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Abstract

While global methods for matching shapes to images
have recently been proposed, so far research has focused
on small deformations of a fixed template.

In this paper we present the first global method able
to pixel-accurately match non-rigidly deformable shapes
across images at amenable run-times. By finding cycles of
optimal ratio in a four-dimensional graph – spanned by the
image, the prior shape and a set of rotation angles – we si-
multaneously compute a segmentation of the image plane,
a matching of points on the template to points on the seg-
menting boundary, and a decomposition of the template into
a set of deformable parts.

In particular, the interpretation of the shape template as
a collection of an a priori unknown number of deformable
parts – an important aspect of higher-level shape repre-
sentations – emerges as a byproduct of our matching al-
gorithm. On real-world data of running people and walk-
ing animals, we demonstrate that the proposed method can
match strongly deformed shapes, even in cases where sim-
ple shape measures and optic flow methods fail.

1. Introduction

Related work Following a series of seminal works in the
late 80’s [8, 1, 10, 1, 14], image segmentation by mini-
mizing appropriate energies has become a central focus in
Computer Vision research. More recently, it was shown that
under certain conditions globally optimal solutions can be
obtained [2].

However, for most real-world applications of image seg-
mentation purely low-level information does not provide
the desired segmentations. For segmenting and tracking fa-
miliar objects, researchers have therefore introduced prior
knowledge about the shape of objects [13, 17, 5, 4]. The re-
sulting segmentation processes were shown to reliably seg-
ment the objects of interest despite missing or misleading
information, e.g. due to noise, background clutter or partial
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Figure 1. Given a silhouette in one image, we want to iden-
tify a corresponding silhouette in another image. The proposed
method simultaneously determines this matching, a point align-
ment between the matched silhouettes and a decomposition into
deformable parts (see color-coded image).

occlusions. Nevertheless, most existing approaches suffer
from the following limitations:

• Respective energies are often minimized locally. Not
only does this require appropriate initialization, there is
also no guarantee regarding the quality of computed so-
lutions.

• Respective shape priors are typically based on rather sim-
ple geometric distances. As a consequence, they often re-
quire large amounts of training data to sufficiently cover
the space of permissible shapes. Collecting the necessary
training silhouettes as well as inferring alignments and
statistical models is a tedious process. In addition, the
resulting segmentation process only allows for very little
generalization to novel views.

• The notion of point correspondences in the matching of
shapes is often treated superficially. It is either handled
by a reparameterization in the learning process [5] or
completely ignored, reverting to an implicit representa-
tion optimized by the level set method [13].

Two combinatorial solutions to optimally find shapes in
images were proposed in [3, 6]. Yet, both have practical
limitations: The first one only applies to open curves. The
second suffers from a quadratic memory complexity, pro-
hibiting pixel-accurate globally optimal segmentations in
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reasonable-sized images for many years to come.
In [16] we proposed a more efficient combinatorial solu-

tion which allows to generate pixel-accurate segmentations
in a matter of seconds. Yet, it merely allows for rather sim-
ple elastic deformations of a single template. In particular,
rotation is only handled as a global transformation. If parts
of the shape rotate locally – like the fingers of a hand –
performance deteriorates significantly. Such methods are ill
suited for tracking deformable objects like the silhouettes of
walking (or running) persons and animals.

A large body of literature is dedicated to the study of
shape. Sophisticated shape distances typically take into ac-
count the correspondence of point pairs. Moreover, the par-
titioning of shapes into a collection of deformable parts was
identified to play an important role in human notions of
shape similarity. The identification of point or part corre-
spondences is a challenging combinatorial problem [7, 11].

Contribution In this work we introduce the first pixel-
accurate globally optimal algorithm to impose a shape simi-
larity measure in image segmentation which considers large
scale deformations. By minimizing a single functional, the
proposed algorithm computes an optimal matching of tem-
plate points to image pixels, while simultaneously partition-
ing the silhouette into a set of deformable parts.

The key idea is to map every possible solution to a cy-
cle in a four-dimensional graph spanned by the image, the
prior shape and a set of rotation angles. The optimal cycle
in the graph is then found in effectively linear time. Due
to a penalty on changes in the rotation angle, the silhouette
is simultaneously partitioned into the (automatically deter-
mined) optimal number of parts. On real-world sequences
we demonstrate that our algorithm provides accurate match-
ing of substantially deformed persons and animals.

2. Ratio Energies for Shape Knowledge in Im-
age Segmentation

The central contribution of this work is a generaliza-
tion of the method in [16] for matching shapes to images:
Where previously an essentially rigid model was used, we
are able to handle shape templates consisting of an (a priori
unknown) number of deformable parts.

In [16] the countour of a rigid template, given as a
curve S : S1 → IR2, is elastically matched to an image
I : Ω ⊂ IR2 → IR, i.e. an object silhouette C : S1 → Ω
is determined. We only consider uniform parameteriza-
tions of C, i.e. with constant derivative ||Cs(s)|| every-
where. Simultaneously a monotone matching m : S1 → S1

is determined which brings points on C in correspondence
with points on S: A point C(s) is matched to the point
S(m(s)). The two functions are combined into a single
function Γ : S1 → Ω × S1, with Γ(s) = (C(s),m(s)).

The optimal pair of image contour and matching Γ is found
by minimizing an energy in the form of a line integral. This
integral consists of a data term encouraging the contour to
coincide with image edges, a shape similarity term and a
regularization term for the matching:

E(Γ) = Edata(Γ) + ν Eshape(Γ) + λ Ereg,m(Γ), (1)

The data term is realized as a positive edge detector function
assigning low values to high image gradients:

g(x) =
1

1 + |∇I(x)|
, (2)

The shape term corresponds to a comparison of the tan-
gent angles αC(s) on C with the corresponding tangent an-
gle αS(m(s)) on S. The squared cyclic distance on S1 is
taken. The regularity term for m penalizes length distor-
tions: While a part of C may correspond to a part of S of
different length, the amount of distortion is penalized. This
amount is given by the derivative of a scaled version of the
matching function m̃(s) = l(S)

l(C)m(s). The used penalty
function is

Ψ(m̃′)=


m̃′ − 1 if K ≥ m̃′ ≥ 1(
m̃′)−1−1 if 1

K ≤ m̃′ < 1
∞ otherwise

(3)

where K is a pre-defined constant limiting the maximal
length distortion. Together, these terms result in the min-
imization problem

min
Γ=(C,m)

∫
S1

g(C(s)) ds + λ

∫
S1

Ψ(m̃′(s)) ds

+ ν

∫
S1
|αC(s)− αS(m(s))|2 ds (4)

This functional can be written as a ratio energy: Instead of
the uniform parameterization one can parameterize by arc
length and divide by the length of C. The (globally) optimal
Γ can be found by the Minimum Ratio Cycle algorithm [12]
on a suitable regular graph.

For matching deformable shapes across images, the
model described above has two severe limitations:

• The shape dissimilarity encoded in (4) merely allows for
small elastic deformations of a rigid template. While in-
variance to global rotations can be introduced by rerun-
ning the algorithm for various rotations of the template,
local rotations of parts of the shape (the fingers of a hand
or the legs of a running person) are not supported.

• When allowing more severe deformations (as done in this
work), the edge indicator function g(x) is too weak as a
data term: If the image contains regions with high gradi-
ents like the twigs or leaves of trees, the optimal object
silhouette is placed within these regions with no shape
deformation at all.



Both drawbacks will be resolved in the following section.

3. Matching Non-rigidly Deformable Shapes
Across Images

In this section we generalize the above framework from
elastically deforming templates to flexible templates con-
sisting of an a priori unknown number of deformable parts.
To this end we increase the dimension of the optimization
space by adding a rotation function a(·) modelling the local
rotation of parts. The extended function

Γ : S1 → Ω× S1 × S1, (5)

with Γ(s) =
(
C(s),m(s), a(s)

)
, now associates each point

C(s) with a point S(m(s)) on the template and a local ro-
tation angle a(s). The energy function is extended by a
regularization of a:

E(Γ) = Edata(Γ) + ν Eshape(Γ)
+λ Ereg,m(Γ) + ρEreg,a(Γ), (6)

While Ereg,m is the same as in (4), the other terms are mod-
ified in order to solve the problems mentioned in the previ-
ous section.

3.1. Enforcing a Part Decomposition

One of the challenges is to decompose the prior contour
S into the optimal number of locally rotating parts. Such
a part decomposition corresponds to a piecewise constant
angle function. We encourage such functions through a reg-
ularity term which penalizes the absolute derivative of a:

Ereg,a(Γ) =
∫

S1
|a′(s)| ds

3.2. Patch Comparisons for Matching Shapes
Across Images

When matching shapes across images, one is given not
only a prior contour S but also a reference image J which
contains the prior contour. We now want to find a contour C
in the image I that is similar to S and encloses an intensity
pattern similar to the one enclosed by S.

To this end the edge indicator function is combined with
a patch comparison: When assigning a point y on S to a
point x on C, we compare a patch of J centered at y with
a rotated patch of I , centered at x. The rotation angle is
given by the function a(·) introduced above. For the patch
comparison we use a robust L1-measure. With Ra denoting
the rotation by angle a, this is expressed as

h(x,y, a) = β

∫
Br

w(y, z)
∣∣J(y + z)− I(x + Raz)

∣∣ dz

+ g(x)

with free parameter β, a disc Br of radius r and a weighting
function w(·, ·). The weights depend on the angle between
z and the (inwards pointing) curve normal nS of the prior
shape S:

w(y, z) =

{
1 if z = 0
max

(
0, 1

||z|| z
>nS(y)

)
else

3.3. Shape and Regularization Energies for De-
formable Templates

When allowing local rotations of deformable parts the
rotation angles should be taken into account for the shape
similarity measure: Now the rotated angle (αC(s) − a(s))
is compared with the prior angle αS(m(s)). All together
the following energy minimization problem arises:

min
Γ=(C,m,a)

∫
S1

h(C(s), S(m(s)), a(s)) ds

+ ν

∫
S1

∣∣(αC(s)− a(s))− αS(m(s))
∣∣2 ds (7)

+λ

∫
S1
Ψ(m̃′(s)) ds + ρ

∫
S1
|a′(s)| ds

4. Efficient Minimization by Finding Cycles in
a Graph

The minimization problem (7) is mapped to finding the
optimal cycle in a graph: By design of the Ψ(·) function
the length of the object silhouette C can be no longer than
K · |S|. This allows to partition the function Γ into K · |S|
parts, some of which may be empty (or missing). Then,
each point on the prior contour S corresponds to at most K
points on the contour C. When also discretizing the image
locations and the rotation angles, the node set

V = P ×A×
{
0, . . . ,K ·|S|

}
(8)

of a graph arises, where A is a set of rotation angles and P
the set of image pixels. Each valid Γ corresponds to a cycle
in the graph, containing at most one node of form (·, ·, t) for
fixed t. Therefore the last component partitions the node set
into frames of nodes, indexed by t.

The edges in the graph interlink these frames. By con-
necting neighboring image pixels they represent a part of
the image contour C. From the last two components of the
nodes, the local rotation angles and the correspondence to
points on the prior contour are inferred.

For the edges we differentiate between two cases: When
assigning the first image pixel to a shape point, one can
choose the rotation angle freely. In contrast, when assign-
ing a second (or third etc.) pixel to a shape point, we do not
allow a change of rotation angle. Mathematically speaking
there are the transitions (where x and x′ are neighboring



pixels in an 8-neighborhood):

(x′, a′, s′ ·K + l) → (x, a, s ·K)
for s−K ≤ s′ < s and 0 ≤ l < K

(x′, a, s ·K + l′) → (x, a, s ·K + l)
for 0 ≤ l′ < l < K

Each edge e is assigned a numerator weight n(e) and a
denominator weight d(e). The former reflects the integral
along the corresponding part of Γ, multiplied by the length
of the covered image contour. The latter weight reflects this
length. When following a (discrete) cycle Γ in the graph,
the ratio energy ∑

e∈Γ n(e)∑
e∈Γ d(e)

reflects the energy of the corresponding continuous Γ.

4.1. Efficiently Finding the Optimal Cycle

The optimal cycle in the described graph is found via the
Minimum Ratio Cycle algorithm [12] introduced to Com-
puter Vision by Jermyn and Ishikawa [9].

However, some cycles do not correspond to a valid Γ.
These cycles contain several nodes of form (x, a, 0). If such
a cycle is returned as global optimum, a recursive partition-
ing process is started: Frame 0 is partitioned into as many
components as nodes of the above form were found, such
that no two of these nodes are in the same component. For
each component a recursive call is made, where frame 0
only contains the indicated nodes. If one of the recursive
calls finds an invalid cycle, the corresponding component
is partitioned further and more recursive calls are made. In
practice the optimal valid cycle is found in linear time w.r.t.
the number of image pixels.

4.2. Search-Space Pruning

While theoretically an arbitrarily fine set of rotation an-
gles can be sampled, in practice the available memory limits
the resolution. For a single rotation angle an image of size
352×288 requires roughly 750 MegaByte of memory. This
increases linearly with the number of rotation angles.

To optimally exploit the available memory, we introduce
mild pruning: We only consider rotation angles between
−75◦ and +75◦ in steps of 15◦. Additionally we limit the
maximal distance between a point on the image contour and
its corresponding point on the prior shape contour to be no
more than Dmax in both x- and y- direction, where Dmax

is chosen between 50 and 130.
With these restrictions, the running time of our GPU-

based implementation is in the order of 5 minutes, where
the major source is the patch comparison.

reference image matched to next image contour deformation
Figure 2. All parts of the cheetah visible in the reference image
are correctly matched to the next one.

5. Experiments

On several real-world sequences containing moving hu-
mans and animals we demonstrate that the proposed method
is able to simultaneously match the prior contour to the
correct image position, determine a matching between the
two contours and partition the prior shape into a set of de-
formable parts. To allow significant deformations we set
the maximal length distortion to K = 5. The patch weight
β is set to 10/(

∫
Br

w
(
0, z) dz

)
, with a disc radius of r = 5.

Length distortion and deviation of tangent angles are penal-
ized by λ = ν = 0.5. The change of local rotation angles
requires a higher weight – we set ρ = 5 – as it only enters
once for each part of the limb.

5.1. Matching Across Images

In this section we consider the matching of a shape in
a fixed reference image to several frames of an image se-
quence. As long as the order of limb parts is kept and the
parts are not occluded, they are correctly matched. In Fig-
ure 2 we show the matching of a cheetah to the next image,
where the rotation of the front leg was correctly recovered.
The tail is not included in the segmentation as large parts of
it are occluded in the reference frame.

Figure 3 shows a sequence of a running human filmed
from a moving car. Despite scale changes and even if the or-
der of limbs changes in the image, the proposed algorithm
provides a clear partitioning of the torso and the two legs
(see color-coded image in the middle of Figure 3) in an un-
supervised manner.

In Figure 4 we show the matching of a cow, where the
legs and the soil have very similar intensities1. As long as
the respective parts are visible, they are reliably found.

5.2. Comparison to State-of-the-art Methods

Figure 5 shows a comparison to several state-of-the-art
approaches on a sequence where the whole scene is in mo-
tion as it was filmed from a moving car. As can be seen,
the displacements are far too large for optic flow methods
[15] to work well. In addition, such methods cannot include
patch comparisons.

1Image data provided by D. Magee, University of Leeds.
http://www.robots.ox.ac.uk/ vgg/data/data-various.html



reference shape + direct matching direct matching contour deformation decomposition into #15: the occluded hind
image (frame #8) to frame #10 to frame #14 for frame #14 parts (frame #14) leg is matched to the tail

Figure 4. Matching of a walking cow: Despite low contrast between legs and soil, as long as all parts are visible they are found reliably.

reference shape + image (#23) matching to frame #24

matching to frame #26 contour comparison +
decomposition into parts

matching to frame #29 matching to frame #31

Figure 3. The proposed algorithm provides a reliable segmen-
tation and matching across up to seven frames. The arms are
not matched as in the prior image only a small part of one arm
forms a part of the silhouette. In some cases the right foot is not
matched due to a white sock becoming visible.

Likewise, our simple elastic method [16] fails: Being
based on a simple edge detector and not taking into account
the local rotation of parts, the contour is placed in the trees.

In contrast, the contributions of this paper lead to sub-
stantial improvements: Without local rotations, the novel
patch-based data term identifies those parts correctly that
did not rotate, while misplacing the rotating legs. When
also including local rotation even a combination of large
displacements and significant rotation can be accounted for.

reference shape + image optic flow prediction [15]

Schoenemann, Cremers [16] proposed method w/o rotation

proposed method with rotation contour comparison +
decomposition into parts

Figure 5. Where optic flow and elastic shape measures fail, the
proposed method provides substantially better results.

5.3. Tracking

So far we have matched a fixed template to several
frames of an image sequence. It is natural to extend this
to a tracking approach, where the template determined for
the last frame is matched to the next. A result is shown in
Figure 6. Until the point where the legs cross, head, torso
and legs are tracked reliably. We emphasize that our shape
measure is not designed for general human body motions.



Figure 6. By matching the silhouette determined for the preceeding frame to the next one, the running man is tracked over multiple
frames.

We merely demonstrate how it performs on such data.

Conclusion
We present the first global method to impose shape pri-

ors which take into account the local rotation of parts in
image segmentation. The method simultaneously matches
shapes across images, computes an alignment of points on
the matched contours and decomposes the shape into an a-
priori unknown number of deformable parts.

The solution is determined in a globally optimal manner
by computing optimal cycles in a 4D graph, which can be
solved in effectively linear time.

On real-world image sequences we demonstrate match-
ing of rotating parts in the presence of large displacements.
In particular, our approach works reliably where simpler
shape-based methods and optic flow fail.
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