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Abstract. We present a novel approach to infer volumetric reconstruc-
tions from a single viewport, based only on an RGB image and a re-
constructed normal image. To overcome the problem of reconstructing
regions in 3D that are occluded in the 2D image, we propose to learn
this information from synthetically generated high-resolution data. To
do this, we introduce a deep network architecture that is specifically de-
signed for volumetric TSDF data by featuring a specific tree net architec-
ture. Our framework can handle a 3D resolution of 5123 by introducing
a dedicated compression technique based on a modified autoencoder.
Furthermore, we introduce a novel loss shaping technique for 3D data
that guides the learning process towards regions where free and occupied
space are close to each other. As we show in experiments on synthetic and
realistic benchmark data, this leads to very good reconstruction results,
both visually and in terms of quantitative measures.
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1 Introduction

One of the most fundamental tasks for visual perception systems - both natural
and artificial - is the acquisition of the 3D environment structure from a given
visual input, e.g . an image. The main challenge of this task is that this visual
input is usually the result of a projection mapping from the 3D environment onto
a lower-dimensional manifold and that this mapping is not bijective, i.e. it can
not be inverted. Thus, mapping back to the 3D environment, which is denoted
as the 3D reconstruction task, is an inverse problem. Nevertheless, humans and
other living beings are capable of generating reasonably accurate representations
of the true 3D structure, even when provided with only a single visual stimulus,
which means that they are able to recover the information that was lost during
the projection process. The key resource to achieve this are experiences made
earlier, and this is our primary motivation to resort to machine learning tech-
niques to solve the 3D reconstruction task for artificial systems such as robots,
only from single images. The potential applications of such a technique are man-
ifold. While most current approaches generating 3D environment models rely on
the fusion of many images, which are acquired at di↵erent viewpoints. The single
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Fig. 1. 3D reconstruction from a single RGB image and a normal image (not shown).
On the left the input color image is shown, in the middle the 3D ground truth scene and
to the right our reconstruction is depicted. Note especially the reconstruction quality
in areas where the 2D view caused occlusions (shown in pink).

image reconstruction has the benefit of producing a 3D representation fast and
without having to move the camera. This can be very useful for mobile robots
that need to explore unknown environments as it reduces the risk colliding with
obstacles, and it can lead to denser and more accurate maps from less input data.
Furthermore, it provides the ability to plan paths through the environment, e.g .
to avoid occluded obstacles, even if only a single view is given.

The enormous attractiveness of these capabilities yet comes with a number
of major challenges that need to be resolved. First and foremost, the curse of
dimensionality is the major hurdle when dealing with 3D data, both in terms
of memory requirements and regarding the algorithmic formulation. To address
these issues, we propose both a novel network architecture that can reason e�-
ciently on high resolution 3D data and a fast and e�cient technique to generate
and represent volumetric training data. We also introduce a specifically designed
loss function for the training process. In summary, our main contributions are:

– A tree net architecture to reconstruct volumetric data.
– An autoencoder to e�ciently compress TSDF volumes.
– A dedicated loss shaping technique for 3D reasoning.
– A framework to generate TSDF volumes from meshes.

In the following sections, we describe each of these contributions in more
detail, after discussing previous works that are related to ours.

2 Related work

The four research topics that are most related to our work are shape comple-
tion, segmentation, depth reconstruction, and full scene reconstruction. In the
following, we show the relations of these works to ours.

Shape completion There is some prior work that focusses on the reconstruction of
single objects [18,25,26]. In particular, Wu et al [29] introduced 3D ShapeNets,
which apply a deep belief network to a given shape database. This network can
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complete and generate shapes and also repair broken meshes. Later, Wu et al [27]
used an autoencoder to convert color into normals and depth, and ultimately to
a 3D scene with a resolution of 1283. They extended this using an adversarially
trained deep naturalness regularizer, which provides a solution to the problem of
blurry mean outputs. In our approach, we also avoid this by training an autoen-
coder, which we use to compress the TSDF volumes. Tatarchenko et al [24] use
an octree generative network to reconstruct objects and scenes. However, this
relies on the assumption that the coarse prediction steps can always find even
small details, which is often not justified. Therefore, we use a block-wise compres-
sion to benefit both from a high resolution and an e�cient representation. The
3D-EPN approach introduced by Dai et al [4] can predict object shapes based
on sparse input data. Park et al [16] showed an interesting approach, where
instead of reconstructing a volume, they reconstruct for given points a certain
SDF value. This however, struggles to generalize for complete scenes because of
the missing spatial link between the input image and the output. Matryoshka
Networks fuse multiple nested depth maps to a single volume [17], but the same
struggle of generalizisation to full scenes appears.

Segmentation The reconstruction of scenes is also sometimes covered in the
field of semantic segmentation of 3D volumes. Using semantic information the
reconstruction task can be improved, as the network knows for some objects what
it is reconstructing [8,21]. Song et al [21] showed in their work how to use pure
depth data to generate semantic segmented volumetric predictions. Nonetheless,
their work requires the use of a depth camera and the knowledge of all appearing
objects in the scene to correctly classify them, whereas in our approach, we are
free of such limitations. Additionally, instead of using a resolution of 240⇥144⇥
240, we work with 5123. This is 16 times more data. Dai et al [3] showed how to
complete a scene in several iterations on di↵erent resolutions by also predicting
segmentation masks. However, their approach requires a rough 3D scene model,
whereas we can start only with an RGB image. Also, our main focus is on
scene reconstruction with as little extra knowledge as possible, thus semantic
segmentation is not considered here.

Depth reconstruction In contrast to our approach, a large amount of prior re-
search has been devoted to depth reconstruction on mono or stereo images. For
example, multi-scale CNNs were used by Eigen et al [6] to generate robust depth
estimations. A combination of CNN with CRF based regularization was shown
by Liu et al [13,14], where they jointly learn CNN and CRF. Ma et al [15] showed
how to generate depth images based solely on a few depth points and an input
image. Kim et al showed that going from RGB images to TSDF works [12]. How-
ever, these are only 2.5D images of the scene and not a complete reconstruction
of the occupation of the 3D space, which is the main objective of our approach.

Full scene reconstruction This area is mostly related to our work. For example,
Firman et al [7] introduced Voxlets, which use random forests to predict un-
known voxel neighborhoods. However, their approach only works on the local
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Fig. 2. Compressed form of our proposed architecture. On the left, an exemplary RGB
and normal image are input to the network. From this, several convolution and pooling
operations are done down to a size of 322. Then, we split the path of the network in two,
where one represents the front and the other one the rear part of the depth channel.
This split is done two more times, and the resulting depth slices are combined into a
3D structure with 64 channels. On that, we perform some 3D convolutions and use the
autoencoder to decode the output of the tree net. Note that, our real model has one
tree layer more, where the second layer is repeated once more.

neighborhood, which limits the prediction of bigger structures. There are meth-
ods, which reconstruct scenes by placing preexisting CAD models [11]. However,
these are limited to the known CAD models, where we try to learn general
shapes. In contrast to Silberman et al [20] who fill incomplete scenes using a
novel CRF method, we build on the assumption that scenes are piece-wise pla-
nar and use deep learning to reconstruct a scene from one image. Also, many
prior works focus on the reconstruction of small table scenes, where a majority
of the objects are partly or entirely known. We believe the main reason for this
is the lack of datasets to evaluate on. In order to not limit ourselves to such
table scenes, we use the synthetic SUNCG dataset [21] and also the real-world
Replica-dataset [22] to generate TSDF volumes on which we can measure our
performance. Furthermore, we rely on the toolchain named BlenderProc [5] to
generate realistic color and normal images.

3 Problem Description and General Approach

We formulate our problem as finding a mapping from 2D image coordinates
xc,d = (xc,d, yc,d) to 3D scene coordinates xs = (xs, ys, zs). Our input is an RGB
image Ic : ⌦c ! [0, 255]3 and a normal vector image In : ⌦d ! [�1, 1]3, where
⌦c ⇢ R2 and ⌦d ⇢ R2. The output is a high-resolution 3D truncated signed
distance field (TSDF) V : ⌦v ! [��tsdf , . . . ,�tsdf ] where ⌦v = {0, . . . , 511}3.
This voxel grid represents free space with positive values and occupied areas
with negative values. Absolute values are the distances to the closest surface.
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To perform the 3D reconstruction, we propose to train a specifically designed
deep network architecture on synthetic data, which can then be used to infer
3D reconstructions from new test images. An overview of our architecture is
shown in Fig. 2, where the details will be presented in the following sections.
Note that the input of this network consists of an RGB image and a normal
vector image. Our motivation to use surface normals as an additional input is
to provide continuity information so that planar surfaces can be reconstructed
more precisely. Here, we take inspiration from Zhang et al [31] who also used
normals for depth generation. In this paper, we focus on the 3D reconstruction
part, and we use normals from a simulation pipeline named BlenderProc [5],
which can generate RGB and normal images on the SUNCG dataset, as well
as normal images on the Replica-dataset [21, 22]. Throughout this paper, such
renderings were used to obtain training data, while during testing we use a U-net
architecture [19] trained on soley SUNCG to generate normals (see Sec. 7).

For the design of our training procedure, we had to face three major chal-
lenges. First, we had to find a way to e�ciently produce and represent the output
training samples, which consist of voxel grids with 5123 = 134, 217, 728 voxels.
Second, we had to design a network architecture that can represent 3D spatial
information in hierarchical form. And third, we needed to find an appropriate
loss function for the training process. All three parts will be described next.

4 Generating Synthetic 3D Training Data

Our output data consists of high-resolution 3D TSDF voxel grids. TSDF volumes
o↵er in comparison to meshes or point clouds a dense representation, providing
a deterministic reconstruction target, which we can align with the input domain.
TSDF grids are widely used in computer vision, and there are several approaches
to compute these volumes fast. However, most of them use approximations,
because an accurate result is usually not needed and their test scenes have a
smaller resolution than 5123 [28]. We propose three steps to achieve an accurate
result on such a resolution. First, we simplify the reconstruction task by aligning
the output voxel grids with the camera frame and not the world frame, which is
explained next. Then, we employ a fast algorithm to compute a TSDF voxel grid
from a given 3D scene (see Sec. 4.2). In the end, we use a compression algorithm
to store the voxel data with comparably low memory requirements (see Sec. 4.3).

4.1 Viewport Alignment

An important distinction between our work and most others in learning-based 3D
reconstruction [4,27] is that for our training procedure, we use input RGB images
and 3D voxel grids that are aligned within the same coordinate frame, namely
the camera frame. For that, we transform vertices used for training from world
coordinates xw into the camera frame using the camera matrix C, i.e. xs = Cxw.
Then, a perspective projection P is applied to xs such that the camera frustrum
is mapped to a cubical 3D volume. The resulting projected points xp = Pxs are
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coder to compress TSDF volumes, which is ap-
plied on each 163 block plus padding (=303) on
the 5123 input space. The result of this is the en-
coded latent values in the middle, which we use as
the reconstruction target in the tree network.

then in the range [�1, 1]3. Now we voxelize this 3D volume with a resolution of
512. Then, the center point xe of each voxel can be computed from its index v

as xe = (v/512) · 2� 1. The center xe = (xe, ye, ze) can now be directly mapped
to the 2D image, which also has a resolution of 512, i.e. xc = (xe, ye) ·256+256.
Similarly, the inverse mapping from pixels xc to points x in the 3D grid is done
by setting x = xc, y = yc and z = (⇡ (xc)� dmin) / (dmax � dmin) ·2�1, where ⇡
is the projected depth of the pixel position xc, and dmin and dmax are predefined
values for the minimal and maximal depth range within which the voxel grid is
defined. In our implementation, we use dmin = 1m and dmax = 4m. In contrast
to this inverse mapping, we predict the TSDF values along the camera ray.

This means that in our 3D reconstruction of the occupancy, we can directly
link the input pixel values with the occupancies along the camera rays. This way,
we can learn the transformation from a 2D image to a 3D space. For visualization,
we project them back from the cube to the camera frustum.

4.2 Fast Generation of TSDF Voxel Data

To produce synthetic 3D training samples, we start with a set T of 3D triangles,
which we map into the camera frame using a predefined transform ⌧ = P · C.
Then, for the center point x of each voxel v = (vx, vy, vz) we need to compute
the distance dx to the closest point on a triangle t 2 T and truncate the absolute
distance at a maximum value �tsdf , i.e.

V [v]= dx= max

✓
��tsdf ,min

✓
�tsdf , min

8t2T
{d (x, t)}

◆◆
, 8v 2 ⌦v. (1)

To achieve that, we developed a very fast technique that transforms the tri-
angles and computes d (x, t) for each voxel v. It uses a combination of flood
filling, octrees, and a fast distance computation. With this, we can process
the 134 million voxels in the order of seconds. A more detailed description
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Algorithm 1 In this distance calculation algorithm we use three di↵erent vari-
able colors, which correspond to the main, the edge and the border planes.
1: procedure CalculateDistance(Point p)
2: plnDist mainP ln.distTo(p)
3: for nr 2 [1,2,3] do
4: if edgeP ln[nr].distTo(p)< 0 then . Outside, check border planes
5: if borderP ln[nr][1].distTo(p)< 0 then . Dist to left point
6: return sgn(plnDist) · kp� borderP ln[nr][1].pk2
7: else if borderP ln[nr][2].distTo(p)< 0 then . Dist to right point
8: return sgn(plnDist) · kp� borderP ln[nr][2].pk2
9: else . Dist to edge
10: return sgn(plnDist) · edgeLine[nr].distTo(p)

return plnDist

of all individual steps is given in the supplementary material, and we also
refer to our implementation, which is online: https://github.com/DLR-RM/
SingleViewReconstruction. The key component here is the fast computation
of d (x, t) using modern hardware. For this, we first precompute 10 vectors for
each triangle t, namely the normal vector n of the triangle plane P, the vectors
n
? that are orthogonal to the edges of t and lie inside P, as well as the vectors

n
+ and n

� that are parallel to the edges of t (see Fig. 3). Next, we compute
the distance d(x,P) between P and x and check whether its projection onto P
is inside t, using the normals n

?. If so, d(x, t) is equal to d(x,P), otherwise x

is closer to an edge or vertex than to the surface. For the final check, we use
the normals n+ and n

� of the planes. If the distances of the planes are positive,
then the distance can be calculated towards the edge, and if one of them is neg-
ative, the closest distance is to one of the points, see Algorithm 1. This distance
calculation has to be done for all voxels and all polygons. Finally, we quantize
the TSDF volume to 16 bit and compress them with gzip, which reduces the size
by a factor of ten.

4.3 Spatial Compression

A straightforward implementation of our high-resolution TSDF volume V with
5123 voxels would require 536.87 MB per scene, which renders the training pro-
cess on current hardware infeasible. Therefore, we employ a block-wise compres-
sion of V to a size of 64⇥323. This results in 8.38 MB per scene with a compression
factor of 64. The compression is done with an autoencoder as shown in Fig. 4.
First, we use 3D convolutions in combination with valid padding on a larger in-
put than the output, thereby shrinking the input size from 303 to 64 and then up
again to 163. Second, we balance the input to the autoencoder so that the much
more likely empty voxels are mostly removed to focus on the ones with surfaces.
Third, we add loss shaping to focus on the reconstruction of the surfaces, with:

loss (x, y) = kx� yk1 ·
✓
1 +N

⇣
0,

�tsdf

4

⌘
(y) · 4

�tsdf

◆
(2)

https://github.com/DLR-RM/SingleViewReconstruction
https://github.com/DLR-RM/SingleViewReconstruction
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a) Full TSDF b) Full flipped TSDF c) Proj. TSDF d) Proj. flipped TSDF

1

0
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Fig. 5. The two on the left represent a full TSDF, the two on the right are projected
TSDF volumes, which uses a camera projecting beams into the scene. Both also have
a flipped version, where the empty and occupied space is zero.

Here x is the prediction, and y is the label. The scaling value of the Gaussian
was determined experimentally. We use a complete TSDF, not a projected or a
flipped TSDF, see Fig. 5. We found that a projected TSDF volume can generate
hard cuts in the resulting output volumes, which means that moving the input
by one voxel generates a big loss at these boundaries. With full TSDF volumes
this does not happen, so that the network can learn the three dimensional rep-
resentation of an object in space. Auto encoders trained on the flipped TSDF
performed considerably worse after training, we didn’t investigate this further.

5 Proposed Network Architecture

The major challenge of our framework is to represent the 3D occupation infor-
mation of the voxel grid in a deep neural network. In order to solve this, we
propose a special architecture that is based on a tree structure, which helps us
to transform a 2D image into a volumetric 3D space, which is described next. To
perform the 3D reconstruction task from a single image, we designed a network
architecture that can split the input data along the depth dimension. One way
of doing this is to use the feature channels as the depth dimension at some point
within the network. This, however, requires the network to transform the 2D
input to 3D in one step, which failed in our experiments for complex scenes.

5.1 Tree Network

To address this problem, we propose a tree architecture, where each level in the
binary tree splits the depth dimension into a front and back part. That means
the first tree node splits the scene into foreground and background, where those
are defined by the distance to the camera. In Sec. 4.1, we showed that our input
images are aligned with the output frame, which makes this splitting possible.
We repeat the splitting process three more times so that the leaves of the tree
contain small slices of the depth dimension while still representing the full spatial
resolution. These slices are then combined into a 3D volume and processed by
further 3D convolutions to remove small artifacts.

In Fig. 6 such a tree is depicted. The first node is fed with the output of
some convolutional and pooling layers to scale the input from 5122 down to
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Fig. 6. The basic tree architecture which generates a 3D volume based on a 2D input.
Each layer is thought to perform a split through the depth dimension, and in the end
all single paths of the tree are concatenated to create the third dimension.

322. Then, in this image, it is split three times, and the resulting colored leaves
are combined into a 3D tensor. The resulting feature channels in the leaf nodes
can then only have four channels to obtain the desired depth of 32. Here each
path builds di↵erent CNN parts to learn the size of di↵erent objects at di↵erent
scales. Instead of a single track sequential model, where at some point the feature
channels could be mapped to the depth dimension, our network has several layers
to capture the relationship between the input and the depth dimension.

5.2 Multipath

The proposed tree network has a bottleneck when forming the 3D volume from
the 2D features channels. As there are only 32 leaf nodes with just two feature
channels each, the combination leads only to one 3D volume, whereas the com-
pressed output has 64. We address this by increasing the output of the leaf nodes
to 128 and then create 64 3D volumes out of it. This is achieved by splitting up
each leaf node’s feature results and using two feature channels per created 3D
volume. In Fig. 7, we show this for two 3D volumes with only eight leaf nodes,
which means that each leaf node has a eight feature channels. Thereby, the first
half of each node is used in the left 3D volume and the second in the right.

5.3 General architecture

Inspired by He et al [10] we use ResNet blocks, where additionally each block
uses dilated convolution in an inception fashion [23, 30]. This means that the
input per ResNet step is given to three di↵erent convolutional blocks, where
the dilation rate di↵ers. This dilation inception step was done twice in each of
the ResNet blocks. In our experiments a dilation rate of 1, 2, 4 with a split of
50%, 25%, 25% over the desired filter channels performed best. These three are
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Fig. 7. The upper row represents the leaves of our tree architecture. In this example
each node has eight feature channels, which are evenly split over the resulting volumes.

then concatenated again and used as an input to the next layer. Our tree uses
two ResNet blocks in the first two layers and three in the last two layers.

After performing the multipath joining explained in Sec. 5.2, we perform
several 3D convolutions on the joined result. This smoothes out errors that were
introduced by paths in the tree, which performed worse than the others. We use
9 layers of a sequence of normal convolutions and separable convolutions to save
memory [2]. We alternate between one normal 3D convolution followed by two
2D convolutions performed in all three axes. All of them use 64 filters, where we
split in each over four paths. These also use again dilations with rates of 1, 2, 4,
and 8, where the splitting for the filters is 32, 16, 8, and 8.

6 Loss Shaping

An essential part of our pipeline is our loss shaping, which we use to focus the
attention of the network to parts of the TSDF volume that are more relevant for
a correct reconstruction. We distinguish two kinds of loss shaping, one is related
to the voxel space and one to the tree net structure. Both are described next.

6.1 Output loss shaping

When we know where the surface in the TSDF volume is, we can increase the
loss around and on the surface by a factor �Surface to make sure that these
encoded latent values are correctly regressed. The same is done for the free
space before an object occurs. This value �Free is selected to be smaller than
�Surface. Additionally, the free space behind objects receives an increased loss
factor to make sure that those areas, which are reachable but not visible from
the camera point of view, are reconstructed well. The distance to the closest
visible and free voxel determines the strength of the factor. It decreases from
�Free to a fixed value of �NonV isibleFree. This decline is done at most for 7% of
the space size, which we found gives su�ciently good results.

In Fig. 8, the loss factors for a 2D scene with two objects (in blue) are shown.
The camera is on the left side of the frame and is oriented towards the right. All
voxels with circles in them are free. The stars are used for the area around and
below the surface of an object, and the rectangles depict the areas, which are not
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Fig. 8. In this top-down 2D map of a scene two objects are depicted one on the left as
a blue pyramid and one as a wall on the right, which give the used loss factors as seen
from the left. In the legend we show the weight values that are used in our approach.

reachable. It is important to note here that the factor for the first hit onto an
object is 100 to make sure that this surface is regressed correctly. The surfaces
behind this only receive an increased factor if they can be reached from the free
space. To determine these back surfaces we used a flood filling algorithm. Using
this loss shaping, our network is able to focus on the more relevant parts of the
reconstruction, and neglects the parts, which are deemed less important. This
improves the reconstruction performance, see Sec. 7.

6.2 Tree loss shaping

To speed up the training, we enforce the splitting of the depth dimension al-
ready in the tree by comparing the output of each node with the average of the
corresponding depth range. This means for the first split we take the left node
result and branch into a 1⇥1 convolution to change the number of feature chan-
nels so that they match the target output, see Fig. 9. Then we take the target
output and use only the first half of it, average it in the depth dimension and
compare this slice with the branched output. This process is repeated in every
node, where every time the corresponding depth slice is averaged and compared
with the branched version. All these losses are combined and weighted, where
the second layer in the tree receives a lower loss than the leaf nodes. We used the
values [0.2, 0.3, 0.5, 0.8] from top to bottom for our tree, which has a height of 5.
Finally, we scale this weighted tree value with a factor of 0.4 and add it to the
final loss. Additionally, before reducing the di↵erence between all these losses,
we multiply our averaged loss map introduced in Sec. 6.1. This again helps to
focus on the relevant surfaces of the TSDF volume.

7 Experiments

7.1 Test setup

The evaluation of our approach is first done on the synthetic dataset SUNCG
[21], from which we already used one split for training. The second evaluation
is done on the real-world Replica-dataset [22], which is the only dense, hole-free
dataset available. It stands in contrast to datasets like Matterport 3D [1], where
holes introduced through the scanning process have not been filled manually.
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Fig. 9. For each node the corresponding depth layers from the output are averaged
in the depth and then compared to a reshaped tensor from the node. This already
enforces in the tree a sense of the encoded 3D structure.

As described in Sec. 4.2 for the training we first generate the TSDF volumes
for the sampled camera positions from SUNCG. Then we create the correspond-
ing loss volumes and finally the RGB images using BlenderProc [5]. We tested
both with the normal generation and with the synthetic normal images to see
how our network can deal with the limitations of the normal generation. All tests
were performed with models that were exclusively trained on the generated data
from BlenderProc on the SUNCG dataset. For the training, we used around
130,000 image pairs. We did not finetune on the Replica-dataset, nor did we
finetune with the generated normals to show the lower bound of this approach.
The reconstruction network was evaluated on 500 image scene pairs from the
SUNCG dataset. For the Replica-dataset, we sampled as in SUNCG ten cam-
eras per scene, which resulted in 180 image pairs. The creation of the encoded
scene from a color and normal image takes around 0.11 seconds. However, the
reconstruction to a full scene takes around 5.1 seconds, with the decoder.

7.2 Qualitative results

In Fig. 10, we show some qualitative results on the real-world Replica-dataset.
As in previous images, the areas in pink are invisible to the camera and did
not get assigned a color. For failed reconstructions, these areas are too far away
from the true surface to get the correct color. The scene in the lower left corner,
for example, was reconstructed well, without ever seeing this room before nor
being able to recognize that this texture belongs to a bed. It also indicates that
it learned some kind of semantic understanding of this object type, without us
providing the additional label “bed”. In the right lower corner in Fig. 10 is in
contrast to that a failed reconstruction, as the network could not reconstruct
the surface of the thin chair and nearly hidden table.

7.3 Quantitative results

We evaluate the precision, recall, and IOU over the occupied voxel on both
datasets. This shows directly how much of the space was correctly classified
as occupied, for that the predicted TSDF volumes are converted into binary
occupation grids. This process means that some of the resolution is lost. Because
of that we also evaluate the mean and RMS Hausdor↵ distance (HD) [9], between
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2D input image 3D output 2D input image 3D output

Fig. 10. Results on the Replica-dataset for six scenes. Only the generated normal and
color images were provided to create the full scene reconstruction. In the top left corner,
our network could separate the commode from the wall and detect the end of it, too.
Areas in pink are so far away from the true reconstruction to assign a color. The red
ellipse highlights, the failed reconstruction of the thin chair and table.

the true and the predicted mesh. This mean is calculate by averaging over the
distances of each true mesh vertex to the closest point in the test mesh.

Table 1 shows the results for four di↵erent cases, where two are with SUNCG
and two with the Replica-dataset. Both are tested with the normals from Blender-
Proc (woNG) and with the generated once from the U-Net (wNG). We tested
with four di↵erent configurations, first we alter the amount of layers in the tree
from four to six, where five is our default. By only copying or removing the
second layer in Fig. 2 and also report results when no loss shaping was used.

Even though our network has never seen real scenes, the performance on
the real-world Replica-dataset is better than on the SUNCG dataset. As our
network performs particularly well in predicting large structures, which are more
commonly found in Replica, so the performance on Replica is higher. As a lot
of the SUNCG scenes are cluttered with thin small objects. This also relates
to the fact that the scenes in the Replica-dataset are more structured than in
SUNCG. We observed that it might happen that unusual combinations of objects
are randomly placed in a SUNCG scene. It is also interessting to see that not
using the loss shaping, introduced in section 6, increases the IOU performance,
however, decreases strongly the HD performance, so that rough shapes can still
be reconstructed, but the finer details are mostly lost.

In order to demonstrate the relative performance of our approach, we in-
cluded the results from Firman et al and Song et al [7,21]. Note here, that they
use output spaces with less resolution and other datasets. They did not report
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Table 1. The comparison on the synthetic SUNCG dataset and the real-world Replica-
dataset. It was tested with the ground truth (woNG) and the generated normals (wNG).

Dataset Method Precision Recall �IOU �HD RMS HD

SSCNet joint [21]
SUNCG+NYU

75.0 96.0 73.0 - -

Voxlets [7] 58.5 79.3 65.8 - -

SUNCG woNG default 85.05 72.96 65.10 0.0416 0.0670
SUNCG woNG height 4 84.47 76.59 68.05 0.0395 0.0644
SUNCG woNG height 6 81.08 78.06 66.58 0.0390 0.0620
SUNCG woNG no loss sh. 83.51 81.21 70.49 0.0745 0.1117

SUNCG wNG default 83.65 69.65 61.56 0.0509 0.0794
SUNCG wNG height 4 83.06 73.41 64.41 0.0488 0.0769
SUNCG wNG height 6 80.93 74.19 63.48 0.0487 0.0750
SUNCG wNG no loss sh. 82.70 77.80 67.61 0.0835 0.1232

Replica woNG default 86.19 84.34 73.97 0.0387 0.0521
Replica woNG height 4 85.31 91.40 78.76 0.0393 0.0518
Replica woNG height 6 81.67 93.39 76.81 0.0457 0.0569
Replica woNG no loss sh. 83.33 94.03 78.36 0.0614 0.0766

Replica wNG default 87.75 72.94 65.86 0.0562 0.0745
Replica wNG height 4 84.59 80.00 69.40 0.0518 0.0691
Replica wNG height 6 83.46 78.33 67.27 0.0563 0.0735
Replica wNG no loss sh. 83.37 88.38 73.49 0.0766 0.0959

the HD for their reconstructions. Nonetheless, the given precision, recall, and
IOU values indicate that our approach performs equally well, even though we do
not have any depth data, nor do we do any semantic segmentation. Using our
novel tree net architecture we can reconstruct scenes well without the additional
information of depth or semantic segmentation.

8 Conclusion

We have demonstrated that the di�cult task of reconstructing a full indoor scene
based on just one single color image is possible. To achieve that, we introduced
a tree net architecture that enables the splitting in di↵erent depth layers. We
combined this with an autoencoder approach to increase the resolution of the
used TSDF volumes. Furthermore, we showed the importance of loss shaping
during training to focus the attention of the network on the relevant parts. For
some applications, the quality of our results is likely to be su�cient, especially
in the domain of map generation for mobile robot navigation.

We furthermore conclude that our 3D reconstruction approach is realized
with a network that is solely trained on synthetic data, and it can still adapt
to a real scenario. Finally, we showed that the complete scene reconstruction is
possible without depth data or any auxiliary task like semantic segmentation.
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