E-04
1 12 0.7657 0.792 6.87E-03 7.73E-04

2* 0* 0.9121 0.9974 2.69E-04 0.00E+00
2* 4* 0.9226 0.6384 2.46E-03 3.62E-04
2 8 0.9221 0.3832 2.10E-03 9.86E-04
2 12 0.8895 0.2768 4.06E-03 1.60E-03

4* 0* 0.9084 0.9905 5.68E-04 5.09E-05
4 4 0.8839 0.8564 2.18E-03 8.42E-04
4 8 0.8896 0.7052 1.77E-03 1.91E-03
4 12 0.8789 0.5871 2.61E-03 3.35E-03

6* 0* 0.8824 0.9665 9.78E-04 3.60E-04
6 4 0.8760 0.8689 1.12E-03 1.38E-03
6 8 0.867 0.7654 1.64E-03 2.77E-03

10 0 0.85 0.852 1.02E-03 1.91E-03
10 4 0.842 0.7724 1.31E-03 3.04E-03
10 8 0.8399 0.6978 1.52E-03 4.33E-03
15 0 0.839 0.6029 8.29E-04 5.12E-03
15 4 0.8356 0.5231 9.88E-04 6.42E-03
15 8 0.7711 0.4689 3.05E-03 7.54E-03
20 0 0.8297 0.3161 8.10E-04 9.99E-03
20 4 0.7925 0.2563 1.74E-03 1.15E-02
20 8 0.7567 0.2153 2.83E-03 1.29E-02

TABLE I: Shows the performance of our proposed decentralized RL model and the baseline A-GNN approach [4]. As metrics,
the success-to-goal rate and the collision rate are used. The test datasets are based on 4062 scenarios per case, including 1-20
vehicles and 0-12 obstacles. This test data has never been seen before by either model. Note that datasets marked with an
asterisk (*) are test datasets from the baseline evaluation [4], while all others are newly generated test datasets.

on test cases that deviate from the training data. Another
factor is the information gap between the two models.
The input data is mostly the same from the long-range
PPO model perspective. The A-GNNs have to process
information on all vehicles and stationary obstacles. There
is a massive difference between managing three cars and
twenty. The change in data distribution does not severely
affect our model because of the simplicity of the agent’s input.

Average Run Time: Run time is a crucial factor in critical
real-world applications such as driving. The presented RL
approach offers the possibility to efficiently calculate the
respective action on the vehicle itself without any centralized
computation. Table II shows the runtimes for 1-20 vehicles
and 0-8 obstacles. Our approach’s performance evaluation is
based on batch processing on a single CPU. Our approach is
able to calculate actions in a fraction of a millisecond and
is between 10 and 30 times faster compared to the baseline
A-GNN. This is due to the small model size of the agent and
the fact that the agent’s input does not gain complexity with
an increasing number of entities.
The agent can calculate thousands of actions per second,
which is tremendously faster than necessary in real-world ap-
plications. Sufficient speeds could even be achieved with less
capable hardware. This allows cheap onboard computation.

V. FUTURE WORK

An idea for improving the existing method is the introduc-
tion of intelligent obstacle selection. The obstacle with the
highest collision risk with the ego-vehicle is chosen to be fed
into the model, instead of selecting based on which is closest
in proximity. This avoids cases where information about the
closest obstacles with low collision risk is used.

VI. CONCLUSION

We proposed a Proximal Policy Optimization based Deep
Reinforcement Learning Model that provides vehicle control
commands. Our model acts in a continuous action space and
takes vehicle kinematics into account. The initial RL prob-
lem was simplified using a first-person perspective and Task
Splitting. It performs consistently well across various scenarios
while being computationally and information efficient when
compared with the baseline. It does not depend on labeled data
and only relies on the information about the agent’s vehicle
and its closest obstacle. The actions of each agent can be
calculated using its own processing unit. This decentralization
allows for conveniently handling more vehicles than originally
trained for. This behavior enables consistent performance for
up to 20 vehicles and 12 stationary obstacles while maintaining
similar collision rates as opposed to the centralized A-GNN.
Despite the information disadvantage and decentralized action
selection, the approach clearly outperforms the comparable
baseline approach in high-density cases.



Step Time (CPU) ↓
Num.
Veh.

Num.
Obs. Our Agent Baseline

A-GNN

1 0 1.69E-04 1.93E-03
1 8 2.12E-04 2.61E-03
2 0 2.20E-04 2.41E-03
2 8 2.17E-04 2.80E-03
4 0 2.20E-04 2.71E-03
4 8 2.20E-04 3.19E-03
6 0 2.33E-04 2.99E-03
6 8 2.27E-04 3.74E-03

10 0 2.37E-04 3.83E-03
10 8 2.37E-04 4.82E-03
15 0 2.52E-04 5.09E-03
15 8 2.47E-04 6.31E-03
20 0 2.47E-04 6.50E-03
20 8 2.54E-04 7.67E-03

TABLE II: Shows the average runtime per step for the pro-
posed RL architecture and the baseline A-GNN in seconds.
Each step includes the calculation of each vehicle’s control
commands while only considering the model’s forward paths.
The agent uses batch processing to calculate all vehicle actions
at once. CPU: AMD Ryzen 7 7800X3D

Acknowledgements: We thank Yining Ma for his helpful
insights regarding the baseline A-GNN.
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[21] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022.
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