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Abstract In this article we introduce the concept of
midrange geometric constraints into semantic segmentation.
We call these constraints ‘midrange’ since they are neither
global constraints, which take into account all pixels without
any spatial limitation, nor are they local constraints, which
only regard single pixels or pairwise relations. Instead, the
proposed constraints allow to discourage the occurrence of
labels in the vicinity of each other, e.g., ‘wolf’ and ‘sheep’.
‘Vicinity’ encompasses spatial distance as well as specific
spatial directions simultaneously, e.g., ‘plates’ are found
directly above ‘tables’, but do not fly over them. It is up
to the user to specifically define the spatial extent of the
constraint between each two labels. Such constraints are not
only interesting for scene segmentation, but also for part-
based articulated or rigid objects. The reason is that object
parts such as for example arms, torso and legs usually obey
specific spatial rules, which are among the few things that
remain valid for articulated objects over many images and
which can be expressed in terms of the proposed midrange
constraints, i.e. closeness and/or direction. We show, how
midrange geometric constraints are formulated within a con-
tinuous multi-label optimization framework, and we give a
convex relaxation, which allows us to find globally optimal

Communicated by Nikos Komodakis.

B Julia Diebold
julia.diebold@tum.de

Claudia Nieuwenhuis
cnieuwe@berkeley.edu

Daniel Cremers
cremers@tum.de

1 Technische Universität München, Munich, Germany

2 ICSI, UC Berkeley, Berkeley, USA

solutions of the relaxed problem independent of the initial-
ization.

Keywords Variational · Image segmentation · Convex
optimization · Directional relations · Geometric relations ·
Midlevel range interactions

1 Introduction

Semantic segmentation denotes the task of segmenting
and recognizing objects based on class-specific information
and/or knowledge of typical object relations. Ultimately, we
aim at assigning an object label from a given pool of labels to
each pixel in the image. In contrast to common segmentation
problems, where little or no prior information is available,
semantic segmentation makes use of knowledge such as
color models, geometric relationships or the likelihood of
object constellations, which can be learned from training
data. Based on such information we can increase the accu-
racy of segmentation results and at the same time recognize
specific objects instead of only detecting their boundaries.

Especially, the task of segmenting articulated objects is
difficult. Animals usually share some common color or tex-
ture model, but humans usually wear variable clothes, which
makes them hard to segment. Shape priors are often suited
well to describe such objects, but they are usually too rigid
and do not allow for large pose variations or occlusions.
Besides, they are challenging for optimization due to their
long-range relations between pixels leading to high-order
potentials. We believe that constraints such as geometric rela-
tions between objects are generic enough to describe a wide
range of objects and poses and still limit the ambiguity of
color and texture models, features or object detectors, which
usually operate on a single pixel or very limited pixel context.
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Previous optimization approaches for semantic segmenta-
tion mainly make use of two types of constraint ranges: local
or global ones. Local constraints are usually formulated on a
pixel or pairwise pixel level, e.g., color likelihood constraints
only consider the deviation of the local pixel color and the
precomputed model. In contrast, global constraints are for-
mulated based on the whole image, e.g., size (Möllenhoff
et al. 2013; Nieuwenhuis et al. 2013) and volume constraints
(Toeppe et al. 2010, 2013) or co-occurrence priors (Ladicky
et al. 2010; Souiai et al. 2013b). What has been less explored
so far in the context of optimization approaches are midlevel
range interactions, i.e., interactions between pixels which are
locally confined to a specific user-defined region around each
pixel of a specific size, shape and direction.

We see mainly three fields of application of our novel
constraints. First, there is the task of scene understanding,
where geometric information is very useful to assign cor-
rect labels, e.g., knowing that ‘sky’ lies above ‘ground’, that
‘wolf’ and ‘sheep’ usually do not occur together or that
‘boats’ are usually surrounded by ‘water’. Second, there is
the task of segmenting objects which consist of several parts,
e.g., humans consist of ‘head’, ‘arms’, ‘legs’ and ‘torso’, or
cars consist of ‘windshield’, ‘doors’, ‘headlights’, ‘bumpers’
and ‘tires’. For such objects there usually exist specific rela-
tions between their parts concerning their location, size and
distance. Third, there are scenarios, where we have very spe-
cific knowledge of where different objects are located with
respect to each other, e.g., when segmenting human clothes.
There are no specific object parts, but specific rules about rel-
ative positions, and many labels can be missing in contrast
to parts of objects.

In all three scenarios, the integration of geometric infor-
mation into semantic segmentation will improve the labeling
results, see Fig. 1 for an example. The main challenge in this
article is the formulation and efficient solution of a convex
energy optimization problem, which allows for the integra-
tion of such additional geometric constraints.

1.1 Related Work

There has been growing interest in the topic of semantic
segmentation in recent years, which combines different disci-
plines such as object detection, various features, shape priors,
scene context information and learning. Especially the joint
handling of several tasks such as segmentation, recognition
and scene classification is beneficial for achieving results of
higher quality, but has only recently been made possible by
increased computing power.

The typical pipeline of such systems is the following: in
the first step, some object detection, region segmentation or
superpixel algorithm is used to obtain basic region proposals.
In a second step different features are computed from these
proposals, which are finally fed into a object classifier such

as a random forest, a support vector machine or a neural
network (e.g., Carreira and Sminchisescu 2012).

For example, in Arbelaez et al. (2012), combine object
detectors, poselets and different features such as color, shape
and texture to a powerful semantic segmentation system,
which can handle articulated objects in particular. The power
of employing millions of features within a random forest
approach was demonstrated by Fröhlich et al. (2012). To
learn such complex feature hierarchies from large amounts
of training data, deep learning was used by Girshick et al.
(2014). Instead of non-linear classifiers, Carreira et al. (2012)
demonstrated that second order statistics in conjunction with
linear classifiers improve semantic segmentation results. A
holistic approach to semantic segmentation and the full scene
understanding problem which also includes geometric rela-
tions such as location or the spatial extent of objects or the
type of scene was given by Yao et al. (2012).

In contrast to this typical pipeline processing, we aim at
formulating a single optimization problem, which contains
all information we have within a single energy. In this way we
will be able to guarantee optimality bounds of the solution. To
avoid ambiguous solutions which depend on the initialization
we will give a convex relaxation of the energy.

The particular novelty of this article in contrast to previous
discrete or continuous optimization approaches to semantic
segmentation (Bergbauer et al. 2013; Delong and Boykov
2009; Ladicky et al. 2010; Nieuwenhuis et al. 2013; Nos-
rati et al. 2013; Souiai et al. 2013a, b; Strekalovskiy et al.
2012) is the introduction of midrange geometric constraints
between regions concerning relative location, distances and
directions.

Ladicky et al. (2010) and Souiai et al. (2013b) introduced
co-occurrence priors into semantic segmentation which
penalize the simultaneous occurrence of specific label com-
binations within the same image. In contrast to our approach,
these constraints do not consider any spatial information such
as location, direction or distance of objects. Ladicky et al.
(2010) and Souiai et al. (2013b) model co-occurrence by an
additional cost function which can be seen as potentials of the
highest order. MRF algorithms for high-order vision problem
include Kohli et al. (2007), Komodakis and Paragios (2009).
While higher order potentials are generally hard to optimize,
the proposed approach is of order two and can be relaxed to
a convex optimization problem which can be optimized with
standard methods.

Strekalovskiy et al. (2012) took in a way the opposite path
and only penalize directly adjacent label combinations. It can
be understood as a highly local co-occurrence prior. As the
geometric relations in this approach are limited to directly
adjacent pixels, they do not include distances or directions.
In contrast to previous methods, the method does not require
the distance penalty to be a metric but allows combinations
which do not adhere to the triangle inequality. While labels
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Fig. 1 Midrange geometric constraints improve semantic segmenta-
tion results. Midrange geometric constraints between labels allow the
user to define specific spatial regions (by means of orientation and
distance) within which constraints are enforced, i.e. specific label
combinations are penalized. These constraints improve segmentation

results, e.g., by imposing penalties for the head being below the jacket
or for head and hands being close to the trousers. a Original image, b
Color-based segmentation, c Segmentation with novel priors, d Ground
truth segmentation

‘wolf’ and ‘grass’, for example, are common within an image
and labels ‘sheep’ and ‘grass’ as well, sheep are rarely found
next to wolves, which violates the triangle inequality. This
often leads to one pixel wide ghost regions of hallucinated
objects, which make transitions between two regions cheaper.
Our approach does not suffer from ghost regions since our
definition of neighborhood regards a larger number of pixels,
which makes ghost regions very expensive.

Another type of global constraints for semantic segmen-
tation are hierarchical constraints, which were introduced by
Delong et al. (2012) and Souiai et al. (2013a) and penalize
the occurrence of objects from semantically different groups
or scenes. Constraints relating different region sizes, e.g., of
object parts, were introduced by Nieuwenhuis et al. (2013).
These constraints are also global and integrate a notion of
proportion and size into the segmentation, but they do not
take into account distance or directional relations such as
that the head of a person usually is above the body.

Topological constraints, which require that some label
lies within another label, were proposed within a discrete
optimization framework by Delong and Boykov (2009) and
within a continuous optimization framework by Nosrati
et al. (2013). Geometric scene labeling has been studied
by Felzenszwalb and Veksler (2010) considering labelings
that have a tiered structure. So-called ordering constraints,
which require labels to only occur within a certain direction
of other labels, were applied to geometric scene labeling by
Liu et al. (2010) for a specific five-part model. Strekalovskiy
and Cremers (2011) unified the existing approaches such as
the five-regions and the tiered layout and proposed general-
ized ordering constraints. None of these constraints include
any notion of label distance and thus cannot be considered
as midrange constraints due to their global nature.

Finally, relative location based geometric relations have
been introduced before into segmentation. In Gould et al.
(2008) the authors propose a two-stage process, which first
uses an appearance model to assign labels and then employs
a relative location prior based on the most likely label for
each pixel in the first step to improve the segmentation. In

contrast to our approach, this is a two-stage process and thus
does not allow for any optimality guarantees. In the context
of learning, relative spatial label distances have also been
successfully applied, e.g., in Kontschieder et al. (2013) and
Savarese et al. (2006).

1.2 Contributions and Organization

In this article, we show how midrange geometric constraints
characterized by label direction and distance can be inte-
grated into variational semantic segmentation approaches.
We give a convex relaxation of the energy minimization
problem, which can be solved with fast primal-dual algo-
rithms (Pock et al. 2009) in parallel on graphics hardware
(GPUs). Results on various images and benchmarks show
that the novel constraints improve semantic segmentation
results.

The article is organized as follows: In Sect. 2 we give a
formal definition of the multi-label segmentation problem
together with different appearance models. In Sect. 3 we
introduce the novel midrange geometric priors followed by a
convex relaxation of the optimization problem in Sect. 4. In
Sect. 5 we present results on various datasets and compare
our segmentation results to state-of-the-art approaches.

1.3 Extensions and Improvements over the Previously
Published Variant of our Model (Bergbauer et al.
2013)

This journal paper extends our previously published ICCV
workshop paper (Bergbauer et al. 2013) by a more general
formulation of the proximity priors to midrange geometric
constraints and by more detailed and thorough evaluations
on various image datasets.

The novel midrange geometric constraints are beneficial
for the segmentation of part-based articulated and for part-
based rigid objects as well as for the segmentation of scenes.
The novel formulation allows to define different structuring
elements for each label in contrast to only a single one in
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Bergbauer et al. (2013) (Sects. 3.2, 3.3). We give an overview
of different appearance models (Sect. 2.2), an analysis of dif-
ferent choices of structuring elements and the penalty matrix
(Sects. 3.3, 3.4) as well as a detailed explanation of the impact
of different structuring elements (Sect. 3.5).

Additionally, we provide extensive evaluations including
failure cases in Sect. 5. We present additional experiments on
part-based articulated (Sect. 5.1) and part-based rigid objects
(Sect. 5.2) on the CMU-Cornell iCoseg dataset (Batra et al.
2010), the People dataset (Ramanan 2006) and the Penn-
Fudan pedestrian database (Wang et al. 2007). Moreover, we
show results for the recognition of facades on the eTRIMS
image database (Korc and Förstner 2009) and for the task of
geometric class labeling of indoor images (Liu et al. 2010)
(Sect. 5.3). Furthermore, we provide detailed insights about
our experiments including the chosen parameters such as the
structuring element Si for label i , its size d and the choice of
the penalty matrix A.

2 Variational Multi-label Segmentation

We begin with the formal definition of the multi-label
segmentation problem and show several choices for the
appearance term.

Although any numerical algorithm used for the implemen-
tation of the method presented below requires a discretization
of the image domain, our general multi-label segmentation
framework can be formulated continuously. We present the
continuous setup below and give more details regarding the
discretization and implementation in Sect. 4.2.

2.1 The Multi-label Optimization Problem

Let I : Ω → R
d denote the input image defined on the image

domain Ω ⊂ R
2. The general multi-label image segmenta-

tion problem with n ≥ 1 labels consists of the partitioning
of the image domain Ω into n regions {Ω1, . . . ,Ωn}. This
task can be solved by computing binary labeling functions
ui : Ω → {0, 1} in the space of functions of bounded
variation (BV ) such that Ωi = {

x
∣
∣ ui (x) = 1

}
. The BV

space is important, since it allows jumps in the indicator
functions which correspond to sharp transitions between
adjacent regions. We compute a segmentation of the image
by minimizing the following energy (Zach et al. 2008)
(see Nieuwenhuis et al. 2013 for a detailed survey and code)

E(Ω1, . . . ,Ωn) = λ

2

n∑

i=1

Perg (Ωi ) +
n∑

i=1

∫

Ωi

fi (x) dx . (1)

fi denotes the appearance model for the respective region
Ωi . Different ways to define fi are discussed in Sect. 2.2.
Perg (Ωi ) denotes the perimeter of each set Ωi , which is min-

imized in order to favor segments of shorter boundary. These
boundaries are measured with either an edge-dependent or
a Euclidean metric defined by the non-negative function
g : Ω → R

+. For example,

g (x) = exp

(
−|∇ I (x) |2

2σ 2

)
, σ 2 = 1

|Ω|
∫

Ω

|∇ I (x) |2dx

favors the coincidence of object and image edges.
To rewrite the perimeter of the regions in terms of the

indicator functions we make use of the total variation and its
dual formulation (Pock and Chambolle 2011; Nieuwenhuis
et al. 2013):

Perg(Ωi ) =
∫

Ω

g(x)|Dui | = sup
ξi :|ξi (x)|≤g(x)

−
∫

Ω

ui div ξi dx .

Since the binary functions ui are not differentiable Dui
denotes their distributional derivative. Furthermore, ξi ∈
C1
c

(
Ω;R2

)
are the dual variables and C1

c denotes the space of
smooth functions with compact support. We can rewrite the
energy in (1) in terms of the indicator functions ui : Ω →
{0, 1} (Zach et al. 2008; Nieuwenhuis et al. 2013):

E(u1, . . . , un)

= sup
ξ∈K

n∑

i=1

∫

Ω

( fi − div ξi ) ui dx,

where K =
{
ξ ∈ C1

c

(
Ω;R2×n

) ∣
∣
∣ |ξi (x)| ≤ λg(x)

2

}
. (2)

2.2 Choices of Appearance Models

In this article, we use different appearance models for the
appearance term fi in (2) depending on the task to solve.

2.2.1 Color Likelihoods

The simplest model is based on an estimated color probabil-
ity distribution, e.g., by means of Parzen density estimators.
Given a set of scribbles or training data we can extract RGB
or HSV sample data for each label in the image or database.
A Parzen density for a specific object class i with mi color
samples, each denoted by Ii j ∈ R

3, is then given by

fi (x) := − log Pi (I (x))

:= 1

mi

mi∑

j=1

1
√

(2π)3|Σ | exp
−

(
(I−Ii j)

T
Σ−1(I−Ii j)

)

.

(3)

The density depends on the covariance matrix Σ of the mul-
tivariate Gaussian, which is usually a diagonal matrix and
can be adapted by the user. Large values on the diagonal will
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assign a higher probability to less common colors. Low val-
ues on the diagonal will, in contrast, make the distribution
more peaked. |Σ | denotes the determinant of Σ . In order to
avoid infinity values in the appearance term caused by color
probabilities of 0 we modify the expression as follows

fi (x) := − log
(
Pi

(
I (x)

) · (1 − ε) + ε
)
, (4)

where ε is a very small constant close to 0.

2.2.2 Spatially Varying Color Likelihoods

In the case of scribble based segmentation we can make use of
additional spatial information to estimate color likelihoods.
The idea is that close to the scribble we are quite certain about
the color in this location, which will be similar to the closest
scribble points. On the contrary, far from the scribbles we
have to deal with uncertainty in the color density estimation.
This level of confidence depends on the distance to the closest
scribble point of the current label. It can be integrated into
the Parzen density estimator in (3) by computing a different
covariance matrix Σi (x) at each pixel proportional to the
distance to the closest scribble of label i :

Σi (x) = α min
j=1,...,mi

|x − xi j |2, (5)

where
{
xi j , j = 1, . . . ,mi

}
is the set of user scribbles

for region i and α ∈ R. This yields a space-dependent
color density estimator. Details of this approach are given
in Nieuwenhuis and Cremers (2013).

2.2.3 Texton Likelihoods

In order to integrate not only color, but also shape and context
information, Shotton et al. (2006) proposed to learn a dis-
criminative model to distinguish between object classes. This
model is based on texton features, which incorporate shape
and texture information jointly. Training is done by means
of a shared boosting algorithm. Using the softmax function,
the predicted confidence values Hi (x) can be interpreted as
a probability distribution. By taking the negative logarithm,
we obtain the appearance model

fi (x) = − log

(
exp (Hi (x))∑n
j=1 exp

(
Hj (x)

)

)

, (6)

which is also known as unary pixel potential. This model is
computed with the ALE library (Ladicky et al. 2009, 2010)
and used for the experiments on the Penn-Fudan, eTRIMS
and MSRC dataset in order to guarantee comparability to
other approaches.

3 The Novel Midrange Geometric Priors

We motivate the midrange geometric priors by means of the
simple artificial teddy bear example in Fig. 2a. Common seg-
mentation approaches group pixels mainly according to their
color, hence the ears of the bear are associated with the region
‘shoes’ (Fig. 2b). The desired result, however, would rather
connect the ears to the head instead of the shoes as shown in
Fig. 2c.

To obtain the desired solution, we make use of a dilation,
an operation from mathematical morphology. To examine if
two regions are close to each other in a certain direction we
dilate one of the regions in this direction and compute the
overlap between the dilation and the second region. For the
teddy example, we want to penalize that head and shoes are
close without considering any specific direction. Therefore,
we enlarge the region ‘shoes’ in all directions simultaneously
and compute the overlap with the region ‘head’ as shown in
Fig. 2. In this way, we do not only consider directly neigh-
boring pixels as close but we consider proximity with respect
to arbitrary neighborhoods of any size, shape or direction,
which allows us to introduce midrange geometric constraints.
The size and shape of these neighborhoods is determined by
the structuring element of the dilation and can thus be easily
adapted.

3.1 A Continuous Formulation of the Dilation

Dilation is one of the basic operations in mathematical mor-
phology. Since we ultimately aim at introducing the dilation
operation into a continuous energy optimization problem
instead of using a suboptimal two-step procedure, we require
a continuous formulation of the dilation, which can be defined
as follows:

Definition 1 (Dilation of an image Soille 2003) Let I :
Ω → R

d be an image and S a structuring element. The
dilation of I by S is denoted by δS (I ). The dilated value at
a given pixel x ∈ Ω is given as follows:

[δS (I )] (x) = sup
z∈S

I (x + z). (7)

Thus, the dilation result at a given location x in the image is
the maximum value of the image within the window defined
by the structuring element S, when its origin is at x .

3.2 Introducing Midrange Geometric Constraints

To compute the proximity of two labels, we first introduce the
notion of an extended region indicator function ui denoted
by di : Ω → {0, 1}, which dilates the indicator function in a
specific direction and distance (see Fig. 2 and Definition 1):
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Fig. 2 Introducing midrange geometric priors. First row a Original, b
Color-based segmentation, c Desired segmentation. Color-based seg-
mentation often fails. The ears of the bear are (b) assigned the label
‘shoes’ instead of (c) being combined with the label ‘head’. Second
row The novel priors can be used to penalize the ‘closeness’ of two

labels, in this example d ‘head’ and e ‘shoes’. f Dilation of the indica-
tor function ‘shoes’; g Overlap of the dilated region ‘shoes’ (blue) and
the region ‘head’ (yellow). Appropriate penalties for such overlap (red)
introduce semantic information into the segmentation

di (x) := [
δSi (ui )

]
(x) = sup

z∈Si

ui (x + z). (8)

The set Si determines the type of geometric spatial rela-
tionship we want to penalize for label i , i.e., distance and
direction, for example ‘less than 20 pixels above’. Si is often
denoted by structuring element. We will give a more detailed
explanation of Si in the Sect. 3.3.

To detect if two regions i and j are close to each other,
we compute the overlap of the extended indicator function
di and the indicator function u j , as shown in bright red in
Fig. 2g. For each two regions i and j we can now penalize
their proximity by means of the following energy term:

Egeom(u) =
∑

1≤i< j≤n

A(i, j)
∫

Ω

di (x) u j (x) dx . (9)

The penalty matrix A ∈ R
n×n
≥0 indicates the penalty for the

occurrence of label j in the proximity of label i . Information
on how to define or learn this matrix are given in Sect. 3.4.

3.3 Structuring Elements

The dilation operation requires a structuring element (SE) for
probing and expanding label indicator functions. The option

to use structuring elements of different sizes and shapes is
one of the major benefits of the proposed algorithm.

There are many different ways to define SEs. We can spec-
ify one set Si for each label i . If Si is for example a line
we can penalize the proximity of specific labels in specific
directions, e.g., the occurrence of a book below a sign (com-
pare Fig. 4c). Symmetric sets of specific sizes consider the
proximity of two labels without preference of a specific direc-
tion. Sparse sets Si as shown in Fig. 3c and d lead to similar
results but can speed up the runtime. Examples for struc-
turing elements are shown in Fig. 3 and their application in
Fig. 4.

The larger Si the more pixels are considered adjacent to x .
Let the occurrence of label j in the proximity of label i be
denoted by i ∼Si j . If training data is available we can learn
the probabilities P

(
i ∼Si j

)
for different types and sizes of

SEs and then define Si as the SE which provides the highest
information gain for label i .

The information gain for a label i and structuring element
S can be computed by means of the Shannon entropy (Shan-
non 2001):

H(i,S) = −
∑

j∈{1,...,n}
j 	=i

P (i ∼S j) · log
(
P (i ∼S j)

)
. (10)
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(a) (c)

(b)

(d)

Fig. 3 Horizontal, vertical and sparse structuring elements. Knowl-
edge of the occurrence of regions above/below or left/right within a
distance d can be included by using different structuring elements. Each
structuring element has an origin which is indicated in dark gray. a The
vertical line dilates a region d pixels upward and downward, b the hor-
izontal line centered on the rightmost pixel enlarges a region d pixels

to the right. c, d To save computation time sparse structuring elements
can be used. White pixels are chosen randomly and left out, i.e. they
are not included in the set S. c A sparse element, which dilates to the
bottom, right and left. d A sparse element, which dilates equally in all
directions and thus only regards pixel distance

Fig. 4 Impact of structuring elements. aOriginal image, b–d Indicator
function extended by different sets Si . The light pink color illustrates
the extended ‘sign’ region. Different sets Si convey different geomet-
ric priors. b Symmetric sets Si only consider object distances, but are
indifferent to directional relations. c If Si is chosen as a vertical line

centered at the bottom, the indicator function of the region ‘sign’ is
extended to the bottom of the object, e.g., penalizing ‘book’ appearing
closely (within d pixels) below ‘sign’.dHorizontal lines penalize labels
to the left and right

The probabilities P (i ∼S j) can e.g., be obtained by esti-
mating the relative frequencies of the labels within the range
of the selected structuring element S in the training data.
We can either treat the relative frequencies as a joint proba-
bility distribution, which requires normalization by the sum
of all elements, or we can treat it as a conditional distri-
bution, which requires normalization per label separately.
In the first case, the occurrence probability of each label is
inherently part of the estimated probability distribution, i.e.,
labels occurring rarely in the training data also occur rarely
close to other labels. The second case removes the influence
of the frequency of label occurrences and only judges if a
second label is common within the vicinity of a first label,
which is already given. A slightly different way, which does
not involve probability distributions, is to count all pairwise
label co-occurrences in the training data weighted by their

inverse distance in a matrix BS , to normalize BS and then to
estimate P (i ∼S j) by BS(i, j). For the Penn-Fudan dataset
and different types and sizes of SEs for each label (except
the ‘background’), for example, we use the latter approach
and obtain the SEs in Fig. 5.

Note that the optimal structuring element Si for label i
will be dependent on the viewpoint. According to whether a
scene is captured from a front or a top view, the size, shape
and position of the objects in the scene varies in the captured
image. Hence, to define one structuring element Si for all
labels i in a benchmark, some uniformity of the training and
test images has to be assumed.

If a learning approach is not desired or not possible due
to lack of training images or non-uniformity of the dataset,
appropriate sets Si can easily be chosen manually as done
for the experiments in Figs. 9 and 10 in Fig. 7.

123



Int J Comput Vis

Background 

Hair 

Face 

Upper Cl.

Lower Cl.

Arms 

Legs 

Shoes

Set Si Matrix A
-

, d = 50

, d = 50

, d = 50

, d = 50

, d = 50

, d = 50

, d = 50

Fig. 5 SEs and penalty matrix A learned on the Penn–Fudan training
set (label colors according to benchmark conventions). We penalize the
labels ‘lower clothes’, ‘legs’ and ‘shoes’ above ‘face’, as well as ‘hair’,
‘face’, ‘upper clothes’ and ‘arms’ below ‘shoes’

3.4 Specification of the Penalty Matrix

To introduce the novel geometric priors into the original opti-
mization problem in (2), we have to define the penalty matrix
A ∈ R

n×n
≥0 in (9). Each entry A(i, j), i 	= j indicates the

penalty for the occurrence of label j in the proximity of
label i , where the proximity is defined by the respective struc-
turing element Si . For i = j we set A(i, i) := 0.

If training data is available we can learn the probabil-
ities P

(
i ∼Si j

)
as described in Sect. 3.3 and define the

entries A(i, j) for label j being close to label i , e.g., by
A(i, j) := min(− log(P

(
i ∼Si j

)
),m) with a fixed number

m ∈ N. This assigns a penalty close to zero to frequent and a
penalty of m to less frequent co-occurrences. For the MSRC
benchmark and a symmetric set S of size 9 × 9 for all labels,
for example, we estimate P (i ∼S j) by BS(i, j) (compare
Sect. 3.3) and define A(i, j) := min(− log(BS (i, j)), 20)

and obtain the penalty matrix in Fig. 6. The first column in
Fig. 6, e.g., indicates that the occurrence of ‘building’ close
to ‘tree’ or ‘sky’ is very likely (light colored cells), whereas
the occurrence of ‘building’ close to ‘sheep’ is very unlikely
(dark colored cell).

If there is no appropriate training data available or if a
learning approach is not desired, the penalty matrix A can
easily be defined by hand as done for the experiments in
Figs. 9 and 10 in Fig. 7.

3.5 Real-World Examples

We demonstrate the impact of the novel midrange geometric
priors by means of two examples shown in Figs. 8, 9 and 10.
The corresponding color-legend can be found in Fig. 11.

Figure 7 gives an overview of the structuring elements
and the penalty matrices defined for the segmentation of the
soccer player and the fighters. For each label i an individual
structuring element Si with specific size d has been defined
by the user. In the example of the soccer player we penalize
the label ‘head’ being close to ‘arms’, below ‘shirt’ or below
‘legs’, as well as ‘arms’ below ‘shirt’ or ‘legs’. For the fight-
ers, we penalize the occurrence of ‘head’ below ‘jacket’,
close to ‘trousers’ or close to ‘weapon’. Furthermore, we
penalize ‘hands’ next to ‘trousers’.

Figure 8 shows the generation of the extended indicator
functions di by means of different structuring elements from
the original indicator functions ui .

Figures 9 and 10 show how segmentation results can be
improved by imposing midrange geometric constraints by
penalizing the overlap of the specified indicator functions.

Fig. 6 Penalty matrix A
learned on the MSRC training
data (objects are color coded
corresponding to benchmark
convention in first row and
column). The lighter the color
the more likely is the
co-occurrence of the
corresponding labels within the
relative spatial context, and the
lower is the corresponding
penalty

Building
Grass
Tree
Cow
Sheep
Sky
Aeroplane
Water
Face
Car
Bicycle
Flower
Sign
Bird
Book
Chair
Road
Cat
Dog
Body
Boat

`Cow‘ is unlikely 
to appear close 
to `aeroplane‘.

`Road‘ is likely 
to appear close to 
`car‘ and `bicycle‘.
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Fig. 7 Penalty matrix A and
corresponding structuring
elements (SE) defined to
improve the segmentation
results in Figs. 9 and 10. For
each label a specific SE with
specific size d has been chosen
by the user. For each label pair
the corresponding matrix entry
indicates the penalty in case
these labels appear close to each
other in the specified direction

Set Si Matrix A
, d 15 Head
, d 20 Arms

, d 50 Shirt
, d 20 Legs

- Background

0 12 0 12 0
12 0 0 12 0
12 12 0 0 0
24 24 0 0 0
0 0 0 0 0

Set Si Matrix A
- Head

, d 20 Jacket
, d 20 Trousers

- Hands
- Feet
- Background

, d 25 Weapon

0 0 0 0 0 0 0
10 0 0 0 0 0 0
10 0 0 50 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

10 0 0 0 0 0 0

(a) (b) (c) (d)

Fig. 8 Effect of different sets Si shown by means of the extended
region indicator functions di . a Original images and b indicator func-
tions ui for the ‘weapon’ region of the fighters and the ‘shirt’ and ‘legs’
region of the soccer player. c Sets Si chosen for the dilation. Top Sym-
metric sets Si consider proximity in all directions.Center If S is chosen
as a vertical line centered at the bottom, the indicator function of the

region ‘shirt’ is extended to the bottom of the object, e.g., penalizing
‘head’ appearing below ‘shirt’. Bottom Horizontal lines penalize labels
to the left and right and can be extended to probe downwards to the
left and right. Sparse sets save runtime. d Extended indicator functions
di = δSi (ui ) obtained with Si
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Fig. 9 Penalization of the proximity of the labels ‘head’ and ‘weapon’
for the fighter image (a) to improve the color-based segmentation in
(b), see Fig. 11 for a color legend. d, e Region indicator functions ui
for ‘head’ and ‘weapon’. f Extended region indicator function di for

‘weapon’. g Bright red indicates the penalized overlap. The overlap
of the head with the weapon forces the weapon to retract in the area
of the head. The novel geometric priors use several geometric con-
straints together and yield the result in (c)

Fig. 10 Effect of novel geometric constraints (h), which improve the
color-based segmentation in (e) for the soccer player image (a), see
Fig. 11 for a color legend. b–d Region indicator functions ui for ‘head’,
‘arms’ and ‘shirt’. f Extended indicator function di for the shirt region.

g The overlap of the head and the arms with the dilated shirt force the
shirt in the top of the image to retract and the head to disappear from
the trousers
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Fig. 11 Color legend used in
all experiments except for the
benchmarks which have their
own color coding

Hair
Head / Face
Shirt / Pullover / Dress
Jacket
Arms / Hands / Skin
Trousers
Feet / Legs

Handlebar
Tires
Bicycle Frame / Car
Car Window
Light
Mirror
License Plate

Socks
Shoes
Background
Weapon
Beak
Body
Saddle

4 Integrating the Geometric Constraints
into a Convex Optimization Problem

After introducing and defining the novel midrange geometric
constraints (9) with A ∈ R

n×n
≥0 it remains to integrate these

constraints into the original convex optimization problem for
segmentation (2)

min
u∈G

E(u) + Egeom(u) (11)

= min
u∈G

sup
ξ∈K

n∑

i=1

∫

Ω

( fi − div ξi ) ui dx

+
∑

1≤i< j≤n

A(i, j)
∫

Ω

di u j dx (12)

s.t. di (x) = [
δSi (ui )

]
(x) = sup

z∈Si

ui (x + z), (13)

G =
{
u ∈ BV

(
Ω; {0, 1}n)

∣
∣
∣

n∑

j=1

u j (x) = 1 ∀ x ∈ Ω

}
,

(14)

K =
{
ξ ∈ C1

c

(
Ω;R2×n

) ∣
∣
∣ |ξi (x)| ≤ λg(x)

2

}
. (15)

4.1 A Convex Relaxation of the Midrange Geometric
Constraints

In the following we will propose a convex relaxation of the
segmentation problem (2) combined with the proposed priors
in (9) as stated in (11)–(15). To obtain a convex optimization
problem, we require convex functions over convex domains.

4.1.1 Relaxation of the Binary Functions ui

The general multi-labeling problem is not convex due to the
binary region indicator functions ui : Ω → {0, 1} in (14).
To obtain a convex problem where each pixel is assigned to
exactly one label, instead of optimizing over the set G in (14)
optimization is carried out over the convex set

U =
{
u ∈ BV

(
Ω; [0, 1]n)

∣
∣
∣

n∑

j=1

u j (x) = 1 ∀ x ∈ Ω

}
.

4.1.2 Relaxation of the Dilation Constraints

The dilation constraints in (13) are relaxed to

di (x) ≥ ui (x + z) ∀ x ∈ Ω, z ∈ Si . (16)

By simultaneously minimizing over the functions di we can
assure that at the optimum di fulfills the constraints in (13)
exactly. The inequality (16) can easily be included in the
segmentation energy by introducing a set of Lagrange mul-
tipliers βiz and adding the following energy term:

min
d∈D

max
β∈B

n∑

i=1

∑

z∈Si

∫

Ω

βiz (x)
(
di (x) − ui (x + z)

)
dx,

B = {
βiz

∣
∣ βiz : Ω → [−∞, 0] ∀ z∈Si , i = 1, . . . , n

}
,

D = BV
(
Ω; [0, 1]n) . (17)

4.1.3 Relaxation of the Product of the Indicator Functions

The product of the dilation di and the indicator function u j in
(12) is not convex. A convex, tight relaxation of such energy
terms was given by Strekalovskiy et al. (2011). To this end,
we introduce additional dual variables qi j and Lagrange mul-
tipliers αi j :

Q =
{
qi j

∣
∣ qi j : Ω → R

4, 1 ≤ i < j ≤ n
}
,

A =
{
αi j

∣
∣ αi j : Ω → [−∞, 0]4 , 1 ≤ i < j ≤ n

}
. (18)

4.1.4 Resulting Optimization Problem

After carrying out these relaxations we finally obtain the fol-
lowing convex energy minimization problem

min
u∈U
d∈D
α∈A

max
ξ∈K
β∈B
q∈Q

n∑

i=1

{∫

Ω

(
fi (x) − div ξi (x)

)
ui (x) dx

+
∑

z∈Si

∫

Ω

βiz (x)
(
di (x) − ui (x + z)

)
dx

123



Int J Comput Vis

+
n∑

j=i+1

∫

Ω

q1
i j (x)

(
1 − di (x)

) + q2
i j (x) di (x)

+ q3
i j (x)

(
1 − u j (x)) + q4

i j (x) u j (x)

+α1
i j (x)

(
q1
i j (x) + q3

i j (x)
) + α2

i j (x)
(
q1
i j (x) + q4

i j (x)
)

+α3
i j (x)

(
q2
i j (x) + q3

i j (x)
) + α4

i j (x)
(
q2
i j (x)

+ q4
i j (x) − A(i, j)

)
dx

}
. (19)

The projections onto the respective convex sets of ξ, d, β

and α are done by simple clipping while that of the primal
variable u is a projection onto the simplex in R

n (Michelot
1986).

4.2 Implementation

In the previous sections, we proposed our method in a con-
tinuous framework with the image domain Ω ⊂ R

2. For
this reason we discretize the problem using a regular Carte-
sian grid (Chambolle and Pock 2011) as is commonly done,
e.g., Pock et al. (2009). In order to find the globally opti-
mal solution to this relaxed convex optimization problem,
we employ the primal-dual algorithm published in Pock
et al. (2009). Optimization is done by alternating a gradi-
ent descent with respect to the functions u, d and α and a
gradient ascent for the dual variables ξ, β and q interlaced
with an over-relaxation step in the primal variables. The step
sizes are chosen optimally according to Pock and Chambolle
(2011).

Due to the inherent parallel structure of the optimization
algorithm (Pock et al. 2009), each pixel can be updated inde-
pendently. E.g., the update of the indicator function u(x):
un → un+1 can be computed in parallel for each pixel x ∈ Ω .
Hence, the approach can be easily parallelized and imple-
mented on graphics hardware. We used a parallel CUDA
implementation on an NVIDIA GTX 680 GPU.

We stopped the iterations when the average update of the
indicator function u(x) per pixel was less than 10−5, i.e., if

1

|Ω|
∣
∣
∣uk − uk−1

∣
∣
∣ < 10−5. (20)

By relaxing the indicator variables, i.e., allowing the primal
variables ui to take on intermediate values between 0 and 1,
we may end up with non-binary solutions. In order to obtain
a binary solution to the original optimization problem, we
assign each pixel x to the label L with maximum value after
optimizing the relaxed problem:

L (x) = arg maxi {ui (x)} , x ∈ Ω. (21)

We observed that the computed relaxed solutions u are binary
almost everywhere. For the benchmark experiments, the

computed solutions ui (x) < 0.01 or ui (x) > 0.99 for 97–
98 % of all pixels x ∈ Ω and i = 1, . . . , n and for 2–3 %
ui (x) ∈ [0.01, 0.99].

5 Experiments and Results

We have shown how to integrate midrange geometric priors
into a variational multi-label approach and gave a convex
relaxation of the resulting optimization problem. One of the
major advantages of the proposed algorithm is that we can
utilize sets Si of different sizes and shapes which allow us
to define specific neighborhoods of different spatial extent
and direction for each label. In the following we will show
qualitative and quantitative results for a number of articu-
lated part-based objects such as humans, animals or clothes
from the CMU-Cornell iCoseg (Batra et al. 2010), Peo-
ple (Ramanan 2006) and Penn-Fudan dataset (Wang et al.
2007), for rigid part-based objects such as cars or bicycles
as well as for a variety of scenes in the MSRC benchmark,
for the recognition of facades on the eTRIMS image data-
base (Korc and Förstner 2009) and for the task of geometric
class labeling of indoor images (Liu et al. 2010).

For the iCoseg and People dataset, we defined the labels:
‘hair’, ‘face’, ‘shirt’, ‘jacket’, ‘hands’, ‘trousers’, ‘feet’,
‘socks’, ‘shoes’, ‘weapon’ and ‘background’. The corre-
sponding colors are indicated in Fig. 11 and consistently
used for all experiments except for the benchmarks which
have their own standard color legends.1

5.1 Part-based Articulated Objects: Humans, Animals,
Clothes

Articulated objects such as humans, animals and clothes are
hard to segment correctly since there are few things that
remain constant over a set of images and thus suitable for
formulating useful constraints, for example color, shape or
absolute location priors are not suitable. Yet, what is typical
for many of these objects is that they obey relative geometric
constraints, which relate to specific directions and distances
and which can be formulated within the proposed framework
of the midrange geometric constraints. Especially humans,
animals and clothes are good examples for objects, which
are difficult to segment, but still follow strict rules imposed
on their parts, e.g., the head is usually above the feet and

1 The Pascal VOC dataset is not appropriate for the evaluation of the
proposed midrange geometric priors since the images of the Pascal VOC
segmentation task consist of only very few (often only one) objects
and large ‘background’ areas. 64 %/90 % of the images contain less
or equal one/two objects. The proposed constraints, however, allow to
discourage the occurrence of labels in the vicinity of each other, e.g.,
that ‘sky’ lies above ‘ground’ or that the ‘shoes’ of a person appear
below the ‘head’. We therefore chose datasets with more than three
labels for the benchmark evaluations.
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82.15 90.95 81.76 56.44 75.58

91.14 (+8.99) 92.78 (+1.83) 89.57 (+7.81) 61.57 (+5.13) 79.94 (+4.35)

(a)

(b)

(c)

Fig. 12 Part-based articulated objects such as humans or clothes. a
Original images, b Color-based segmentation (solution of Eq. (2)).
Improved segmentation results (c) can be obtained by introducing the
proposed novel midrange geometric constraints in order to introduce
prior knowledge of relative location, direction and distance of body

parts, e.g., we penalize ‘trousers’ above ‘body’, ‘head’ ‘arms’ below
‘legs’ and ‘shirt’ next to ‘shoes’. The dice-score (and the improvement
over the color-based segmentation) is given in white in the bottom left
image corner

trousers can be found below the shirt and hands are usually
close to arms.

Figures 12, 13 and 14 show segmentation results for
humans, clothes and animals. Since no training data is avail-
able for the iCoseg and People dataset, we manually defined
the structuring elements Si and the penalty matrix A. For

example, we penalize ‘arms’ and ‘trousers’ next to one
another using a 31×31 sparse symmetric structuring element
as well as ‘hair’ and ‘face’ next to ‘hands’ by a 51×51 sparse
symmetric element Si (compare Fig. 3d for d = 15, 25).
Furthermore, we penalize ‘head’ below ‘body’ by a 25 pixel
high vertical element centered at the bottom. Each structur-
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85.58 75.79 86.92 81.83

90.00 (+4.42) 87.87 (+12.08) 88.00 (+1.08) 83.85 (+2.02)

(a)

(b)

(c)

Fig. 13 Part-based articulated objects such as animals or humans. a
Original images, b Color-based segmentation (solution of Eq. (2)). We
obtain improved segmentation results (c) for further articulated objects
based on the novel midrange geometric constraints, e.g., we penalize

‘feet’ close to ‘beak’ or ‘shoes’ above ‘hair’. The bottom left corner
of each image shows the dice-score (and the improvement over the
color-based segmentation)

ing element is selected such that it reflects the common label
proximities of the specific dataset. ‘arms’, e.g., mostly appear
closer to ‘trousers’ than ‘hands’ next to ‘hair’. Thus, the struc-
turing elements are chosen such that ‘hands’ and ‘hair’ are
penalized within a larger distance (d = 25) than the labels
‘arms’ and ‘trousers’ (d = 15).

For the experiments on the Penn-Fudan dataset (Fig. 14)
we used the learning approach introduced in Sect. 3.3 and
obtained the penalty matrix A and structuring elements Si
shown in Fig. 5. For example, we penalize the label ‘shoes’
appearing closely (within 50 pixels) below ‘hair’ and the label
‘face’ appearing closely above ‘lower clothes’. Figure 14
shows that the proposed constraints improve the seman-
tic labeling of the images compared to (c) the pixel-based
approach by Ladicky et al. (2010), (d) the approach by Bo and
Fowlkes (2011) who provided the ground truth annotations
and (e) the color-based segmentation (solution of Eq. (2)).
In the top row, e.g., the incorrect label transition from ‘face’
to ‘lower clothes’ is penalized with the novel constraints and
the correct label ‘upper clothes’ is selected.

To allow for a quantitative analysis, we provide the
dice-scores (and the improvement over the color-based seg-
mentation) in the bottom left corner of each image. The

dice-score (Dice 1945) is given as

2 · True Positives · 100

2 · True Positives + False Negatives + False Positives
.

(22)

Since no multi-label ground truth segmentations are avail-
able for the iCoseg and People datasets, we therefore created
accurate ground truth labelings (compare Fig. 1d). The qual-
itative results show improvements up to 12 % of the novel
constraints over the color-based segmentation. The novel
midrange geometric priors capture richer semantic infor-
mation and thus allow for a correct semantic interpretation.
A discussion of the quantitative results on the Penn-Fudan
dataset will be given in Sect. 5.6.

5.2 Part-Based Rigid Objects

An obvious application of the proposed priors are rigid
objects consisting of several parts, which is often the case for
man-made objects such as cars or bicycles. Using the pro-
posed framework we can improve segmentation results of
these objects with all their parts by integrating the proposed
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43.49 43.17 47.88 41.27 53.24

52.72 47.86 46.43 54.85 58.02

57.70 50.21 42.72 63.97 68.89

(a) (b) (c) (d) (e) (f) (g)

Fig. 14 Improved results on the Penn-Fudan dataset using the learned
penalty matrix A and structuring elements Si shown in Fig. 5. a Origi-
nal image, b Index minimizing (6), c Ladicky et al. (2010) pixel-based,
d Bo and Fowlkes (2011), e Solution of Eq. (2), f Proposed priors, g

Ground truth. The proposed novel midrange geometric constraints allow
to obtain improved segmentation results by capturing richer semantic
information on spatial object inter-relations of part-based articulated
objects such as humans

priors. Figure 15 shows results for a set of part-based rigid
objects. For example we penalize ‘headlight’ and ‘window’
next to each other and ‘tires’ next to ‘headlight’ by using
41 × 41 sparse symmetric elements Si (compare Fig. 3d) for
d = 20). The dice-scores (cf. Eq. (22)) show a significant
improvement of more than 6 % compared to the color-based
segmentation.

5.3 Scene Segmentation

The proposed constraints are not only useful for part-based
objects but can as well be applied to scene segmentation. The
same geometric rules that apply to object parts also apply to
whole objects within scenes, for example we know that the

sky is above the ground and that sheep do not appear close
to wolves. In the following, we show results for a variety of
scenes in the MSRC benchmark, for the task of facade recog-
nition on the eTRIMS dataset (Korc and Förstner 2009) and
for the task of geometric scene labeling of indoor images (Liu
et al. 2010).

5.3.1 MSRC Scene Segmentation

In Fig. 16 we show several results from the MSRC bench-
mark. We compare our results to previous approaches, which
incorporate semantic constraints. The global co-occurrence
priors by Ladicky et al. (2010) penalize the simultaneous
occurrence of specific label sets, but they exhibit two draw-
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80.1980.3483.30

92.35 (+12.17)86.91 (+6.57)90.94 (+7.63)

(a)

(b)

(c)

Fig. 15 Part-based rigid objects such as cars or bicycles. a Original images, b Color-based segmentation (solution of Eq. (2)). We obtain improved
segmentation results by imposing the novel geometric priors (c). For example we penalize ‘tires’ above ‘window’ or ‘handlebar’close to ‘tires’

backs: a) The quality of the results depends on the quality of
the superpixel partition, which is done prior to any segmenta-
tion. This can lead to segmentations such as the cat in Fig. 16
fifth row, where only the black image parts are considered
as ‘cat’. b) They altogether disregard spatial information.
Since the penalty is independent of the size of the regions
and their location in the image, the prior is sometimes not
strong enough to prevent incorrect label combinations. As a
consequence, if more pixels vote for a certain label then they
may easily overrule penalties imposed by the co-occurrence
term. This can lead to segmentations such as the sheep with
cow head (see Fig. 16 first row) despite a large co-occurrence
cost for ‘sheep’ and ‘cow’. Other examples are the sign above
the book (third row) or the cat below the water (seventh row)
despite large costs for ‘sign’ and ‘book’ or ‘water’ and ‘cat’.

The local non-metric prior by Strekalovskiy et al. (2012)
can be understood as a purely local co-occurrence prior since
it only considers directly adjacent pixels as close. If two sheep
are standing further apart as in the second row then this case
is not penalized by the prior, which can lead to a sheep and
a cow close to each other. Besides, this method can easily
produce ghost regions, see Sect. 5.5.

There is no notion of distance, direction or proximity in
each of the approaches (Ladicky et al. 2010; Strekalovskiy
et al. 2012). In contrast, the proposed label cost penalty
is proportional to the size of the labeled regions and also
effects object labels at larger spatial distances. Hence, the

proposed priors are more flexible and allow for the integration
of more specific information, which improves segmenta-
tion results as shown in the last column (e) of Fig. 16. The
result of the cat (see Fig. 16 fifth row), e.g., shows that we
can avoid problems which appear due to prior superpixel
segmentations.

5.3.2 Facade Parsing on the eTRIMS Dataset

We applied our method for the recognition of facades on the
8-class eTRIMS facade dataset (Korc and Förstner 2009).
The following eight object classes are considered: ‘sky’,
‘building’, ‘window’, ‘door’, ‘vegetation’, ‘car’, ‘road’ and
‘pavement’.

In Fig. 17 we present five examples of facade segmenta-
tions. In columns one and two, the incorrect label transition
from ‘window’ (blue) to ‘door’ (yellow) is corrected with the
novel constraints by penalizing the appearance of ‘window’
close to ‘door’. In columns three and four, the wrong labeled
‘sky’ pixels (cyan) in the middle of the building disappear
by claiming that no other region appears above ‘sky’. The
combination of both constraints improves the segmentation
in the rightmost column, where both the incorrect ‘sky’ and
the incorrect ‘door’ pixels are removed with the novel con-
straints.
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building

(a)

building

(b) (c) (d) (e)

Fig. 16 Improved results on the MSRC benchmark. a Original image,
b Solution of Eq. (2), c Global co-occurrence prior (Ladicky et al.
2010), d Local non-metric prior (Strekalovskiy et al. 2012), e Proposed
geometric priors. Midrange geometric priors capture richer semantic

information on spatial object inter-relations such as distances, direction
and relative location than previous approaches such as global co-
occurrence (Ladicky et al. 2010) or local co-occurrence (Strekalovskiy
et al. 2012)

A first quantitative comparison is provided by the dice-
scores. A concrete benchmark analysis will be given in
Sect. 5.6.

5.3.3 Geometric Class Labeling of Indoor Images

In tasks like 3D reconstruction or vision-guided robot nav-
igation a rough labeling of the environment is essential. In
particular, the geometric classes such as ‘floor’ or ‘right wall’
are of importance. We therefore applied our novel constraints

on the dataset of indoor images from Liu et al. (2010) with
the five-regions layout: ‘left wall’ (yellow), ‘floor’ (green),
‘right wall’ (pink), ‘ceiling’ (blue) and ‘center’ (cyan).

Knowing, for example, that except the ceiling no other
region appears above the left wall, the incorrect labels
within the region ‘left wall’ can be removed. The midrange
geometric constraints can, e.g., be defined such that they
penalize everything above ‘ceiling’ and everything above
‘left’/‘right’/‘center’ except ‘ceiling’. Results for six differ-
ent images with the corresponding dice-scores are shown in
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76.0766.6062.0052.6675.06

75.91 (+0.85) 59.26 (+6.59) 63.13 (+1.13) 70.50 (+3.89) 77.50 (+1.43)

(a)

(b)

(c)

(d)

Fig. 17 Improved labeling of facades on the eTRIMS benchmark. a
Original image, b Color-based segmentation (solution of Eq. (2)), c
Segmentation with novel constraints, d Ground truth. By penalizing

‘window’ (blue) close to ‘door’ (yellow) and by claiming that no other
region appears above ‘sky’ (cyan) the incorrectly labeled ‘door’, ‘win-
dow’ and ‘sky’ pixels disappear

Fig. 18. A quantitative benchmark analysis will be given in
Sect. 5.6.

5.4 Analysis of Failure Cases

In order to evaluate the strengths and weaknesses of our
approach we looked into a number of failure cases on the
MSRC benchmark and compared our results to the index
minimizing the appearance model (6) and the results by
Ladicky et al. (2010) and Strekalovskiy et al. (2012), see

Fig. 19 for some examples. After close investigation of many
cases we can formulate one main reason for incorrect label-
ings:

The appearance term (see Sect. 2.2; Eq. (6)) used by all
three approaches favors incorrect labels over the correct one
(Fig. 19c). Take for example the ‘building’ which occurs in
the first row in all three results instead of the correct label
‘boat’. Since the appearance term clearly favors the white
color to belong to a ‘building’ and ‘building’ and ‘water’
is not an uncommon combination in the penalty matrix we

123



Int J Comput Vis

86.59 89.84 94.43

90.32 92.27 94.04

85.60 89.01 90.91

83.88 88.55 90.51

81.84 86.82 91.84

87.09 89.58 93.35

(a) (b) (c) (d) (e)

Fig. 18 Corrected layout of labels. a Original image, b Index minimizing (6), c Solution of Eq. (2), d Proposed geometric priors, e Ground truth
segmentation. The novel priors allow a correct segmentation of the corridors by including directional relations such as that the floor usually is below
the ceiling

obtain incorrect labels. The same happens for the examples in
the central and bottom row, where the appearance term yields
lots of incorrect labels. Since the appearance term favors
‘building’ over ‘sign’ in the bottom row (see column c) and
the proposed priors do not favor ‘sign’ close to ‘sky’ over
‘building’, the incorrect segmentation results. This happens
in a similar way in the central row, where the appearance
term suggests ‘car’ next to ‘road’ and ‘water’. Since ‘car’ is
more likely to occur above ‘road’ than ‘water’ the water is
assigned the label ‘road’.

Even though none of the methods yields good results
for these images, the proposed novel constraints at least
yield a reasonable combination of labels in contrast to the
other methods. These failure cases suggest that improve-
ments of the method can be gained by using better appearance
models.

5.5 Preventing Ghost Labels

‘Ghost labels’ denote thin artificial regions which are eas-
ily introduced if label distances are learned from training
data, see for example Strekalovskiy et al. (2012). If the dis-
tance function, i.e. the penalty matrix A, does not obey the
triangle inequality ‘ghost labels’ can appear. They reduce
costs of direct label transitions by taking a ‘detour’ over a
third, unrelated but less expensive label. For example, the
labels sheep and grass are common next to each other, and
the same holds for cow and grass, but cows usually do not
occur directly next to sheep, so the triangle inequality is
violated.

Examples are given in Fig. 20b with a close-up in Fig. 20c.
The segmentation result obtained by Strekalovskiy et al.
(2012), e.g., contains very thin ‘boat’ regions at the edge
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Fig. 19 Analysis of failure cases. a Original image, b Ground truth,
c Index minimizing (6), d Global co-occurrence prior (Ladicky et al.
2010), e Local non-metric prior (Strekalovskiy et al. 2012), f Proposed
geometric priors. For a thorough evaluation we looked into the failure

cases of our approach and compared to the index minimizing the appear-
ance term (6) and the results of Ladicky et al. (2010) and Strekalovskiy
et al. (2012). We identified one main reason: the appearance term favors
incorrect labels

Fig. 20 Midrange geometric priors prevent ghost labels. a Original
image, b Local prior (Strekalovskiy et al. 2012), c Zoom of (b), d
Novel geometric prior, e Zoom of (d). If the transition of two labels is
cheaper via a third label artificial labels will be introduced as shown

in (b) and as close-up in (c). The proposed geometric priors consider
regions with more than one-pixel distance still as adjacent and thus
avoid ghost labels

of the ‘grass’ label, because the transition between the labels
‘water’ and ‘boat’ and ‘boat’ and ‘grass’ is in sum less costly
than the direct transition between ‘water’ and ‘grass’. The
computed label distance matrix denotes the following dis-
tances (Strekalovskiy et al. 2012):

d(‘grass’, ‘water’) = 7.0 > 4.7 = d(‘grass’, ‘boat’)

+ d(‘boat’, ‘water’),

thus, the more costly label transitions from ‘grass’ to ‘water’
is avoided by introducing infinitesimal ‘boat’ regions.
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Fig. 21 Ground truth and trimap segmentations. a Original image, b
Ground truth segmentation, c Trimap of (b), d Trimap segmentation of
(b). We evaluate the performance using different evaluation domains:

b The whole image domain; c, d Trimap of (b) generated by taking a
13 pixel band surrounding the object boundaries

The proposed geometric priors prevent ghost regions since
the size of the structuring element is usually larger than two
pixels and thus considers more than a single pixel wide mar-
gin as close to the object. This leads to overlaps in indicator
functions which are larger than a single pixel and thus much
more expensive than in the approach by Strekalovskiy et al.
(2012), see for example our results in Fig. 20d with a close-up
in Fig. 20e. Our learned penalization matrix A, e.g., indicates
the following penalties:

A(‘grass’, ‘water’) = 6.2 < 9.6 = A(‘grass’, ‘boat’)

+A(‘boat’, ‘water’).

Thus, the direct transition from ‘grass’ to ‘water’ is favored
in the optimization process.

5.6 Benchmark Evaluation

In the following we will show quantitative results on the
aforementioned benchmarks and compare our segmentations
to state-of-the-art approaches for semantic labeling. For the
benchmark analysis, we computed three different evaluation
scores. The scores denote the average accuracy on the bench-
mark given as

True Positives · 100

True Positives + False Negatives

per pixel and per class and the dice-score averaged over all
images. The dice-score (Dice 1945) additionally takes the
false positives into account and is given in Eq. (22).

We measure the labeling accuracies using the different
evaluation scores and using different evaluation regions.
The evaluation region can be the whole image domain or
restricted to a band surrounding the region boundaries. The
restricted evaluation regions are called trimap (Kohli et al.
2009). An exemplary trimap with an evaluation band width
of 13 is illustrated in gray in Fig. 21c.

5.6.1 Penn-Fudan Benchmark Scores

The Penn-Fudan pedestrian benchmark (Wang et al. 2007)
includes 169 images with an average resolution of 290×116
pixels and 12 different labels such as ‘hair’, ‘face’, ‘left leg’
or ‘right leg’. We follow Bo and Fowlkes (2011) and combine
the left and right hand/leg/shoe to one region each, resulting
in the 8 different labels: ‘hair’, ‘face’, ‘upper clothes’, ‘lower
clothes’, ‘arm’, ‘leg’, ‘shoes’, ‘background’.2 For the bench-
mark experiments, we divided the image set randomly into
60 % training and 40 % test images and learned the penalty
matrix A and structuring elementsSi (see Fig. 5) as described
above in Sect. 3.3. The parameter lambda is set to λ = 0.8 .

In Tables 1 and 2 we compare the performance of our
method with the approaches by Ladicky et al. (2010) for the
pixel-based prior, Bo and Fowlkes (2011) with the shape-
based model and the recently proposed work of Luo et al.
(2013) for pedestrian parsing. Furthermore, we present the
accuracy of the index minimizing the appearance model (6)
and the solution of the approach without geometric priors,
i.e. the solution of Eq. (2). We evaluate the performance
of the approaches on the whole image domain and on
the trimap with band width 13. Table 1 shows that the
proposed midrange geometric constraints outperform the
related state-of-the-art segmentation algorithms. In Table 2
we additionally compare the confusion matrices on both
evaluation domains. Green colored values indicate that the
proposed method outperforms the comparative approach for
this region. The proposed priors achieve the best performance
for the vast majority of regions.

5.6.2 MSRC Segmentation Benchmark Results

In the following we will show quantitative results on the
MSRC database and compare our segmentations to state-of-
the-art approaches for semantic labeling.

The MSRC benchmark comprises 591 images with a res-
olution of 320×213 pixels which contain 21 different labels

2 Note that (Bo and Fowlkes 2011) additionally neglected the region
‘shoes’.
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Table 1 Penn–Fudan benchmark scores

Evaluation on the whole image domain Evaluation on the trimap (width 13)

Accur. per pixel Accur. per class Dice-score Accur. per pixel Accur. per class Dice-score

Index minimizing (6) 66.97 67.81 55.63 58.09 64.28 53.28

Solution of Eq. (2) 72.83 70.61 59.98 65.93 68.03 58.58

Ladicky et al. (2010) pixel-based 71.84 67.36 57.21 64.62 64.70 55.52

Bo and Fowlkes (2011) – 57.29 – – – –

Luo et al. (2013) – 54.7 – – – –

Proposed midrange
geometric priors

73.84 70.78 60.65 67.00 68.26 59.15

The proposed constraints outperform the related state-of-the-art segmentation algorithms on the Penn–Fudan benchmark
The best results are given in bold

Table 2 Confusion matrix on the Penn–Fudan dataset obtained for the evaluation on the whole image domain and on the trimap

Evaluation on the Evaluation on the
whole image domain trimap (width 13)
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Background 72 3 9 3 1 5 59
Hair 4 81 4 81
Face 71 71
Upper Clothes 78 73
Lower Clothes 78 76
Arms 53 53
Legs 51 6 51 6
Shoes 83

1 6 5 2 8 13 5 1 8
6 8 0 1 0 0 6 8 0 1 0 0

4 19 34 0 2 0 0 4 19 4 0 2 0 0
9 1 1 5 6 0 0 10 1 2 6 7 0 0
7 7 2 1 5 8 0 0 7 2 1 6

16 0 4 23 5 0 0 16 0 4 23 5 0 0
19 0 0 0 22 3 19 0 0 0 22 3
9 5 0 3 9

0 0

0 0 0 0 0 0 5 0 3 83

Index minimizing (6) 8 3 1 9 5 –4 1 0 13 4 1 12 6 –4 1 0
Solution of Eq. (2) 2 0 1 2 0 –2 0 –1 2 0 1 2 0 –2 0 –1
Ladicky et al. (2010) pixel-based 3 1 5 1 0 3 12 2 4 2 5 0 0 3 12 2
Bo and Fowlkes (2011) –9 36 10 3 7 27 9 –
Luo et al. (2013) –13 36 17 0 3 28 1 –

– – – – – –
–

– –
– – – – – – –

The elements (i, j) represent the percentage of pixels labeled i by the method and j in the ground truth. We compare the difference between our
method and the comparison ones along the diagonal (shown in bold). The values are given in green when the proposed method outperforms the
comparative approach, in red otherwise

such as ‘cow’, ‘book’, ‘building’ or ‘grass’. To conduct exper-
iments on this benchmark, we follow Ladicky et al. (2010)
and divide the image set randomly into 60 % training and
40 % test images. For the benchmark experiments we chose
a symmetric setS of size 9×9 for all labels (compare Fig. 3d)
and selected λ = 0.3. The proximity matrix A is learned on
the training set as described above in Sect. 3.4 and illustrated
in Fig. 6.

To evaluate the segmentation accuracy of the proposed
method, in Table 3 we compare the benchmark scores of our
method to state-of-the-art segmentation algorithms with co-
occurrence priors: the approaches by Gould et al. (2008) with
relative location priors, Ladicky et al. (2010) for the pixel-
based and the co-occurrence and hierarchical prior, Lucchi
et al. (2011) for the data pairwise global and local models,
Vezhnevets et al. (2011) for the weakly and fully supervised
approach and Strekalovskiy et al. (2012) with the non-metric

distance functions for multi-label problems. Moreover, we
present the accuracy of the index minimizing the appear-
ance model (6) and the solution of Equation (2). The results
indicate that we outperform the other co-occurrence based
methods in average class and pixel accuracy.

Note that the high score of the approach by Strekalovskiy
et al. (2012) does not reflect the ghost label problem since
a) these regions contain only very few pixels, and b) these
pixels occur in mostly unlabeled regions of the ground truth
near object boundaries, see the second column in Fig. 19.
However, the introduction of entirely unrelated objects, albeit
small ones, is often problematic for applications.

The benchmark results in general suggest rather small
improvements for the integration of geometric spatial priors.
This is somewhat surprising since the images show strong
improvements and the prior corresponds to typical human
thinking. As already mentioned by Lucchi et al. (2011) who
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Fig. 22 Pixel-wise
classification error on the
MSRC benchmark. With
increasing width of the
evaluation region, the pixel-wise
classification error decreases.
The best classification is
achieved with the proposed
midrange geometric priors. For
the computation of the trimaps,
the more precise ground truth
labeling of Malisiewicz and
Efros (2007) has been used

stated similar findings this is probably due to the rather crude
ground truth of the benchmark with large unlabeled regions
especially at object boundaries, compare Fig. 19b. These
regions are not counted in the score, but nevertheless leave a
lot of room for misclassification or improvements. Therefore,
we think that the benchmark score should not be overstressed
here.

To provide a second evaluation measure, we addition-
ally computed the classification error on the precise ground
truth provided by Malisiewicz and Efros (2007). In Fig. 22
we compare the pixel-wise classification error for different
widths of the evaluation region. We consider trimaps with 3
to 21 pixels wide bands surrounding the object boundaries
(cf. Fig. 21). The classification error decreases with increas-
ing width of the trimap. The smallest error is achieved with
the proposed midrange geometric priors.

Qualitative comparisons with the two best scoring of the
above mentioned methods by Ladicky et al. (2010) with co-
occurrence and hierarchical prior and by Strekalovskiy et al.
(2012) on the MSRC database are given in Fig. 16. The results
show that the proposed method reduces the number of mis-
labeled objects.

5.6.3 eTRIMS Facade Parsing Benchmark Results

In Sect. 5.3 we already demonstrated some qualitative results
for the task of segmenting facades. The 8-class eTRIMS
facade dataset (Korc and Förstner 2009) consists of 60 images

with a resolution of 512 × 768. Again, we split the dataset
into 60/40 for training and testing and set λ = 0.6.

In Table 4 we compare the accuracy per pixel on the whole
image domain as well as for different band widths of the
trimap. For all evaluation domains the best score is achieved
with the proposed priors. The relatively minor improvement
in the percentages reflects our observation that significant
improvements of the semantic segmentation do not neces-
sarily lead to a substantial improvement of the score. In
Fig. 17 4th column, e.g., a major part of the image—namely
the mislabeled ‘sky’ pixels—is corrected by the proposed
constraints. The dice-score for this image, however, only
improved by 3.9 %.

5.6.4 Score for the Task of Geometric Class Labeling
of Indoor Images

The definition of the geometric classes in a scene is another
interesting application area. For our experiments we use the
indoor dataset from Liu et al. (2010) which consists of 300
indoor images with a resolution of 640 × 480 pixels. To
guarantee comparability we use their appearance model and
set λ = 1.

In Table 5 we compare our results to the approaches by Liu
et al. (2010) and Strekalovskiy and Cremers (2011) who use
the same appearance model. We achieved an overall accuracy
of 87.24 %, compared Liu et al. with 85 % and Strekalovskiy
and Cremers with 85.3 %.
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Table 4 The highest scores on
the eTRIMS benchmark are
achieved with the proposed
priors

Trimap
width 9

Trimap
width 13

Trimap
width 17

Trimap
width 21

Accur.
per pixel

Index minimizing (6) 63.09 67.90 71.28 73.58 80.56

Solution of Eq. (2) 69.33 73.35 76.17 78.08 84.36

Ladicky et al. (2010) pixel-based 68.79 72.84 75.75 77.76 84.22

Proposed midrange geometric priors 69.37 73.46 76.34 78.31 84.82

The scores are the accuracies per pixel computed on different trimap segmentations and the whole image
domain
The best results are given in bold

Table 5 Improved score for the
task of geometric class labeling

Accur.
per pixel

Accur.
per class

Dice- score

Index minimizing (6) 84.99 79.97 77.67

Solution of Eq. (2) 86.64 81.59 79.51

Liu et al. (2010) 85 – –

Strekalovskiy and Cremers (2011) 85.3 – –

Proposed midrange geometric priors 87.24 81.90 80.17

The proposed midrange geometric constraints outperform the approaches by Liu et al. (2010) and
Strekalovskiy and Cremers (2011) which use the same appearance model
The best results are given in bold

Table 6 Average runtimes for multi-label segmentation of an image of
the iCoseg (Batra et al. 2010) and the People (Ramanan 2006) dataset
containing 4–9 labels

Average runtime

Without geometric prior 2.29 s

With geometric prior 7.74 s

5.7 Runtimes

We finally investigate the runtime of the proposed method.
Apart from the size of the Si , the runtime mainly depends

on the number of labels used for the segmentation. For the
MSRC benchmark 21 labels have been used. Usually, images

consist of less than ten different labels, e.g., images of per-
sons can include hair, head, body, arms, hands, trousers, legs,
shoes or background.

We obtain average runtimes of 7.7 s on the iCoseg (Batra
et al. 2010) and the People (Ramanan 2006) dataset (see
Table 6) compared to 2.3 s if we do not use the novel priors.
The images have a resolution of around 500×333 pixels and
the sets Si have a size of around d = 25.

The MSRC benchmark, in contrast, contains 21 labels,
which in theory can appear all at the same time in a sin-
gle image. This leads to lots of label pairs, most of which
are highly unlikely. To reduce the runtime of the approach
we used sparse structuring elements Si yielding equivalent
results to full elements in around 180 s on average (note that

(a) (b) (c) (d) (e) (f) (g)

Fig. 23 Minimizing runtime. To minimize runtime in case of large
label numbers we use sparse structuring elements (SE). The evolution
of the solution for an increasing number of entries in a structuring ele-
ment S of size 15×15 shows that very few entries (here 10 entries in a
15×15 SE) are already sufficient to obtain accurate results: a Original,

b Ground truth, c |S | = 0, 13 s; d |S | = 5, 152 s, e |S | = 7, 163 s, f |S | = 10,
176 s, g |S | = 225, 914 s. The runtimes denote the average runtime on the
MSRC benchmark for 21 labels with the respective number of entries
|S|
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we do not work on superpixels). We can conclude that already
very sparse sets Si containing around ten entries yield results
very similar to the full set Si (compare Fig. 23).

6 Conclusion

In this article we introduced a framework for the integration
of midrange geometric priors into semantic segmentation
and recognition within a variational multi-label approach.
Midrange geometric priors impose constraints on directions
and/or distances in which label pairs usually occur. We call
them midrange, since the constraints are neither global by
taking all pixels into consideration such as co-occurrence
priors nor are they purely local by only regarding single pix-
els or pairwise pixel interactions. Instead, the user is able
to define the range and specific shape of the interactions
between pixels that are penalized. We have shown how mor-
phological operations such as the continuous formulation of
the dilation operation can be employed to formulate these
constraints within a continuous optimization approach. We
gave a convex relaxation, which guarantees independence of
the initialization.

The proposed approach does not require the computation
of superpixels and prevents the emergence of one pixel wide
‘ghost labels’. Experiments show that the proposed novel
constraints are beneficial for many segmentation scenar-
ios, e.g., for part-based articulated objects such as humans,
animals or clothes, for part-based rigid objects, especially
man-made items, and for semantic scene segmentation.
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