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Abstract. We propose a novel interactive multi-label RGB-D image
segmentation method by extending spatially varying color distribu-
tions [14] to additionally utilize depth information in two different ways.
On the one hand, we consider the depth image as an additional data
channel. On the other hand, we extend the idea of spatially varying color
distributions in a plane to volumetrically varying color distributions in
3D. Furthermore, we improve the data fidelity term by locally adapt-
ing the influence of nearby scribbles around each pixel. Our approach
is implemented for parallel hardware and evaluated on a novel interac-
tive RGB-D image segmentation benchmark with pixel-accurate ground
truth. We show that depth information leads to considerably more precise
segmentation results. At the same time significantly less user scribbles
are required for obtaining the same segmentation accuracy as without
using depth clues.

Keywords: Multi-label Segmentation, RGB-D Images, Interactive Seg-
mentation, Spatially Varying Color Distributions, Total Variation

1 Introduction

A major challenge in computer vision is to compute accurate image segmen-
tations, that is, the accurate partitioning of images into meaningful regions.
Possible fields of application cover medical imaging, image editing software, ob-
ject tracking and scene reconstructions. The definition of meaningful regions,
however, highly depends on what application the segmentation is needed for.
Thus, fully automatic image segmentation methods are usually tailored to very
specific tasks and try to extract particular objects the methods have learned
some prior knowledge about, e.g . indoor [5,7,23] or facade [8,26] segmentation.

One way to develop general purpose segmentation tools are interactive
segmentation methods, where the user indicates the object to be segmented.
In this work, we consider user inputs by so called scribbles, i.e. separate
points the user indicated to belong to a certain object. Alternative inter-
active user input modalities not considered in this work include bounding
boxes [12,20,27] or contours [1,3]. Due to their adaptability, interactive segmen-
tation methods have recently attracted a lot of interest. Recent works focus
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a) Color image b) Depth image c) RGB d) Proposed RGB-D
with scribbles segmentation [14] segmentation

Fig. 1. Depth information significantly improves the segmentation result.

on foreground/background [3,11,12,27,28] as well as on multi-region segmenta-
tion [15,21,22], and mostly consider RGB images as input data.

Despite the segmentation constraints given by the user, accurate segmen-
tation remains a challenging task. Extensive studies have led to significant im-
provements of segmentation quality in recent years [11,28]. Nevertheless, modern
approaches often still fail for complex scenes, where objects with similar colors
and difficult lightning conditions appear. Moreover, a good segmentation often
requires a rather large number of scribbles.

Considering the recent increase and availability of depth-sensing cameras
such as the Kinect, we investigate the segmentation of RGB-D images to over-
come some of the aforementioned problems. We will mainly focus on the distinc-
tion of objects based on color and depth information. While some research has
been done on extending interactive segmentation methods to medical imaging
data (e.g . [4,13]), very little work has been done on the interactive segmentation
of RGB-D images. The only other approach we found which explicitly addresses
interactive multi-label RGB-D segmentation is the method by Shao et al . [22]
on the semantic modeling of indoor scenes. Although this method is related to
our approach in the sense that it also formulates the segmentation of RGB-D
images as a variational approach, it is tailored towards the application of furni-
ture segmentation. Therefore, the algorithm can use learned a-priori information
about the objects to be segmented and the user interaction merely serves as a
possible correction step for the first automatic segmentation step.

We investigate the application of interactive RGB-D multi-label segmentation
and enhance the recently published work by Nieuwenhuis and Cremers [14] by
including depth information. We propose to extend the spatially varying color
distributions [14] to RGB-D images in two different ways: a) We consider the
depth as an additional color channel. b) We enhance the spatially varying color
distributions from varying in a plane to be volumetrically varying. Figure 1 d)
shows an example of the improvements that can be obtained by taking the depth
into account. In the above example, it is almost impossible to distinguish the
radiator from the lamp (Figure 1 c), because both objects have a similar color
and are close in the image plane. The proposed volumetrically varying color
distributions (Figure 1 d) incorporate the depth information, which yields much
more distinct color descriptions and thus better segmentation results.



Interactive Multi-label Segmentation of RGB-D Images 3

2 Variational Interactive Segmentation of RGB Images

2.1 Multi-label Segmentation

Let I : Ω → Rd denote the input image, mapping the image domain Ω ⊂ R2 to
Rd, with d = 3 for an RGB and d = 4 for an RGB-D image. Image segmentation
denotes the task of partitioning the image plane into a set of n pairwise disjoint
regions Ωi: Ω =

⋃n
i=1Ωi. The regions Ωi can be computed by minimizing the

following energy:

E (Ω1, . . . , Ωn) =
1

2

n∑
i=1

Perg (Ωi) + λ

n∑
i=1

∫
Ωi

fi (x) dx, (1)

where Perg (Ωi) denotes the perimeter of each set Ωi, which is minimized in order
to favor segments of shorter boundaries. These boundaries are measured with
either an Euclidean or an edge-dependent metric defined by the non-negative
function g : Ω → R+. For example, g(x) = exp

(
− γ |∇I(x)|

)
, favors the coinci-

dence of object border and image edges. fi denotes the appearance model and
λ is a weighting parameter which regulates the influence of the second term.

2.2 Convex Relaxation

The usual strategy to address the nonconvex energy minimization problem aris-
ing from (1) is to use convex relaxation: One represents the disjoint regions Ωi
by indicator functions vi, with vi(x) = 1 if x ∈ Ωi and vi(x) = 0, else. Since the
vi are indicator functions, we can make use of the fact that the total variation
(TV) of an indicator function is nothing but the perimeter of the set described
by the functions. Hence, we can reformulate Equation (1) as

E (v1, . . . , vn) =
1

2

n∑
i=1

∫
Ω

g (x) |Dvi (x)| dx+ λ

n∑
i=1

∫
Ω

vi (x) fi (x) dx, (2)

where Dvi is the distributional derivative of vi. Determining the optimal seg-
mentation can be stated as solving the minimization problem

(ṽ1, . . . , ṽn) = arg min
vi

E (v1, . . . , vn) s.t. vi(x) ∈ {0, 1},
∑
i

vi(x) = 1, ∀x. (3)

Since the nonconvexity of the above problem comes from the integer constraint
vi(x) ∈ {0, 1}, a standard convex relaxation is to replace this constraint by
vi(x) ∈ [0, 1].

The key to obtain a good segmentation method based on (3) is to determine
fi that lead to a good data fidelity term guiding the segmentation. In the fol-
lowing, we recall the computation of the fi motivated by maximum a-posteriori
probability (MAP) estimates as suggested in [14].
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2.3 Likelihood Estimation based on User Scribbles

Let I : Ω → R3 and u : Ω → {1, .., n} be a labeling, such that Ωi =
{x ∈ Ω | u (x) = i}. Motivated by a MAP estimate Nieuwenhuis and Cre-
mers [14] proposed to compute the fi (x) as the negative log-likelihood of the
estimated probability distribution:

fi (x) = − log P̂ (I (x) , x | u (x) = i) . (4)

The expression P (I (x) , x | u (x) = i) denotes the joint probability density of
observing a color value I (x) at location x given that x is part of region Ωi. Based
on the ideas of kernel based probability estimates (cf. [25] for an overview), it
can be estimated from the user scribbles by

P̂ (I (x) , x | u (x) = i) =
1

mi

mi∑
j=1

k

(
x− xij

I (x)− I (xij)

)
, (5)

where {xij , j = 1, ..,mi} is the set of user scribbles for region i, and k a suitable
kernel function. The probability estimate in (5) only has to be computed for
pixels x /∈ {xij , j = 1, ..,mi}. For x ∈ {xij} we keep the label given by the user
scribble. We discuss the particular choice of k in more detail below.

3 From RGB to RGB-D Images

3.1 Pre-Processing the Depth Image

Prior to using the depth image, two pre-processing steps have to be conducted.
One has to decide how to handle missing depth information and which range of
the depth values to use.

Depth inpainting Depth cameras such as the Kinect provide metric depth val-
ues in addition to color. However, depth information is usually not available for
all pixels. We fill in the missing depths in a preprocessing step with an inpainting
technique provided in the toolbox of Silberman et al . [24]. The implementation
is a slight adaptation of the colorization proposed by Levin et al . [10]. For an
example see Figure 2 b,c).

a) Color b) Depth c) Filled depth d) Ground truth e) Trimap

Fig. 2. Exemplary RGB-D input, scribbles, ground truth and trimap label-
ing. a) Color image with scribbles, b,c) (filled) normalized depth image, d) ground
truth segmentation, e) trimap used for measuring the pixel labeling accuracy in a band
surrounding the object boundaries [9]. The evaluation region is colored gray and was
generated by taking a 25 pixel band surrounding the boundaries of the objects.
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Normalization For Kinect-like cameras the value range of the depth values
z(x) in meters is roughly [0.5, 6]. To be independent of physical units, for each
image we normalize the actual depth range to [0, 1]. Similarly, to be independent

of the image resolution, we normalize Ω to [0, 1]
2
.

3.2 Depth as an Additional Color Channel

Following Nieuwenhuis and Cremers [14], we use Gaussian kernels with different
bandwidths to model the joint probability distribution (5). Incorporating the
depth image as an additional data channel leads to the following distribution for
P̂ (I (x) , D (x) , x | u (x) = i):

1

mi

mi∑
j=1

kρi(x) (x− xij)︸ ︷︷ ︸
distance kernel

kσ (I (x)− I (xij))︸ ︷︷ ︸
color kernel

kτ (D (x)−D (xij))︸ ︷︷ ︸
depth kernel

, (6)

with the bandwidths ρi, σ and τ . Due to the comparability of their values, the
color channels R, G and B are modeled by the same bandwidth σ. A separate
fixed bandwidth τ is used for the depth channel. The bandwidth of the spatial
kernel ρi on the other hand is chosen proportional to the distance to the closest
scribble of label i [14]: ρi (x) = αminj=1,..,mi |x− xij |. Analogous ideas arise in
generalized k-nearest neighbor probability density estimates (cf. [25]), where a
similar dependence of the kernel variance on the distance to the nearest samples
is considered. Note that although a single multivariate Gaussian could be used
for modeling the probability density, this would require an estimation of the
covariance matrix, e.g . on a training data set.

3.3 Active Scribbles

To overcome the fact that scribble positions are generally not distributed uni-
formly throughout the image, we furthermore introduce the idea of active scrib-
bles. A general problem of (5) and (6) is, that the estimated distribution is
heavily influenced by the total number mi of scribbles in class i. This leads
to the undesirable behavior that adding many scribbles in one particular re-
gion of the image actually reduces the likelihood of far-away-points belong-
ing to the same class. To avoid this, we determine for each pixel x and each
class i all scribbles xij , j = 1, ..,mi that are within a radius of three times
the distance to the closest scribble. We call these scribbles active. The dis-
tance is computed in 2D or 3D depending on the availability of depth. If
less than 80% of the scribbles are active, we compute the probability den-
sity (6) of the active and inactive scribbles separately and combine the two
by 0.8 · P̂a (I (x) , D (x) , x | u (x) = i) + 0.2 · P̂p (I (x) , D (x) , x | u (x) = i),
where the subscripts a and p denote the estimates based on the active and passive
(inactive) scribbles respectively. Otherwise we use all scribbles to compute (6).

3.4 Revised Pixel Distance by Depth Values

The main contribution of [14] was to introduce spatially varying color distri-
butions, i.e. using a distance kernel in (6). The motivation for this kernel was
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that while an object often looks locally similar, its typical color distribution may
change with the position that is considered. With the help of the distance kernel,
scribbles that are close to the current position gain more influence than those
that are far away. A limitation of this approach for RGB images is that the
true 3D geometry cannot be represented: Due to the lack of depth information
in RGB data, the method considered in [14] is a projection of a volumetrically
varying color distribution onto the image plane.

The depth image allows us to compute color distributions that truly depend
on the objects’ position in space and thus lead to more distinct color descriptions.
For illustration purposes Figure 3 a,b) considers a 2d color image. Pixels close
in the image are not necessarily close in the 3-dimensional space as we can
see in Figure 3 c,d). To better reflect the real object geometry, we therefore
improve the computation of the distance kernel kρi(x) (x− xij) by using the
depth information.

Back-Projection To perform the distance computation in the 3-dimensional
space, the 3-dimensional pixel position X has to be computed from the pixel
coordinates x and the normalized depth value D (x). While a physically correct
back-projection would be perspective and therefore dependent on the intrinsic
parameters of the camera, we found a planar back-projection that simply uses
D (x) as the third coordinate to be the better choice for two reasons: It not only
compared favorable in our numerical experiments but also is easier to compute
as it does not require the knowledge of camera parameters.

Thus, in Equation (6), instead of evaluating the distance kernel

kρi(x) (x− xij) at x ∈ [0, 1]
2

we incorporate the depth as a third dimension

and evaluate the distance kernel at X =
(
x,D (x)

)>
:

kρi(X) (X −Xij) with ρi (X) = α min
j=1,..,mi

|X −Xij | . (7)

3.5 The Novel Formulation

Combining the ideas of Sections 3.2 and 3.4 we propose the following appearance
model for RGB-D images

fi (x) = − log P̂ (I (x) , D (x) , x | u (x) = i) , (8)

a) Color image b) Zoom of a) c) Back-Projection d) Zoom of c)
(2d dist. in orange) (3D dist. in orange)

Fig. 3. Recovering the scene geometry with depth information. Illustration
of the distance in the 2-dimensional color image compared to the real distance in the
3-dimensional space. The incorporation of depth information in the computation of the
distance kernel allows to capture the real object geometry.
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with

P̂ (I (x) , D (x) , x | u (x) = i)

=
1

mi

mi∑
j=1

kρi(X) (X −Xij)︸ ︷︷ ︸
distance kernel

kσ (I (x)− I (xij))︸ ︷︷ ︸
color kernel

kτ (D (x)−D (xij))︸ ︷︷ ︸
depth kernel

. (9)

Here {xij , j = 1, ..,mi} denotes the set of user scribbles for region i, X the three-

dimensional position X =
(
x,D (x)

)> ∈ [0, 1]3 and ρi (X) = αminj |X −Xij |,
σ and τ denote the kernel bandwidths. The effect of both ways of incorporating
depth information into the segmentation framework will be studied in detail in
the experimental results (Section 5).

Finally, let us mention that the two ways the depth information is utilized in
the above model is actually equivalent to using a single Gaussian kernel for the
depth information. The single kernel would have a bandwidth that contains a
spatially varying part as well as a constant part. Since the latter is rather difficult
to interpret, we decided to motivate the proposed approach from two different
perspectives. Thus, the depth information appears in our proposed model twice.

4 Implementation

To find the globally optimal solution to this relaxed convex optimization prob-
lem, we employ the primal-dual algorithm published in [6,16,17]. It consists of
updating a primal and a dual variable in an alternating fashion. The update
of each variable decouples for each pixel such that the approach can easily be
parallelized and implemented on graphics hardware.

Since we are solving the relaxed problem, there may be pixels x at which
vi(x) take on intermediate values between 0 and 1, i.e. we may end up with non-
binary solutions. In our numerical experiments, we observed that the computed
relaxed solutions vi(x) < 0.001 or vi(x) > 0.999 for 98% of all pixels x ∈ Ω and
i = 1, . . . , n. In order to obtain a binary solution, we assign each pixel x to the
label L with maximum value after optimizing the relaxed problem.

5 Experimental Results

In this section we demonstrate the effectiveness of all proposed RGB-D im-
age adaptions in several numerical experiments. The numerical study is divided
into three parts: First, we discuss the data used for the numerical experiments.
Second, we compare RGB to RGB-D segmentation and demonstrate that the
segmentation accuracy is improved by the additional depth information. Alter-
natively, less user scribbles are required by the RGB-D segmentation method to
obtain the same accuracy as an RGB method. In a third part we demonstrate
that not just one but all of our proposed extensions improve the segmentation
results in the sense that the addition of each component individually yields an
improvement in segmentation quality.
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5.1 Experimental Data

As extensively discussed in [21], not every benchmark is suited for testing in-
teractive segmentation. Typical interactive segmentation benchmarks (such as
the iCoseg benchmark [2] for foreground/background segmentation or the Icg-
Bench dataset [21] for multi-label segmentation) do not provide RGB-D data,
and hence could not be used for our experiments. Popular RGB-D benchmarks
such as the NYUv2 dataset [24] are not suitable for interactive segmentation
since the scenes are typically composed of very many small objects.

Therefore, we chose the Object Segmentation Database (OSD) [18] as the
starting point for numerical experiments. We, however, found that the images
contained in the OSD were not challenging enough. They all have the same back-
ground and same colors. Furthermore, the objects are relatively small compared
to the image size and the given depth. Hence, we decided to use 12 images from
the OSD along with 16 images we captured ourselves using an RGB-D sensor.
The new images were intentionally taken with challenging color and texture sim-
ilarities between different objects. For all 28 images, we fixed the scribbles and
manually created an accurate ground truth labeling.1 An example is given in
Figure 2.

5.2 Depth Information is Crucial

We use the aforementioned image data set to compare our algorithm (using
λ = 10, γ = 5, α = 1000, σ = 0.05, τ = 0.2 for all experiments) to the results
obtained by Santner et al . [21] and Nieuwenhuis and Cremers [14]. Due to the
similarity of our approach with the one in [14], we used the same parameters
(without the additional depth information) for the implementation of [14]. For
the framework in [21], we took the parameters that were mentioned to be the
best general purpose choice.2 Using exactly the same scribbles (see Fig. 4 a)
for all three interactive segmentation methods, we obtain the results shown in
Figure 4 c-e).

We have to mention that our comparison is unfair in the sense that the other
methods do not make use of the depth information. However, as we could not
find other suitable interactive RGB-D segmentation methods, we chose this com-
parison to illustrate the importance of depth information for image segmentation
tasks.

For images with challenging color and lighting conditions, like e.g . in Figure 4
first row, an RGB based method can hardly find the correct segmentation of the
scene. The depth channel, however, provides essential information regarding the

1 Our framework as well as the RGB-D images, the scribbles and the ground truth
labelings are publicly available on our website: vision.in.tum.de/data/software

2 CIELab color space, LBP features with a patch size of 16 and a radius of 3, Random
Forests with 200 trees, 750 iterations, λ = 0.2 and α = 15.

vision.in.tum.de/data/software
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spatial relation between the pixels in the image. Thus, the incorporation of the
depth image results in significant improvements of the segmentation quality over
the RGB based methods. For images in which the depth channel does not provide
additional information, such as the image in the bottom row of Figure 4, the
proposed method yields the same result as [14], as expected.

Another benefit which comes from the additional depth information is that
less user scribbles are required compared to an RGB based segmentation method.
Figure 5 exemplary illustrates this behavior: Running our method with the scrib-
bles shown in Figure 5 d) we obtain the segmentation result in e). We incremen-
tally add scribbles in order to obtain a similar result with [14], see Figure 5 c).
Due to the strong color similarity between foreground and background, the RGB
based method requires significantly more user scribbles to obtain a similar result.

Finally, let us mention that the runtime of our method is – same as [14,21] –
around one second on 640×480 images. The major computational time is needed
for the optimization which is independent of our proposed components.

a) Color image b) Depth image c) Santner d) Nieuwenhuis, e) Proposed f) Ground

with scribbles et al. [21] Cremers [14] Truth

Fig. 4. Depth information improves the segmentation. The scribbled RGB-D
input data is shown in the columns a,b). Columns c-e) compare the proposed RGB-D
segmentation to the RGB segmentations of [21,14].
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a) Color image b) Depth image c) Scribbles needed d) Proposed e) Segmentation

with [14] scribbles result

Fig. 5. Depth yields less user input. The depth information provides valuable
information which reduces the required user input. To retrieve a similar result as in e),
the user needs to place more scribbles with [14] c) than with the proposed volumetrically
varying color distributions d).

5.3 Impact of the Proposed Components

To quantify the results on our benchmark dataset, we compute the dice-scores
suggested in [14,21] on the regular ground truth as well as on a trimap surround-
ing the object boundaries: Let S denote the labeling obtained for an image, GT
the respective ground truth labeling. Then the dice-score is computed as

dice (S) =
1

n

n∑
i=1

2 |GTi ∩ Si|
|GTi|+ |Si|

, (10)

where the index i denotes the label i and | · | the area of a segment.
Table 1 shows the dice scores averaged over all images obtained by [21], [14],

and a step by step addition of the proposed algorithm components. The scores
not only give us the possibility of quantitatively evaluating the results obtained
by the different methods, but also allow to study the effect of each of the proposed
extensions of [14], namely using active scribbles, using depth as an additional
data channel and using depth for the 3D distance.

It is interesting to see that the usage of active scribbles – which does not
require any depth information – already improves the score on the regular ground
truth by 0.7% and on the trimap by 2.2%. Additionally including the depth for
either the 3D distance or as an additional color channel again improves the score.
The best results are obtained when combining all three components as we can
see in the last row of Table 1. To visualize the results from Table 1, Figure 6
shows a qualitative comparison of the different components. As we can see, in
each column, from left to right the result improves.

Input Segmentation method Reg. GT Trimap

RGB Santner et al . [21] 72.56 67.69
RGB Nieuwenhuis and Cremers [14] (Figure 6 b) 87.09 86.17

RGB [14] with proposed AS (2D) (Figure 6 c) 87.79 88.40
RGB-D [14] + AS (3D) + Depth for 3D distance (Figure 6 d) 91.51 93.63
RGB-D [14] + AS (3D) + Depth as color channel (Figure 6 e) 92.93 93.07
RGB-D Combination of all proposed components (Figure 6 f) 93.70 94.84

Table 1. The proposed method outperforms the previous ones. The dice scores
are compared by means of the regular ground truth segmentations as well as the trimap
width of 25 (compare Figure 2). The usage of active scribbles is abbreviated by ‘AS’.
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a) Input with b) Result of c) [14] + AS d) [14] + AS e) [14] + AS + f) Full model

scribbles [14] + 3D dist. depth as col. ch.

Fig. 6. Each of the proposed components improves the segmentation. We
compare the segmentations obtained with different components of the proposed
method. The usage of active scribbles is abbreviated by ‘AS’. f) The combination
of all components: Active scribbles, depth for 3D distance and depth as an additional
color channel leads to the best result.

6 Conclusion

We proposed a powerful extension of the spatially varying color distributions [14].
Our contributions include the idea of active scribbles to overcome the problem of
non-uniformly distributed user scribbles. Furthermore, we improve the estima-
tion of the data fidelity term by incorporating the depth as an additional color
channel as well as using it to construct volumetrically varying color distributions
in 3D. We have demonstrated that each of the proposed components contributes
separately and improves the segmentation results. Due to the additional depth
information, reliable segmentations are obtained with significantly less user in-
put. For future work, one could also use a regularization that takes into account
the geometry of the 3D surface as suggested in [19].
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