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Abstract— We present a fast and very effective method for
object classification that is particularly suited for robotic appli-
cations such as grasping and semantic mapping. Our approach
is based on a Random Forest classifier that can be trained incre-
mentally. This has the major benefit that semantic information
from new data samples can be incorporated without retraining
the entire model. Even if new samples from a previously unseen
class are presented, our method is able to perform efficient
updates and learn a sustainable representation for this new
class. Further features of our method include a very fast
and memory-efficient implementation, as well as the ability to
interrupt the learning process at any time without a significant
performance degradation. Experiments on benchmark data for
robotic applications show the clear benefits of our incremental
approach and its competitiveness with standard offline methods
in terms of classification accuracy.

Index Terms— Learning and Adaptive Systems, Object De-
tection, Segmentation and Categorization, Online Learning

I. INTRODUCTION

Object classification is a fundamental capability that is re-
quired in many perception systems for mobile robots. Appli-
cations include semantic scene understanding, human-robot
interaction, and grasping tasks, where a semantic labelling
of objects is necessary. Despite recent success in this area,
there remain significant challenges for object classification
methods used in robotic applications. In particular, these
include their potential to adapt to new, unseen situations
and their capability to perform efficient model updates from
newly observed input data. Furthermore, it is of great benefit
if the classifier does not need large amounts of training data,
because often there are not many training samples available
from which semantic information could be learned.

Therefore, we investigate classification algorithms that are
either online, i.e. they can update their internal representation
only based on the most recently observed data sample, or
incremental, where the learned models are refined with new
data samples, but re-consideration of previously observed
samples might be necessary. As a more general term, we re-
fer to these two capabilities as the persistency of the learning
algorithm. Furthermore, our aim is to develop methods that
leverage the available training time (and with it also the given
computation power) in a way that is most advantageous for
robotic applications. This could be done either by alternating
online “operational” learning phases and offline learning
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phases, where the robot is not operating (as shown in the
EU project RobDream [1]). Alternatively, it can be realized
using anytime learning methods, where the learning process
is ongoing but can be interrupted and the intermediate result
obtained so far is already a valid and useful improvement.
In this paper, we follow this second approach. And finally,
we are interested in informed uncertainty estimates of the
classifier, in the sense that wrong label predictions should
go together with a high predictive uncertainty. This aims for
non-overconfident classifiers, which have certain advantages
when used in mission-critical robotic applications [2] and in
Active Learning [3] to reduce the amount of required training
samples.

Following these guidelines, we propose in this paper a
novel incremental anytime learning algorithm based on a
variant of the Random Forest (RF) [4] framework, that is
designed to be very efficient in terms of memory require-
ments. In addition to being incremental, it has the novel
capability to cope with new objects from unseen classes,
i.e. it can extend the range of object classes on which it
is trained during the learning process by incorporating new
training samples. Furthermore, it provides good uncertainty
estimates, which stems from a known property of Random
Forests (see [2]). This combination makes it a very useful
tool for classification tasks in robot perception.

An overview of our learning approach is shown in Fig. 1.
From left to right, we see different training sets used at
increasing time steps for retraining together with the cor-
responding prediction results on two different test sets. One
test set contains samples from all classes, the other one only
represents one object class, however that class – in our case
the banana – is not known to the classifier from the start.
Instead, it only appears in a number of later training sets.
As we show in this paper, our algorithm is able to learn this
new class very efficiently, and it also does not forget it in
later stages even if the new class does not appear in further
training sets.

II. RELATED WORK

A well-known online learning approach that uses a Ran-
dom Forest was by presented Saffari et al. [6]. The approach
“unlearns” bad decision nodes by retraining them. However,
a major drawback of that method is its lack of flexibility,
due to the limited amount of trees and the limited depth.
Furthermore, our main goal is to incorporate new classes
during training, which is in contrast to the approach of Saffari
et al. [6]. The Mondrian forest is another fast online learning
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Fig. 1: Example to show the incremental behaviour of our approach. First, a Random Forest classifier is trained on an initial training set consisting of
20 classes (we use the Washington RGB-D data set [5]) for learning. Then, a number of re-training steps on similar data from the same classes follow.
At some point in time, a new class appears, here it is a banana, the appearance is depicted by a yellow rectangle in the background. The plot shows the
accuracy for all 21 classes in blue, and a test set that only contains bananas in red. As we see, the new object class is successfully learned, and even when
there are no more elements of that class afterwards, the algorithm does not forget that class and is still able to classify it correctly.

approach, which was introduced by Lakshminarayanan et al.
in 2014 [7]. The biggest difference is the use of Mondrian
trees instead of usual decision trees. Nevertheless, these trees
are not suited for high dimensional feature spaces, which is
unavoidable in our setting. Therefore, we did not consider
Mondrian trees here.

Although related, our approach stands in contrast to one-
shot learning [8] and zero-shot learning [9], because we do
not exploit any other source of information than the labelled
training samples, while those methods need to use prior
information to account for the underrepresentation of certain
classes in the training data.

To obtain features for our Random Forest image classifica-
tion we use convolutional neural networks (CNNs) [10], [11].
In comparison to standard CNN fine-tuning, in our setting we
do not assume the number of classes to be given beforehand,
instead it can and will increase over time. This makes the
approach particularly useful for robotic applications. Even
approaches that increase the model capacity of the CNN (e.g.
Wang et al. [12]) can not cope with this kind of situation.

Kontschieder et al. [13] combined Neuronal Networks
with Random Forest into one common famework to obtain
features that provide a representation tailored for the clas-
sifier. While they showed that the Random Forest yields a
better separation than a fully connected layer, their forest
representation is fixed, and this can not be easily transferred
to an incremental algorithm. Therefore, we employ a two-
step approach where we first generate the features and then
use our Online Random Forest to classify them.

Zhou et al. [14] showed that a Random Forest can be used
to generate reliable features without using CNNs at all. They
introduced a cascade approach for Random Forest in which
they tried to imitate the behaviour of deep neuronal networks.
This reduces the amount of hyper parameters drastically and
makes it easier to apply it to a new problem. While that is not
the main focus of our work, we note that a combintation of
that work with ours is worthwile investigating in the future.

III. METHODOLOGY

In this work, we leverage ensemble learning, and in partic-
ular we employ a Random Forest classifier for object classifi-
cation (see [4]). Formally, the framework can be described as
follows. Assume we are given a training data set that consists
of N feature vectors {x1, . . . ,xN}, where xi ∈ RD, and
corresponding categorical ground truth labels {y1, . . . , yN},
where yi ∈ {1, . . . , C}, i.e. there are C different object
classes. From this, we can train a Random Forest F that
consists of B binary random decision trees T1, . . . , TB . Each
tree Tb is trained on a bootstrap replica Sb consisting of pairs
(xi, yi) that were sampled with replacement from the original
training data S = {(x1, y1) , . . . ,(xN , yN )}. This procedure
is called bootstrap aggregating (short: bagging), and it is
used to provide diversity across the individual trees Tb, which
reduces the overall variance (i.e. the dependence on particular
training sets) of the classifier. To train a tree Tb, the data set
Sb is repeatedly partitioned into two sub sets Slb and Srb . Each
such binary partition or split is performed along a feature
dimension d ∈ {1, . . . , D} according to a split value θ. To
obtain a good θ, a sub set of m < D feature dimensions
is sampled randomly, and a corresponding candidate split is
generated with thresholds θ1, . . . , θm that optimize a given
splitting criterion. Often, the so-called Gini impurity g is
used here:

g(Sb) =
C∑

c=1

pc(1− pc) , (1)

where pc is the fraction of samples in Sb that are labeled with
class c. With this, the θ1, . . . , θm are chosen to minimize
qb = nlg

(
Slb
)
+ nrg(Srb ), where nl and nr are the sizes of

the subsets Slb and Srb . The splitting dimension d is then the
one along which the splitting criterion qb is minimal. After
performing the split, the procedure is repeated with each sub
set Slb and Srb until a stopping criterion is met.

It has been shown that the particular choice of splitting
criterion has only a minor influence on the algorithm per-



formance (see [15]). Therefore, we do not consider other
splitting criteria here. The two parameters that do have an
influence though, are the number of trees B and the depth
of each tree, which is controlled by the stopping criterion.
In our implementation, we let the trees grow very deeply,
in contrast to the standard approach. We compensate for
the resulting large memory demands by a very efficient
tree implementation, which uses deep layers. Details are
explained in the next section.

When the training phase is finished, inference is performed
on a new test sample x∗ by determining the leaf node into
which x∗ falls in each tree Tb and returning the most frequent
class label within that leaf node. If we denote that class label
as the label prediction of tree Tb with Tb(x∗), then the final
prediction of the RF classifier is the unweighted vote

F(x) = argmax
c∈C

{
B∑

b=1

1(Tb(x) = c)

}
, (2)

where 1() is the indicator function. Note that this voting from
several, statistically only weakly correlated random decision
trees is the reason for the low variance of the final classifier
and for its very low risk of overfitting (see [4], [16], [17]).

Despite its strong benefits regarding the low computa-
tion time, the high classification accuracy, and the good
uncertainty estimation (see [2]), the original Random Forest
classifier has three major drawbacks. First, it is formulated
as an offline learning algorithm and can therefore not adapt
easily to new observed data samples with ground truth
annotations, particularly if these correspond to new classes.
Second, while deep decision trees increase the performance,
they are often not practical due to their memory demands.
And third, the learning process can not be easily constrained
in time or memory and an interruption of the learning process
does in general not lead to the currently best trained model.
Here, we address each of these drawbacks, proposing a novel
variant of the RF classifier. The details are described next.

IV. PROPOSED METHOD

The algorithm we propose here has three main properties:
persistency, memory-efficiency, and interruptibility (anytime
learning). Details are given in the following.

A. Persistency

The first step is to turn the offline RF algorithm into an
online or incremental learning method. Here, we take inspi-
ration from the Online Random Forest formulation of Saffari
et al. [6], in which existing trees are modified whenever a
new training sample is observed and old trees can be replaced
by newly trained trees to incorporate new information. In our
formulation, we only employ this replacement step, and we
do not modify existing trees. The main reason for this is
efficiency, because refining trees requires a large overhead
in the data structure and turns out to be less efficient than
training new trees and replacing the old ones altogether.
More details are given in Sec. IV-C.

Algorithm 1: Incremental Random Forest
Data: current training set S of size N
Input: current forest F , sample size n
Output: new forest Fnew
Snew ← Subsample(S, n)
Tnew ← TrainRandomTree(Snew)

e← 1
N

∑N
i=1 1(Tnew(xi) 6= yi)

a← Acceptance(e)
(Tworst, eworst,Fnew)← RemoveWorstTree(F)
if a > Acceptance(eworst) then
Fnew ← Fnew ∪ {Tnew, e}

else
Fnew ← Fnew ∪ {Tworst, eworst}

Alg. 1 shows the pseudocode of our approach. It receives
a training set S and an existing random forest F as input.
Such a forest can be obtained, e.g., by standard offline
training using an initial training set S0. Note that Alg. 1 is
formulated in a very general form, without specifying further
the elements of S. For example, if S only contains new data
samples, i.e. it consists of a new batch of samples, then we
have a pure online method, i.e. all data samples from the
batch can be removed after re-training. If, however, S can
grow steadily and old samples remain elements of S, then
we have an incremental formulation of the algorihm. We will
give a deeper analysis of this in Sec. IV-B.

Given the new training set S, the first step is to evaluate
all trees in F with S. This gives us an understanding of
how useful the trees still are under the new observations.
Then, we create a new training subset Snew by randomly
subsampling from S and train a new random tree Tnew on
Snew. This new tree is then evaluated on S. Next, we decide
whether Tnew should be added to the forest or not. Here,
we investigated several strategies: The simplest one is to
always add a new tree after a fixed number of new samples
m have been observed. The problem here is to determine a
good m. Also, this method does not take the performance
of the new tree into account and is therefore not adaptive. A
better approach is to sort the trees by their predictive errors
e1, . . . , eB (from high to low) and then using its converse as
acceptance. So that a new tree is inserted, if its acceptance is
at least as high as the lowest acceptance in the forest. Then
the worst tree in the forest is removed, so that the amount
of trees stays constant to not increase the prediction time.

An important note is that we did not use the out-of-
bag (OOB) performance, because of our different sampling
method. However, the influence is rather small, because the
sample size n is much smaller than N . Therefore, only a
small portion was already seen by each tree. Furthermore,
this small portion only adds a constant offset to the accuracy,
because all trees use the same sample size n.

B. Online vs. Incremental Learning

As mentioned above, the specific nature of Alg. 1 depends
mainly on the way we store the training data S. As we
will show in the experimental section, we investigated three
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Fig. 2: Illustration of fixed and flexible containers. Each class is repre-
sented by a different colour and its size depicts the container size. On the
left, all fixed containers are shown and on the right, all variable ones. The
size of a container depends on the classification error of the corresponding
class. Note that for some classes there are no variable containers. (best
viewed in colour)

different strategies: a pure online method, where S only
contains new data samples, an incremental method that is
unbounded in memory, i.e. S contains all old and the new
data, and a pool-based incremental method, where we defined
a fixed-size data pool P . Whenever a new sample is added
to the pool and the maximal pool size np is reached, one
element is removed from P . However, care must be taken
to not loose all samples from a given class. Also, we take
inspiration from Chen et al. [18], where the training data is
divided into subsets such that all classes are balanced.

We defined our data pool as follows: for each class c we
have two containers Cfc and Cvc , where Cfc has a fixed size
and Cvc a variable size, which can be 0. The role of Cfc is to
keep a minimal number of samples from class c, while Cvc
is used to over-represent class c if the current forest F has a
high misclassification rate on samples from c. The intuition
here is that future trees should be trained with more focus
on those classes, given that the current trees did not perform
well on them. In a way, this is comparable to boosting, where
data samples are weighted according to the misclassification
rate of a weak classifier.

In order to determine the sizes of the containers we
proceed as follows: From the entire pool size np we use
a given fraction γ ∈ [0, 1] for all variable containers
Cv1 , . . . , CvC and the rest for the fixed containers. Thus, if the
currently available number of classes is C, then each fixed
container has size (1− γ)np

C . Furthermore, if we define the
misclassification error ec on a class c as

ec(S) =
∑

(x,y)∈S

1(c = y)1(F(x) 6= y) (3)

then the size nvc of the variable container Cvc is computed as

nvc = γnp
ec(S)∑

j∈C ej(S)
(4)

These sizes are recomputed in every new round of the
algorithm. Furthermore, in our implementation, we use a
running average of the errors ec over all iterations instead
of the true errors. This avoids oscillations in the number of
added and removed points. An illustration of the fixed and
variable containers is shown in Fig. 2.

C. Memory Efficiency
Compared to the standard offline method, our incremental

formulation of the RF classifier already decreases the re-
quired computation time for new data samples significantly.
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Fig. 3: The array on the left represents how a binary tree is saved in the
memory. The element with index one contains the root. Its index multiplied
by two gives the left child adding one the right, this is valid for all nodes.

However, to be really useful in a robotic application, we
aim for an even higher computation speed, and also for a
very efficient use of memory. Therefore, we use an array
implementation of the binary decision trees, as shown in
Fig. 3. This implicit data structure was first used by Williams
[19], who refers to it as a binary heap. The major advantage
of this is that we do not need to store pointers in the nodes
and that data is stored locally, which reduces the number of
far jumps in memory. On a 64bit machine, this saves 8 Byte
for each pointer in a node, i.e. in total 24 Byte. Considering
that a node only contains the split dimension d and the
split value θ, i.e. an integer and a floating point number
accounting for 12 Byte together, the array implementation
reduces the memory requirements by a factor of 3.

The major downside of using arrays is that unbalanced
trees can not be stored efficiently and that the maximal depth
of the tree must be specified beforehand. Nonetheless, the
advantages outweigh the disadvantages by a far in terms of
speed and memory requirements, just by setting the depth
beforehand.

This stands in sharp contrast to other online learning ap-
proaches were each node usually contains several additional
data fields, which are necessary for a later adaptation of
the tree [6], [20], [21], [22]. For comparison, the Online-
Forest impl. by Saffari et al. [6] uses a pointer architecture,
where each node has around 3800 Byte, which is 315 times
more than ours. In our approach, nodes need no additional
information, which dramatically decreases the size of a node
and guarantees fast training and prediction.

1) Deep trees: The only problem entailed by the implicit
data structure is that the depth for the tree has to be known
beforehand and that the memory consumption for deep trees
is higher. The reason for this is that all nodes in our approach
are generated even if they are not needed. However, the goal
behind decision trees is that the data is split over all nodes
in an even manner, so that all nodes are filled. Therefore, an
unbalanced tree is already the result of a suboptimal training.

With the goal of using deep trees in mind, we redesigned
our approach and tried to combine both strengths in one
method. For that, we divide our deep decision trees into
different layers and connect the leaves of the upper trees with
the roots of the lower trees. In Fig. 4 such a deep decision
tree is depicted. In the middle of the second layer no tree
is generated, because the corresponding leaf of the root tree
has no data points. The advantage is that all the children
trees of this node are not produced either. Thus, we only use
parts of the tree that are necessary and exploit the speed and
memory advantages of the implicit data structure.
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Fig. 4: The depicted deep decision trees has only one tree in its first layer,
which splits the training data in subsets. For each subset, which can be split
again, a new tree is generated and used. For the middle tree in the second
layer, the splitting criterion wasn’t fulfilled and no new tree or child of its
was generated on the data set.

Fig. 5: All different banana instances are shown here. Each of them is a
single class.

D. Any time learning

Another feature of this approach is the any time learning
capability. This means that at every point during training we
can stop it and ask for a prediction of a new point. This is
especially useful if the robot is used in human cooperation,
where the interaction with a person should never be delayed
just because the training is not finished yet. In order to ensure
that, we introduced three different constraints which interrupt
our updating. The first one is time, i.e. means after a certain
amount of training time the algorithm stops updating the
forest. The second criterion is the amount of trees to be
updated in this updated iteration. The last one is the memory
consumption. This means, that the training is done until a
certain amount of memory is allocated for the new grown
trees. This is useful; if the amount of time for the initial
learning is not bound, but the system has only a small amount
of RAM available. The training can be stopped after each
learned tree, making the time steps, in which the updating
can be stopped, discrete. However, it is possible to discard the
currently trained tree to get a better response time for a new
incoming query. Furthermore, training and prediction can run
at the same time, because training new trees is independent
of the existing forest. So, the forest can be used to make a
prediction during the training of new trees.

With these three criteria it is possible for our approach
to stop at any given time during the training and perform a
prediction step. These additions make our approach suitable
for an application in a real robot or any system where fast
responses are crucial.

V. RESULTS

The validation of our approach was done on the pub-
licly available University of Washington RGB-D Object
data set [5]. The data set contains 300 different household
instances. We performed instance recognition instead of
category recognition, because this way there are more classes
available and we can evaluate the results on a larger number
of new classes. Thus, our goal is to recognize a known object
instance. For example, there are several bananas in the data
set, which are shown in Fig. 5. Each of these corresponds to
a different class in our setting.
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Fig. 6: A trade-off between exploration and exploitation. With a high
exploration new classes can be learned. However, the overall performance
might be worse. The bars for the high adaptation show that the exploitation
is lower compared to the low adaptation, but the exploration is far better,
which gives the possibility to even learn the banana, which is newly
introduced during the second iteration of the training, this is visualized by
the transparent yellow rectangle. The apples are visible in every iteration.

The objects are split in three data sets, the evaluation
data set ∀ C contains all objects which were recorded with
a pitch angle of 45◦. The training S and validation set V
contain the objects with a pitch angle of 30◦ and 60◦. This
was described as ”Leave-sequence-out” by Lai et al. [5].
The splitting in the training set S and validation set V are
performed along the yaw angle. The fifth yaw angle of each
object was placed in V , the rest was used for training. This
results in 85822 training points and 20883 validation points.
The test set contains 53465 points. It is important to mention
that we do not need a validation set for our approach, and
we only use it because it is available. During the accuracy
measurement in an update step we use in general the training
set S; we now replaced it with the validation set V .

In order to get reliable features on the RGB pictures, a
standard pretrained convolutional neural network was used.
The motivation for using CNN-features is that according
to several studies CNN-features outperform other feature
generation methods and even human crafted ones [10], [11].
The offered depth information of the images was not used
in this paper, because the accuracy gain is rather small. The
CNN we used is called ResNet-50 [23], it uses 50 layers
and several shortcut connections to provide a stable and fast
training. The features were taken from the last layer in the
CNN, which is the only fully connected layer in ResNet-50.

A. Implementation Details
We mentioned in section IV-A that we calculate the

acceptance a to validate the performance of our trees. The
straightforward way is to use the accuracy of a tree as the ac-
ceptance a. However, the accuracy is often not good enough
on new trees that are trained on new classes, although they
carry important information. This may lead to an inability to
learn new classes and a stagnation of the learning process,
which is depicted in Fig. 6. There we compare an algorithm
with high adaption to an algorithm with a low adaption rate.
To avoid this problem, we perform two additional steps. First,
we randomly retrain a fixed number of existing trees (we
used 5%) in every iteration. Second, we add a minor offset
to the acceptance a, depending on the current distribution
of all trees. This way we reduce the stagnation, and our
approach is always able to learn new classes.
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Fig. 7: Performance of online learning. Each newly introduced category
gets its own class, which is the combination of performance of several
instances of the same category. The transparent rectangles show the visibility
of the added classes.

Test Set ∀ C Test Set I Banana Coffee mug

Stapler Flash light Apple

Fig. 8: Legend for all test results, the color is used for the line and the
transparent rectangles in the background.

B. Test setting

To evaluate the performance of our approach on new
unseen classes, we removed all instances of five object
categories from our training data set, namely the bananas,
coffee mugs, staplers, flash lights, and apples. These subsets
were split into ten parts. The rest of the training set was split
into 80 parts. For the first 15 update iterations only the initial
training set I was used, which consists out of 270 different
classes. After that, the bananas were added, then the staplers
and so on until all splits were shown to the forest. In the last
15 steps no new classes were added and only the I is still
visible. The goal was to show the capability of our approach
to adapt to the changes in the data. Keep in mind that each of
the new categories consist of several instances, which are all
different classes for the approach. So in total we excluded 30
classes at the beginning and added them during the ongoing
training. Our hyperparameters for all tests are: 2000 trees
in the first iteration and 800 new generated trees in every
updated step, where each tree can have a maximum depth of
36. We used for our testing an Intel E5-1620 with 3.50GHz
and 32 GB of RAM, which was necessary for the comparison
with the Online-Forest approach of Saffari et al. [6]. We also
tested the standard offline Random Forest approach from
the scikit library to have an offline comparison value, and
obtained an accuracy of 92.98%.

C. Online Learning

In this section we evaluate our approach in a complete
online setting, which means that after adding a data point
TABLE I: Comparison between our online approach and the Online-Forest
from Saffari et al. [6].

Update time Prediction with RAM Req. (training)
Our Approach: 3.31 sec 1300 Hz 156.6 MB
Saffari et al. [6]: 5.33 sec 240 Hz 21218.2 MB
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Fig. 9: Results for the Online-Forest of Saffari [6]. We use the same
data and the same way of presenting it to the classifier. Two things are
noteworthy: the fast adaptation rate to new classes and the strong and sudden
decrease of the general performance when adding new classes.
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Fig. 10: The results for an expanded CNN-approach for comparison.
The problem here is a strong unlearning of the classes, after they vanish.
However, adapting to new classes goes really fast.

for training it is no longer available and the training set S
always contains only the last seen points.

The results for the online setting are shown in Fig. 7.
Each excluded class has its own line, and the performance
was measured on the test set. Additionally there are two lines
for the start sets. The red one represents the whole set ∀ C,
which includes all 300 classes, and the blue one stands for
the initial set I with 270 classes, which was used in the first
15 iterations of the training.

From the plot in Fig. 7 several conclusions can be drawn.
The first is not saving points and still removing trees leads
to a forgetting of classes, which have not been observed
in the last update steps. However, an update step can be
performed very quickly because there are less data points in
each iteration. The results show that the general performance
on the newly introduced classes gets better over time, even if
some of them are forgotten after too many iterations. At the
end, the overall performance on the test set for the complete
set ∀ C is 84.70% and for the initial set I, it is 89.99%.
The difference between these two is significant: While the
overall performance is good, the performance on the newly
learned classes is bad. This indicates that our algorithm was
not able to learn the classes which were only visible for 10
iterations during the training. The visibility is represented in
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Fig. 11: Performance of adaptive incremental learning. Note that the
accuracy of newly learned classes only drops slightly. This is because all
training points are saved for later usage. However, adding new classes to
the Random Forest is more and more difficult as new classes only make up
for ≈ 3% of all points, reducing the likelihood of being used for training.

Fig. 7 by the transparent rectangles. We also validated our
generated data set on the Online Random Forest approach
from Saffari et al. [6]. The result of this is plotted in Fig. 9.
For that, we tuned the parameters manually to get an optimal
result. As we can see, the method of Saffari et al. behaves
differently compared to ours in that new classes are learned
more quickly, but the performance on learned classes often
drops significantly during the process. We also tested this
directly on ResNet-50, where for each new class we added a
column to the weight matrix of the final layer (see Fig. 10).
Of course, this increases the model complexity with each new
class. For a fair comparison we only trained fully connected
layer. From the figures we see that all online approaches
suffer from forgetting learned classes, which means they can
not deal with a short-term introduction of classes.

Finally, we compare the training time for each iteration,
the amount of samples we can predict per second and the
memory requirement for the training in table I. Note that the
data does not require additional memory in this scenario,
because each point is used once and then directly deleted.

D. Adaptive Learning

In contrast to the online learning approach shown before,
the new points are now saved for later usage. This makes
it possible that a change in the data can still be observed,
and the risk of forgetting is reduced. However, the memory
consumption is much higher, because all training points have
to be kept. The results for this approach, called incremental
learning, are shown in Fig. 11. The line colours correspond
to those in the last section. During the ongoing streaming
of data points, the two lines for the whole test set ∀ C and
the initial test set I get closer, because the performance
on the newly introduced classes goes up. Furthermore, it is
remarkable at which speed new classes can be added to the
knowledge base. Already after a few iterations with the new
classes, the performance on them is above 80.0% and can go
up further to 95.0% like in the case of the stapler. This shows
the fast adaptation over our approach and the stable results.
Interestingly, these curves have similar shape. In the first
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Fig. 12: Pool learning results for our incremental setting (colours as in the
previous plots). The accuracies for the initial and the whole set are almost
equal towards the end, which means that the forest was able to learn the
new classes. The important difference is the better performance of the apple
data set.

iterations not enough trees are adapted to the new classes and
so the performance is not high. But then the point is reached
where enough trees vote for this class and the performance
shoots up to 80.0%− 90.0%. The final performance on the
whole set ∀ C is 91.03%. On the initial classes I, it is a little
higher with 91.24%. However, it is worth mentioning that
each update step takes the same amount of time. This also
holds for the prediction time, which does not depend on the
amount of used points. The reason for this lies in the fixed
sampling amount n we use, which avoids growing training
times. Finally, we note that the apple data set only increases
its accuracy very slowly compared to the other classes. We
relate this to the fact that towards the end, the training set is
so large that changes are harder to incorporate. As we will
see, our pool learning approach mitigates this.

The memory requirements for the forest is higher with
556.3 MB and the update time, which is now 36.2 seconds.
Thus, we can learn around 35 new samples per second.

E. Incremental Pool Learning

In Fig. 12 the results for the addition of new classes to the
pool are presented. These results show the advantage of the
pool. The used Random Forest uses far less data than in the
regular incremental learning setting and still has a similar
performance. We set the pool size to 30.000 points, which
is only 100 points per instance with a fraction factor γ of
0.8, and still each object can be detected with high accuracy.
This is due to the flexible part of the pool (see Fig. 2). Also
note that the learning and adaptation to the new classes is
faster than in the incremental approach without the pool.

The upper plot in Fig. 13 shows the current occupation
of each class in the pool. The excluded classes, which are
added during the training are coded in the same colors as
in all other plots. The initial 270 classes I are depicted in
grey. It shows that the newly introduced classes receive many
data points in the beginning, so that the new class can be
learned. As soon as the performance is better, the current
size shrinks again. For the lower plot in Fig. 13 the same
color scheme was used. It shows the maximum available size
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Fig. 13: The current occupation of each class in the pool is depicted in
the upper plot. The grey lines depict the 270 initial classes I. The colored
once represented the newly added classes. When a new class is added, the
occupation rises drastically until the performance on the validation set is
good enough and the maximum size is reduced. This maximum size is
depicted in the lower plot.

TABLE II: Classification accuracy of the original version from Lai et al.
[5], a state-of-the-art method of Bo et al. [24], Saffari et al. approach on
our data set [6], and ours. Note that Lai et al. and Bo et al. are offline and
therefore the comparison to our incremental method is difficult. Still, the
performance of our method is competitive.

online incremental pool Saffari [6] Lai RF [5] HMP [24]
∀ C 84.70% 91.03% 90.22% 87.9% 73.1% 92.1%
I 89.99% 91.24% 90.24% 90.8% - -

for each class. Adding a new class to the approach leads
to a rise in available space for this particular class. After
some iterations, the maximum size can be reduced to a bare
minimum, because the performance on the validation set V is
already good enough. In this case, the memory requirements
are similar to the one above with 563.4 MB and the training
update time is around 27.2 seconds. However, the update of
the containers takes 19.2 additional seconds.

F. Final comparison

In table II all previous results in terms of classification
accuracy are summarized and compared to the results from
[5], [6] and [24]. We see that the best overall performance
can be achieved with the incremental approach, where all
data points are saved. Moreover, we see that our pool-based
incremental approach almost performs like an offline state-
of-the-art method. We note, however, that with our efficient
implementation, we can classify data samples at a frequency
of 1300 Hz on a standard computer. This holds for all three
of the presented approaches. For the entire test set, consisting
of 53464 samples, our method only needed 41.12 seconds.

VI. CONCLUSION

Despite being a highly relevant problem in robotics, learn-
ing objects from unseen classes without recomputing the
entire model learned so far and without keeping all training
data, has not beed addressed widely. The use of Random
Forests seems to be a very promising approach though, and
with our proposed algorithm we showed a significant step
towards this goal. The classification accuracy on a common
benchmark data set is comparable to a state-of-the-art offline
method and we are additionally able to predict 1300 in-
stances per second. Furthermore, it is adaptive to new classes
and it can be interrupted at any time during training without
significantly degrading the classification performance. Thus,
we believe that our approach is a valuable tool that can be
used in many kinds of robotic applications.
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