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Abstract

We augment a sub-19 g nano-quadrotor with a 6 g PAL micro-camera and wireless video
transmitter, with which we demonstrate autonomous hovering and waypoint flying us-
ing a monocular visual-inertial keyframe based SLAM system running on a ground-based
laptop. To our knowledge this is the lightest quadrotor capable of visual-inertial naviga-
tion with off-board processing. Furthermore, we show autonomous flight with external
pose estimation, using a Kinect RGB-D camera, facilitating cheap and accessible external
control for small spaces. We prove that the pose estimation and control systems work by
obtaining results from real life experiments which we evaluate against ground truth from
a motion capture system.

The hardware is, low-cost, robust, easily accessible, can safely be used in cluttered indoor
environments and has freely available detailed specifications. We release all code in the
form of an open-source ROS package to stimulate and facilitate further research into using
nano-quadrotors as visual-inertial based autonomous platforms.
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1 Introduction

Research interest in autonomous micro-aerial vehicles (MAVs) has grown rapidly in the
recent years. On the one hand, we have seen aggressive flight manoeuvres using exter-
nal tracking systems [1, 2] (e.g. Vicon), which are however limited to lab environments.
On the other hand, there have been significant advances regarding autonomous flight in
GPS-denied environments using cameras as main sensors both with on-board [3, 4] and
off-board processing [5]. Furthermore, research has also been conducted into reducing the
size of MAVs, especially to tackle indoor environments [6]. Frequently, the provided solu-
tions require either expensive, research grade hardware [4] or custom hardware [7], which
is often inaccessible to the masses. Therefore, we attempt to combine the latter three goals:
We wish to develop a cheap and easily accessible way to perform autonomous flight on a
minuscule aerial platform.

Even though current monocular-vision controlled MAVs are already much smaller than
approaches based on RGB-D cameras, most models are still too large for indoor flight in
a tightly constrained environment (e.g., a small office) or too dangerous to fly close to
people. Particularly the weight of the platform plays a critical role, as it directly correlates
with danger the MAV poses: even with a flight weight of only 500 g, a crash could do sig-
nificant damage to both the MAV itself as well as its environment or human bystanders.
Furthermore, size and weight influence the transportability, the usability e.g. as a flying
scout for a ground-based robot, the potential to be deployed in large swarms and – in par-
ticular if mass-produced – the per-unit cost. While most research regarding MAVs focuses
on – in the context of this thesis – relatively large platforms, there are some exceptions. In
[8], a visual SLAM system is used on-board a quadrotor weighing around 100 g. In [9, 6],
nano-MAVs (36 g and 46 g) are stabilized using optical flow. Most notably, in [7], a 20 g
flapping-wing MAV is presented using on-board stereo vision for obstacle avoidance and
navigation.

In this thesis, we present a 25 g nano-quadrotor based on the open-source, open-hardware
Crazyflie by Bitcraze1 equipped with an analogue on-board camera and wireless video
transmitter. Using this platform, we demonstrate autonomous flight using the on-board
camera and IMU for visual-inertial pose estimation. To the best of our knowledge demon-
strating the smallest and lightest quadrotor with such capability.

1http://www.bitcraze.se/

1
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1 Introduction

1.1 Problem Statement

1.1.1 Goals

The goal of this thesis is to develop a way to achieve autonomous flight on a nano-
quadrotor MAV, where

• the solution should be very accessible, e.g. by only using mass produced parts that
can be easily assembled,

• the solution should be very affordable, thereby increasing accessibility,
• the solution should only depend on only open-source/open-hardware tools, hard-

ware and libraries,
• the hardware should be low maintenance and robust against crashes,
• the software should be reliable and stable,
• the MAV should be so small that it poses no threat and can safely be used in popu-

lated indoor areas without concern,
• the MAV should be able to perform indefinite drift-free hover, even under small

disturbances, only limited by the battery, and
• ideally, the MAV should be able to accurately perform waypoint following tasks too.

To satisfy the goals listed above, we need to solve a set of sub-problems that we can
categorise into the following groups:

• Hardware
– we require a small and lightweight MAV
– we might need to augment the MAV with additional sensors

• Pose Estimation
– we need a way to determine the roll, pitch, and yaw of the MAV at a high

frequency (attitude estimation) to keep it level
– we require a method to obtain drift-free pose estimates, allowing the MAV to

relate its motion to the environment around it
• Control

– using the attitude estimate, we require a controller to keep the MAV level
– using the pose estimates, we need a position controller to to move the MAV to

desired positions and headings

Each of these categories is covered on a per chapter basis.

1.1.2 Proposed Solution

To satisfy the goals listed above, we augmented the Bitcraze Crazyflie Nano-Quadrotor,
a sub-19 g nano-quadrotor, with a 6 g PAL micro-camera and wireless video transmitter.
We chose this as our hardware platform as it is relatively cheap, extremely small and
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1.2 Outline

lightweight (and therefore safe) and fully open-source and open-hardware. Furthermore,
the quadrotor performs on-board attitude estimation and control.

We designed and implemented a monocular visual-inertial keyframe based SLAM system
that makes use of the added on-board camera and telemetry data from the quadrotor for
realtime pose estimation. Additionally, we also developed an external pose estimation
algorithm that uses a Kinect and on-board IMU to determine the quadrotor pose.

These poses are then used by multiple PID controllers to control the position of the quadro-
tor, thus enabling drift-free hovering capability as well as waypoint flying.

1.2 Outline

• In chapter 1 we define some conventions, terminology and cover some transformation
basics.

• In chapter 3 we first look at quadrotors in general, then take a deeper look at the
Crazyflie and discuss how to augment it with a wireless camera system.

• In chapter 4 we discuss visual pose estimation and dive into the theory of the visual-
inertial SLAM system we propose. Specifically, we look at how IMU measurements
can speed-up and robustify the pose estimation pipeline.

• In chapter 5 we take a look at basic control theory and discuss what a PID controller
is, how one can tune the gains, and how one can use them for attitude and position
control.

• In chapter 6 we discuss all implementation specific details, such as the implemented
hardware drivers, dealing with analogue camera images and how all the various
components are put together into one coherent system.

• In chapter 7 we first evaluate the pose estimation methods as well as the hover and
waypoint capabilities of the implemented system.

• In chapter 8 we wrap up the thesis and discuss potential future work.

3





2 Basics and Conventions

This chapter defines some of the more common parameterisations and notations used
throughout the thesis.

2.1 Conventions

A few key notations are used throughout this thesis and summarised in Table 2.1 .

Table 2.1: Notation used throughout the thesis

Notation Example
Frames / coordinate systems are calligraphic capitals W
Keyframes are numbered chronologically K0, . . . , Ki
Scalars are lower case italics x
Matrices are bold capitals X
Vectors are bold lower case ~y
Coordinates of a point p in frame W Wp
Transformation from frame B to frame A A

B T
Translation vector; coordinates of frame A in W ’s coordinates W

A~t
Rotation of the frame A in W ’s coordinate system W

A R
Time of event on time line Q Qtevent
Identity Matrix with zeros appended to make shape m × n Im×n
A vector of n ones (11, . . . , 1n) 1n

The i-th unit length bearing vector in the associated camera frame ~fi

Unit length bearing vector expressed in frame A A~fi

2.2 Terminology

We define some frequent terminology that will be used throughout the rest of this chapter.

Landmarks Landmarks are 3D points usually expressed in the fixed world frame W .

Camera Frame A calibrated camera with an associated pose and optionally associated
IMU measurement. They observe landmarks. In this thesis, their measurements are
always given in the form of unit bearing vectors pointing from the camera origin
towards the landmarks.

5



2 Basics and Conventions

Keyframe A keyframe is a sparse subset of camera frames

Baseline The magnitude of the translation between two frames

Map A collection of keyframes, landmarks, and their associated correspondences

Bearing Vectors A unit norm bearing 3-vector~f pointing away from a camera frame ori-
gin, with two degrees of freedom (azimuth and elevation) described in the camera
reference frame, often refered to as 2D information.

Observation A 2D image measurement of a landmark as seen by a camera, usually repre-
sented as a bearing vector pointing towards the landmark from the camera origin.

Keypoint The two-dimensional location on the image plane, which together with a local
appearance based description can be matched between images.

Correspondence A pair of observations from different camera frames (2D-2D correspon-
dence) viewing the same landmark, or the a bearing vector and landmark it is point-
ing towards (2D-3D correspondence).

Absolute Pose The pose of a camera frame expressed in the world reference frame.

Relative Pose The pose of a camera frame with respect to another camera frame.

2.3 Rigid Transformations in 3D

This section discusses how to represent frames and points in three-dimensional Euclidean
space R3. By attaching coordinate systems to objects this allows us to relate how objects
are positioned and rotated relative to one another. For example, we attach an imaginary
coordinate system to the center of the Crayzflie as illustrated in Figure 2.1.

2.3.1 Frames and Transformations

A frame is a coordinate system, which in this thesis will always be right handed and
usually have X pointing forwards, Y left and Z up. Borrowing from aviation terminology,
we call rotation around each of theses axes roll, pitch and yaw respectively. See Figure 2.1
for an illustration. Frame notation will always be capitalised calligraphic letters and we
reserve W for the world frame, I for the IMU frame and C for the camera frame.

The relationship between two frames can be seen as a relative pose. Given two frames
A and W , the pose of A in W is given by the translation from W ’s origin to A’s origin,
and the rotation of A’s coordinate axes in W . This relative pose can also be seen as a
transformation W

A T, mapping points from A to W . See Figure 2.2 for an example.

Composition is associative but not commutative. As W
A T transforms from frame A to frame

W , anything being multiplied from the right must be in frame A and anything being left
multiplied must be in frame W .

6



2.3 Rigid Transformations in 3D

Roll

Pitch

Yaw

Z
X

Y

Figure 2.1: Crazyflie coordinate system convention. The forward direction is aligned with the X
axis, the Z axis points up.

We describe the 3 DOF translational displacement (up/down, left/right, forward/back-
ward) and 3 DOF rotational displacement (pitch, yaw, roll) of rigid bodies relative to a
reference coordinate system with the use of rotation matrices and translation vectors re-
spectively. For a full 6 DOF description, we use homogeneous transformation matrices,
the explanation of which will conclude this section.

2.3.2 Translations

Translation is where an object is displaced along its reference frame’s axis without any
rotation. The translation vector W

O~t = (txtytz)ᵀ displaces an object O along the x, y, z axis
of it’s reference frame W , i.e. it is a vector in W ’s coordinates. This could also be seen
as a point Wp in frame W in which case we omit the subscript as a point has no axes.
Translations are concatenated with vector addition and inverted by negating the vector.

2.3.3 Rotations

A rotation matrix describes the relative orientation of an object to a reference frame. Rota-
tion matrices are proper orthogonal matrices with the properties |R| = 1, RᵀR = RRᵀ = I
and therefore Rᵀ = R−1. They constitute the group of proper orthogonal transformations,
or special orthogonal group SO(3). Note that the group operator is the standard matrix
product, giving the property that multiplying any two rotation matrices results in another
rotation matrix.

The columns of R from an orthonormal vector base and represent the coordinates in the
reference frame of unit vectors along the coordinate axes of the object. We can then define

7



2 Basics and Conventions

the three individual rotation matrices around the X,Y, and Z axes:

Rx(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 Roll, rotation around the X axis (2.1a)

Ry(β) =

cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)

 Pitch, rotation around the Y axis (2.1b)

Rz(γ) =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 Yaw, rotation around the Z axis (2.1c)

The roll, pitch and yaw rotations can then be used to place a 3D body in any orientation.
A single rotation matrix can be formed by consecutively multiplying the above rotation
matrices one after another to obtain:

R(γ,β, α) = Rz(γ)Ry(β)Rx(α) =cos γ cos β cos γ sin β sin α − sin γ cos α cos γ sin β cos α + sin γ sin α
sin γ cos β sin γ sin β sin α + cos γ cos α sin γ sin β cos α − cos γ sin α
− sin β cos β sin α cos β cos α

 .
(2.2)

We denote the relative orientation of an object frame O with respect to a reference frame
R as R

OR. Note that since B
AR is orthonormal,

B
AR = A

B R−1 = A
B Rᵀ (2.3)

holds, which is a wonderful property as it allows us to efficiently invert the rotation matrix,
giving us the opposite rotation.

2.3.4 Homogeneous Transformations

The group of rotation matrices R ∈ SO(3) represent pure rotations only. In order to include
translation, we first transform and then rotate. For example, given a frame A with respect
to a frame B and a point Ap with respect to A, we can express the same point Wp in the
frame of W by first translating it with W

A~t and then rotating it with W
A R (scenario illustrated

in figure 2.2 below):
Wp = W

A R · Ap +W
A~t (2.4)

However, it is more convenient to express the full transformation as a matrix. We append
a translation vector extended with a fourth homogenous coordinate~t to R, resulting in a 4× 4
matrix T with the following form:

W
A T =

(W
A R W

A~t
01×3 1

)
(2.5)
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2.3 Rigid Transformations in 3D

This set of transformation matrices T where R ∈ SO(3) and with the matrix product as
group operation form the special Euclidean group SE(3).

p

Ap = W
A T−1 ·Wp

Wp = W
A T · Ap

W

A

W
A T

A
WT = W

A T−1

Figure 2.2: Duality between frames and transformations: Pose A in the frame W given by W
A T can

also be seen as transforming point p in A’s frame (Ap) to frame W (Wp). Composing transforms
and points: Wp can be expressed via frame A. Inverse composing of transforms and points: Ap
can be expressed via frame W .

In order to transform points, we also append a fourth homogeneous coordinate to the point
representation. Later, when we deal with perspective projections in chapter 4, we will need
to the extra homogeneous coordinate to re-normalise our 3D points. The homogenous
component can also be seen as a scaling factor, but for the remainder of this thesis we fix
it to 1. Finally, we can simply multiply the transformation matrix with the homogeneous
point to obtain the same result as in equation (2.4):

Wp = W
A T · Ap (2.6)

Looking at figure 2.2, we can easily follow the arrows to express p in the frame of A using
the pose inverse composition:

Ap = A
WT ·Wp = W

A T−1 ·Wp (2.7)

where the inverse of a transformation can efficiently be calculated thanks to equation (2.4):

A
B T = B

AT−1 =

(B
ARᵀ −B

ARᵀ · BA~t
01×3 1

)
(2.8)

This will be used frequently to compute the relative position of 3D visual landmarks with
respect to different camera poses in chapter 4.

Just as one can concatenate transformations and points, one can successively concatenate
transforms with each other by multiplying them. See figure 2.3 for an example.

Composition is associative but not commutative. As W
A T transforms from frame A to frame

W , anything being multiplied from the right must be in frame A and anything being left
multiplied must be in frame W .
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2 Basics and Conventions

W

B

W
A T

CW
C T = W

A T · AB T · BC T

B
C T

A A
B T

Figure 2.3: Concatenating transformations: One can successively multiply transforms together to
concatenate them. Here the pose of C with respect to frame W was computed via frames A and B.
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In this chapter, we look at all the hardware used in this thesis. We start by exploring the
history and principles of quadrotors in general before focussing on the CrazyFlie Nano
Quadrotor, the vehicle of choice for this thesis. We then look at how to add a camera and
image transmitter to the Crazyflie so that it can wirelessly send images to a computer for
further processing.

3.1 Quadrotors

3.1.1 Background

A rotorcraft is a flying vehicle which generates thrust by employing rapidly spinning rotors
that push air downwards. A quadrotor is a rotorcraft that has four such rotors, composed of
two pairs of counter-rotating rotors usually equally spaced at the corners of a square frame.
In addition to the four motors and associated sets of rotor blades, modern quadrotors
consist of a power source, a flight control computer, various sensors and a frame that
holds everything together. One often refers to hand held quadrotors as Micro Aerial
Vehicles (MAV) and autonomous ones as Unmanned Aerial Vehicles (UAVs).

Flight characteristics

Quadrotors have flight behaviour similar to helicopters. They have a vertical take-off
and landing (VTOL) capability, can perfectly hover and have excellent manoeuvrability
and move in any direction independent of yawing. For more details on how quadrotors
achieve such motion, see subsection 3.1.3. In contrast to fixed wing aircraft, this provides
quadrotors with the ability to perform stationary observation tasks as well as manoeuvre
slowly and precisely, allowing for motion in extremely constrained environments, such as
within buildings.

Advantages

In comparison to helicopters, quadrotors use fixed pitch rotors that provide superior me-
chanical simplicity and require less maintenance due to the absence of complex mechanical
control linkages for rotor actuation. Additionally, the use of four sets of rotor blades in-
stead of an equivalent main rotor on a helicopter results in a smaller rotor radius. There-
fore, the rotors store less kinetic energy during operation, reducing the risk of damage
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caused by rotor collision. These safety advantages greatly facilitate research and devel-
opment, as tests can be done indoors by inexperienced pilots and with a shorter accident
recover time.

Sensors

While mechanically extremely simple, a quadrotor is inherently unstable. They are al-
most impossible to control without the help of advanced electronic control systems that
can react very quickly to counteract the tendency to tip over. Continous proprioceptive
measurements (self sensing), such as those from an inertial measurement unit (IMU), are
therefore required to estimate the behaviour to which a control system can react. In sub-
section 3.1.2 we give a brief overview of quadrotor related sensors, section 3.2.1 discusses
the Crazyflie sensors suite, in section 4.3 we look at how an IMU can be used to esti-
mate the rotation of the quadrotor, and in section 5.3 how one can use this information to
stay level. Optionally, exteroceptive sensors (external sensing) can be added to move (or
stay still) relative to the environment. This is one of the main motivations of this thesis:
adding a camera to achieve position control. How one can use a monocular camera to
estimate position is discussed in section 4.1 and how to do position control is explained in
section 5.4.

Quadrotor History

The early quadrotor designs date back to the 1920s [10], but these were unique, large
machines with unstable flight characteristics and almost impossible to fly. Departing from
the century-old design, modern quadrotors have evolved into small and agile vehicles that
can be mass-produced [11], weigh less than 20 grams [12], fly autonomously and perform
advanced aerobatic manoeuvres [1, 2].

While seen as a physically mature platform today, the development of quadrotors had
stalled until recently despite numerous design phases in the 1900s. The more common,
traditional helicopter dominated as they were more power efficient and did not require
the advanced electronic control and stabilisation systems modern quadrotors rely on.

Early Experiments, First lift off, 1907 Four years after the Wright brothers had flown
the world’s first controllable aircraft, the two brothers Louis and Jacques Bréguet, under
the supervision of Professor Charles Richet, constructed one of the first quadrotors which
they christened the Bréguet Richet Gyroplane No. 1. An image of it being prepared for its
maiden manned flight is shown in Figure 3.1a.

In September 1907, the 46 hp, 578 kg quadrotor achieved lift off for the first time, albeit
without control surfaces and only to an elevation of 60 cm [10]. It cannot however be
credited as being the first rotorcraft to achieve free flight, as it could not be controlled and
required to be steadied by four men surrounding it [10]. The men did not contribute to
the lifting force, so it was the first rotorcraft to raise itself, with a pilot, vertically off the
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3.1 Quadrotors

(a) Bréguet and Richet, Gyroplane No. 1 (1907) (b) George De Bothezat, Flying Octopus (1922)

(c) Étienne Oehmichen, No. 2 (1922) (d) Convertawings, Model A (1956)

Figure 3.1: Examples of early quadrotors of the 1900s.

ground. In subsequent experiments it achieved an altitude of just over 1.5 m and could
remain airborne for a minute.

Due to its uncontrollable nature, testing was eventually discontinued in favour of build-
ing a new machine from the ground up, but the lack of contemporary engines with an
adequate power/weight ratio caused Breguet to forgo rotary-winged research and devel-
opment for the next 25 years.

The Flying Octopus, Progress but with complexity and Control Issues, 1922 After hav-
ing written one of the first scientific papers on the aerodynamics of rotary-wing flight,
the United States Army Air Service contracted George de Bothezat and his assistant Ivan
Jerome to build an experimental helicopter [13]. He ended up with a 1.6 ton, 20 m ×20 m
meter quadrotor that was officially named the de Bothezat helicopter and nicknamed the
’flying octopus’, shown in Figure 3.1b.

Aside from the four 6 blade rotors, it also had two vertical ’steering air-screws’ for lateral
control. In 1922 it completed its first stable flight hovering around 1.8 m [14]. Once again,
the quadrotor engine proved underpowered but after upgrading it a year later, over a
hundred flights were conducted with a pilot and up to four passengers hanging onto the
frame[14]. It set the rotorcraft records for flight time (2 minutes 45 seconds) and altitude
(9.1 m)[10].

The program was cancelled in 1924, and the aircraft was scrapped due to complexity,
high pilot workload, control difficulties and unreliability. However, despite the Army
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considering it a failure, the ’Flying Octopus’ was ground breaking and the Army needed
over twenty years to design a rotorcraft with better performance.

Breaking More Records, 1922 Around the same time but on the other side of the world,
Etienne Oehmichen was busy building full-scale rotary-winged vehicles. Of special in-
terest is the Oehmichen No. 2, an 800 kg quadrotor powered by a single 120 hp engine,
shown in Figure 3.1c.

It featured the usual X shape with 4 dual blade rotors as known from modern quadrotors.
Unlike our modern day counterparts, he could not control the individual rotor speeds,
resulting in the need to add eight small propellers to control the lateral movement. He
first flew it in 1922, and in 1923 broke the distance record for rotorcraft flight by flying
358 m. In May 1924 he broke his own record by flying 1 km along a triangular trajectory
with a flight time of 07:40.

Despite this success, Oehmichen was dissatisfied with the Oehmichen No. 2s limited
altitude and scrapped the quadrotor configuration, adopting a single main rotor design
that could provide more thrust.

Further Development, 1956 Notwithstanding lots of single rotor innovation, it was not
until 1956 that the next successful quadrotor was developed. Convertawing’s Model ’A’,
the 1 ton quadrotor shown in Figure 3.1d, flew many flights and was the first quadrotor
to be controlled by varying the thrust between rotors, effectively eliminating the need for
additional lateral control rotors. Convertawings novel control system was a precursor to
the modern control schemes used for quadrotors today.

Despite successful testing and development, the project was terminated due to a lack
of interest from the commercial sectors and cutbacks in defence spending. Once again,
research focused on improving the single rotor designs until the required technological
advancements for small-scale quadrotors came about.

(a) Ready to Fly Toy (b) Hobbist Open Source Kit (c) Professional Grade

Figure 3.2: Examples of modern quadrotors, from off the shelf toys to professional research grade
quadrotors.

Modern Quadrotors These days, quadrotors come in all forms and sizes. They are usu-
ally relatively small, unmanned aerial vehicles (UAVs), as controlling four rotors with four
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electric motors is very easy. Thanks to recent advances in robotics and micro-electromechanical
systems, sensors have become smaller, lighter and easier to mass produce and enough pro-
cessing power is available in small packages to allow for stable and efficient control at low
cost. This enables UAVs to be obtainable outside research laboratories to the general pub-
lic for very affordable prices, resulting in many consumer grade MAVs being sold through
hobby stores and toy shops. Figure 3.2a shows an ArDrone, a mass produced quadrotor
sold for e300 and Figure 3.2b shows a hobby grade drone, an example of one of the many
open source drone platforms.

Quadrotors make ideal research platforms for the fields of flight control theory, navigation
with obstacle avoidance, real time systems, swarm theory, robotics, and computer vision.
UAVs are also being employed in various commercial and industrial applications, includ-
ing the use of unmanned multicopters for crop dusting or precision farming autonomous
geological remote sensing . , aerial mapping and cinematography and security-related
tasks, such as remote inspections and surveillance. Figure 3.2c shows an Ascending Tech-
nologies Falcon Octocopter, a top of the line autonomous aerial camera platform.

As UAVs are ideal for reconnaissance and surveillance, the are many use cases for military
and law enforcement agencies as well as search and rescue missions in urban environ-
ments.

In December 2013, Deutsche Post gathered international media attention with the project
Parcelcopter, in which the company tested the shipment of medical products by drone-
delivery. Around the same time, Amazon’s R&D lab shared their current project dubbed
Amazon Prime Air with the goal of introducing a new delivery system where packages can
be brought to customers in 30 minutes or less using unmanned aerial vehicles.

3.1.2 Quadrotor Sensors and Autonomy

To keep level autonomously, quadrotors require at minimum a gyroscope to stabilise their
rotational velocity and an accelerometer to give the notion of which direction up is in (by
measuring the direction of gravity).

Luckily, micro-electromechanical systems (MEMS) technology has come a long way re-
cently resulting in a plethora of mass producible, very cheap and small gyroscopes and
accelerometers often packaged together into a single inertial measurement unit (IMU).
MEMS are one of the key enabling technologies that enabled MAVs to fly stably and
shrink in size. Figure 3.3 shows modern IMU based on MEMS technology versus an older
mechanical one.

However, using IMUs alone for navigation is infeasible as they typically suffer from cu-
mulative errors. These occur as a result of integrating measurements over a time span:
detected changes are only added to previously calculated estimations (also called dead-
reckoning) and any incremental errors, however small, are accumulated from update to
update. This leads to drift, an ever-increasing difference between the estimated state and
the actual state.
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(a) Mechanical Gyroscope (b) Inversense MEMS IMU

Figure 3.3: The left shows a mechanical gyroscope employing a spinning rotor and the right an
MEMS IMU (accelerometer and gyroscope) using a vibrating element.

For example, consider you wish to navigate from the front door of your apartment to the
fridge with your eyes closed. In your mind, you know the layout and dimensions of your
home. You open the front door and take a few steps forward. At this point, you pretty
much know where you are in your mental map. You walk a bit further, remembering you
need to turn right soon to enter the kitchen. However, you become more insecure with
every step and are uncertain when to start turning right, as you might have walked past or
not yet reached the door you wish to enter. Your mental map of how you moved is based
on dead-reckoning only. Now imagine you could open your eyes every 5 seconds. This
would allow you to correct the uncertainty you accumulated while moving by readjusting
the mental model of your path taken to adjust to your visual observations, thus absolutely
positioning yourself in the mental map of your home.

For an UAV to become fully autonomous, it requires a method to determine its absolute
pose, thereby alleviating the effects of drift. Only then can an MAV determine whether or
not it is moving relative to its environment, enabling it to either autonomously (a) position
hold, if the environment is not known, (b) move around, assuming the environment is
assumed to be obstacle free (such as in the sky) or (c) navigate a known environment.

To do this IMUs are often coupled with a global positioning (GPS) unit to determine the
quadrotor’s absolute position in outdoor, uncluttered environments enabling them to au-
tonomously follow or hover at predefined way-points. Ultrasonic range finders can be
used to measure the distance to the ground, aiding in autonomous altitude control when
flying at low altitudes and barometers can be used to measure air pressure to estimate alti-
tude changes at higher altitudes. Magnetometers can be used to determine which direction
north is in, removing rotational drift around the yaw axis. Laser scanners, depth/stereo
cameras and even monocular cameras can also be used for pose estimation relative to the
environment they observe. In this thesis, we use an IMU polled at 500 Hz to keep the
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quadrotor level and pose estimation from a monocular SLAM system at 25 Hz to help
minimise drift.

To autonomously navigate in an unknown and/or dynamic environment, the UAV must
observe its surrounds in real time to avoid collisions. Various sensors can be used for this,
albeit all at a price-weight-power consumption-accuracy-precision trade-off. For example,
a laser range finder provides dense and accurate distance measurements to the surround-
ing environment, but are power hungry, heavy and expensive; while a single monocular
camera weights very little, is cheap but also has reduced accuracy, reduced frequency and
is much harder to extract useful information from. This thesis does not tackle this problem
and assumes the quadrotor is an obstacle free, non-hostile environment.

3.1.3 Quadrotor Flight Principles

Mechanical Simplicty vs Control Simplicity

Part of the appeal of multiple-rotor aircraft is that they can be designed without the need
of complex cyclic-pitch-control systems, often allowing quadrotor propellers to be con-
nected directly to individual motors. To achieve lateral thrust, a helicopter must rely on
a mechanically complicated rotorhead that can change the pitch angle of the rotor blades
cyclically by the means of a swash-plate. That is, the pitch of each rotor blade changes
depending upon its position of each revolution so all blades have the same incidence at
the same point in the cycle. This allows the blades to create more lift on one side of the
revolution than the other, effectively tilting the helicopter in the opposite direction. A
quad- (or multi-) rotor on the other hand can achieve the same effect by simply varying
the thrust of each (comparatively smaller) motor individually. The complexity has shifted
from a complex mechanical design (a complex rotor-head that allows cyclic and collective
pitch control) to a digitally controlled control problem. Luckily, the decreasing cost and
increasing computing power of microprocessors has allowed on-board flight computers
to use on-board sensor data to stabilise the vehicle by changing the rotations per minute
(RPM) of each of the motors commonly at 500 or 1000 times per second.

Flight Control

A quadrotor only has four motor angular velocities it can manipulate to achieve controlled
flight. The motors are configured so that one pair of opposed rotors rotate clockwise and
the other pair counter-clockwise. Each propeller produces both a thrust and torque around
its center of rotation and a drag force opposite to the quadrotor’s flight direction.

To induce yaw, the quadrotor can manipulate the net aerodynamic torque (and thus angu-
lar acceleration) by varying the ratio between the speed of the clockwise rotating motors
and the counter-clockwise ones. Therefore, the yaw stabilising tail rotor of conventional
helicopters is not required.
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(a) HH-60H Seahawk Rotor Assembly (b) EC155 Rotor head

Figure 3.4: The images above show two different rotor head assemblies. While a single rotor
is more efficient, the additional complications of a swash-plate for cyclic-pitch-control might not
outweigh the benefits of multiple direct-drive rotors.

Angular accelerations about the roll and pitch axes can be changed independently without
affecting the yaw. The forward and rear pair of blades (rotating the same direction) pitch
while the left and right pair control roll. By increasing the thrust of one rotor in a pair
while decreasing thrust for the other one can induce a net torque resulting in roll or
pitch motions while maintaining the torque balance needed for yaw stability. To achieve
translational acceleration one simply maintains a non-zero roll or pitch angle. To increase
or decrease altitude, one simply manipulates the net thrust. Thereby the quadrotor vehicle
can manoeuvre in all dimensions using fixed rotor blades only. Figure 3.5 illustrates the
motor velocity configurations required for different manoeuvres.

3.2 Crazyflie Nano Quadrotor

The Crazyflie is an extremely light and miniature nano quadrotor that fits in the palm of
your hand. It was designed to be as simple as possible: a 4 layer printed control board
(PCB) doubles as the frame, with the motors directly attached to it with the help of tiny
plastic motor mounts that are simply pushed into place. This simplicity helps keep the
platform robust, light-weight and easy to fix in the case of unfortunate crashes. In the
remainder of this section we will briefly look at what the Crazyflie offers in terms of
hardware, sensors and packaged software.

Weighing only 19 grams fully assembled and 85 mm motor to motor, it is extremely agile
and safe to use even in crowded environments. Unlike most toys in this size range, it
is fully programmable, has many sensors and can easily be controlled from a computer,
this making it a great research development platform. The whole kit with some spare
parts (as shown in Figure 3.7) can easily be acquired for roughly e180. Weights of each
component are summarised in Table 3.1. Figure 3.8 highlights the tiny scale of the Crazyflie
by showing its silhouettes next to a Parrot ArDrone.

The Crazyflie quadrotor project started in late 2009 as a competence development project
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(a) Pitch forward (b) Roll Left (c) Yaw Left (d) Yaw Right

(e) Descend (f) Hover (g) Ascend

High RPM

Medium RPM

Low RPM

(h) Legend

Figure 3.5: Quadrotor Mechanics: The left and right motors turn anti-clockwise, the forward and
rear motors turn clockwise. By simply varying the speed of these 4 motors one can achieve positive
and negative pitch, resulting in forward and backward motions; positive and negative roll, resulting
in right and left translation; a yaw rotation; and altitude control.

Figure 3.6: At under 19 grams and 8.5 cm across, the Crazyflie can safely take-off from and land on
the palm of your hand.
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(b) (c)

(a)

(h)

(g)

(e) (f)

(d)

Figure 3.7: The contents of the Crazyflie kit, consiting of (a) 2.4 GHz USB dongle, (b) motor mounts,
(c) 6 mm×15 mm motors, (d) Crazyflie PCB, (e) clockwise rotating rotors, (f) anti-clockwise rotating
rotors, (g) 2.4 GHz antenna for the dongle, (h) 3.7 V 170 mAh Li-Po battery. Spare parts are not
shown.

8.
5

cm

38
cm

Figure 3.8: Size of the Crazyflie compared to the Parrot ArDrone. Relative scale of the silhouettes
are correct.
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in the Swedish consulting company Epsilon AB and resulted in the founding of Bitcraze
AB in 2011. With the purpose to finance, develop and manufacture an open-source nano-
quadrotor development platform, Bitcraze AB designed the Crazyflie solely using open-
source tools and shipped the first units in April 2013. It is fully open-source and open-
hardware.

3.2.1 Specifications

The Crazyflie comes in two versions: the slightly cheaper version omits the barometer
and magnetometer sensors but is otherwise identical. For the remainder of this thesis we
will assume a barometer is always present. A logical breakdown of the main hardware
components is displayed in Figure 3.9.

MCU Cortex M3

Power Management

Brushed Motors

Motor Drivers

Accelerometer

Gyroscope

Barometer

Magnetometer

2.4GHz Radio
SPII2C

PWM

µUSB LiPo BatteryPCM

Power Switch

Figure 3.9: Logical break down of the main Crazyflie components. I2C is used to communicate
with the on-board sensors, SPI is to communicate with the radio and PWM used to drive the
brushed motors. The battery has a PCM (Protection Circuit Module) thereby significantly reducing
the dangerous nature of LiPo batteries. The quadrotor handles power management and allows for
charging via USB.

Sensors

The Crazyflie comes with the full sensor suite one might expect from a modern IMU. For
an illustration and a photo of where the chips are located on the PCB, see Figure 3.10 and
Figure 3.11 respectively.

Gyroscope and Accelerometer - MPU6050 The InvenSense MPU-6050 IMU combines a
3-axis gyroscope and a 3-axis accelerometer on the same silicon die resulting in a
4× 3× 0.9mm3 package. It can be polled at 1 KHz but the Crazyflie control loop only
runs at 500 Hz. An accelerometer is a sensor that measures proper acceleration. Note
that proper acceleration is not the same as the rate of change of velocity. For example,
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an accelerometer at rest on the surface of the Earth will measure an acceleration
g = 9.81m/s2. and measurements in free fall accelerating due to the gravity of Earth,
will measure zero acceleration. This is useful, as it allows us to estimate the direction
of gravity which can be used for low frequency attitude estimation.

On the other hand, a gyroscope is a device used for the measurement of angular ve-
locity. It can only be used for high frequency attitude estimation, as one would need
to integrate the angular velocity measurements to obtain a rotation estimate. Doing
this is not feasible as small errors in the measurements accumulate into significant
errors, causing long term drift.

Barometer - MS5611 A barometer is able to measure air pressure and temperature, from
which one can determine the approximate altitude above sea level. The tiny 5 × 3 ×
1mm3 sensor has a 10 cm resolution, 8.2 ms response time and can be sampled at
100 Hz.

Magnetometer- HMC5883L The Crazyflie also comes shipped with a 3-axis magnetome-
ter, which is a type of sensor that measures the strength and direction of a local
magnetic field. This would potentially allow the Crazyflie to determine its yaw rela-
tive to magnetic north. The magnetic field measured will be a combination of both
the earth’s magnetic field and any magnetic field created by nearby objects - result-
ing in the need to calibrate the compass prior to use. Two categories of distortion
exist, hard iron and soft iron distortions. Hard iron distortions are created by objects
that produce a magnetic field in the vicinity of the sensor, e.g. from magnets (used
in motors) and power supply wires. If the piece of magnetic field is in the same
reference frame as the sensor, then this type of hard iron distortion will cause a per-
manent bias in the sensor output. In the case of the Crazyflie, the currents generated
by running the motors induces such a magnetic field which varies with the motor
speed.

On the other hand, soft iron errors refer to the presence of ferromagnetic materi-
als around the sensor that locally skew Earth’s magnetic field, resulting in scaling
offset errors. On the other hand, soft iron distortions are considered deflections or
alterations in the existing magnetic field. These distortions will stretch or distort the
magnetic field depending upon which direction the field acts relative to the sensor.
This type of distortion is commonly caused by ferromagnetic materials around the
sensor.

One can estimate these effects and calibrate for soft and hard iron distortions, how-
ever this is not a topic of this thesis and the magnetometer will not be used.

Motors

The Crazyflie uses four coreless, brushed, 6 mm ×15 mm 1.7 g DC motors coupled with
45 mm diameter propellers to generate enough thrust for dynamic flight and lifting small
payloads. The motor driver is a simple pull down mosfet controlled by pulse width mod-
ulation (PWM). The motors rotate at roughly 21 000 RPM under load. They are probably
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USB Port
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Figure 3.10: Flie PCB Components
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Figure 3.11: Flie PCB Components
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the most fragile component of the quadrotor but can be replaced very easily and cheaply.
In practice we replaced a broken motor every 8-12 severe crashes.

Communication

Communication is handled by a Nordic Semiconductor 2.4 GHz transceiver that can op-
erate at 250 kb/s, 1 Mb/s and 2 Mb/s data-rates. It communicates with a client computer
with its counterpart - a USB radio dongle called the CrazyRadio that comes packaged with
the quadrotor. This allows for bi-directional communication with automatic address han-
dling and packet acknowledgement. In practise, the range is enough for any line of sight
in door operation but suffers from poor reception through buildings/walls. It has been
tested up to 80 meters in ideal conditions. The antenna is located on the bottom right, top
side, isolated part the PCB, away from any potential electrical noise (see Figure 3.11 for
placement). For an overview of the communication protocol used, please see section 6.4.

On-Board Processing

The on-board MCU (Micro Controller Unit) used is the ST Microelectronics STM32F103CB.
It runs at 70 Mhz, has 128 Kb flash and 20 Kb RAM. The firmware uses roughly half of the
flash space and 16kb RAM. However, no optimisations have attempted to reduce the flash
or RAM usage.

Power

The Crazy is powered by a Fullriver 3.7 V, 170 mAH 3.9 g Lithium Polymer battery. Flight
time with different payloads is evaluated in subsection 7.1.1.

To handle some of the LiPo shortcomings, a PCM (Protection Circuit Module) is integrated
into the battery that prevents the user from accidentally under/over charging or shorting
the battery. The power management is handled by a Texas Instruments BQ24075 power
management chip that handles the on/off logic and charging of the LiPo. The BQ24075 can
limit the current to either 100 mA, 500 mA or a user selectable value, defaulting to 740 mA,
this making it easier to comply to the USB standard on one hand but providing quick
charge on the other. The battery is optimised for 510 mA so the quick charge is available
as the users own risk. The Crazyflie PCB uses the separate power plane technique to
reduce electrical noise by employing a 4 layer PCB. This is essential to avoid motor PWM
noise interfering with the Radio.

3.2.2 Crazyflie Firmware

The Crazyflie runs a custom open-source firmware written in C that can be wirelessly
flashed using the CrayzRadio. The firmware is based on the real time operating system
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FreeRTOS which runs different tasks such as radio communication, stabilisation, power
management, etc. at predefined frequencies.

Attitude Estimation

The Crazyflie performs attitude estimation, also known as attitude and heading reference
system (AHRS), on-board at 250 Hz. The goal is to estimate the roll, pitch and yaw (head-
ing) as fast as possible by using gyroscope and accelerometer measurements. Please see
section 4.3 for additional information.

Attitude Control

The Crazyflie does on-board attitude control using a cascaded PID controller. The inner
loop runs at 500 Hz and controls angular velocity while the outer loop runs at 250 Hz and
stabilises the attitude. Using the attitude estimation outlined above as input, the controller
varies the power signal to the four motors keeping the Crazyflie at the desired attitude
very effectively, despite the dynamic nature of such a small, lightweight platform. For
more details, please see section 5.3

Changes

A few changes were made to the original firmware shipped with the Crazyflie.

CPU Utilisation FreeRTOS, the real time operating system the firmware is based on sched-
ules tasks to run at specific rates. For example, the power management task might
monitor battery discharge and run at 5 Hz and the attitude control tasks runs at
500 Hz. To measure the load of the Crazyflie processing ability, we measured the
percentage of time it spends in idle task mode, i.e. when nothing else needs to
be computed. Under normal conditions, the system load is usually around 70 Hz,
depending on how much data is being sent and received over the radio.

Barometer Driver The Crazyflie can measure the air pressure and temperature using a
barometer. The original drivers for the MS5611 barometric sensor were minimal
and not optimised. Due to the noise of the measurements, it is important to have a
high sampling rate one can then filter. Therefore, we reimplemented the driver to
measure temperature at 10 Hz (the minimum amount required) and air pressure at
90 Hz - thereby reaching the maximum polling frequency the sensor can work with.
For an evaluation and some example measurements, please refer to section 7.1.3.

Hover Mode using air pressure A PID controller was added to allow the Crazyflie to au-
tonomously attempt to keep its current altitude. Once in fairly stable flight, the pilot
can activate this mode and the Crazyflie will manage the net thrust itself, still allow-
ing the pilot to manipulate target roll, pitch and yaw. Relative altitude differences
are computed at 90 Hz by using air pressure measurements. However, this is only
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suitable for fairly short hover sessions as the air pressure generally is not reliable as
shown in section 7.1.3.

Ping timing response A port was opened to handle special ping requests. When receiv-
ing a ping packet, the Crazyflie add’s its current CPU time-stamp to the message
and sends it back. This ping-pong with time-stamps is used in section 6.4 to help
synchronise the Crazyflie clock with a computer clock to help estimate the commu-
nication latency.

3.3 Camera and Image Transmission

In this section we discuss the process of adding an on-board camera and image transmitter
to the Crazyflie, allowing it to wirelessy transmit images in real-time to a ground station.
This was exceptionally challenging due to the size, weight and power constraints. The
recommended maximum payload is 4 g, beyond which flight performance and duration
are significantly reduced. With such a small payload, we also need to directly power
any additional hardware directly from the Crayzflie, as carrying an extra battery would
consume the entire available payload. In subsection 3.3.1 we look at the chosen camera,
in subsection 3.3.2 we discuss how to send and receive images, in subsection 3.3.3 we
show how to power everything directly from the Crazyflie and in subsection 3.3.4 we
demonstrate how to rigidly attach the system to the quadrotor.

3.3.1 Camera

Figure 3.12: The camera and lens used relative to a e1 coin. The small lens on the lower left was
shipped with the camera and not used due to its narrow 55◦ angle field of view. One can see the
exposed imaging CMOS of the canera.

Ideally, we would have a high performance global-shutter CCD digital camera wirelessy
sending images to a ground station over a digital connection. However, this is simply not
feasible given the electrical power and processing power constraints. Therefore, we opted
to use a conventional analogue camera.
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The smallest and lightest camera we could find was the 1 Gram PAL Camera bought online
for e40.00 from www.fpvhobby.com, a hobby shop located in Turkey that ships world wide.
The camera comes with a plastic cover that one can screw various lenses into. Two lenses
come bundled with the camera, but as we wanted a wider field of view we also bought
the Nano Camera Wide Angle Lens for e12 from the same shop. The camera and wide angle
lens are are shown in Figure 3.12 and their specifications summarised in Table 3.1.

Table 3.1: Camera and Wide Angle Lens Specifications

Camera Weight 1.49g
Resolution 720×576
Sensor 1/3" CMOS
Video Standard 576i50
Current 75 mA
Voltage 3.2-5V
Camera Dimensions 10.0 × 10.0 × 10.8 mm3

Lens Weight 1.58g
Horizontal Field of View 110◦

Diagonal Field of View 138◦

Lens Diameter ×Length 11 mm ×8.7 mm

The camera is a hobby grade component at best which is reflected in the build quality.
The plastic housing is attached with glue and is not very sturdy. The lens screws into the
holder pretty loosly, and as the focal length is dependent on how far one screws it it, one
must find a way to lock it in place. We added a thin layer of tape around the thread of the
lens so that when screwing it in, it locks into place just as the the lens reaches the focal
distance required.

Interlaced Video

The camera uses the 576i50 video standard, so it has vertical resolution of 576 scan lines,
each 720 pixels wide. The i stands for interlaced, so the camera outputs 50 fields per second
(25 even, 25 odd), giving 25 frames per second (FPS) where each frame contains an even
and an odd field combined. See Figure 3.13 for an illustration. Note that this implies that
the fields are taken in succession and not at the same time, therefore each frame has older
data in the even rows which can cause visual artefacts when observing movement. As
we wish to use the camera for VI-SLAM while the Crazyflie is flying, we deal with this
problem in subsection 6.6.3.

Rolling Shutter

When evaluating an imaging sensor, one must distinguish between global shutter sensors
and rolling shutter ones. A global shutter imager captures the entire field/frame at once
while a rolling shutter sensor scans across the sensor rapidly, either vertically or horizon-
tally (scan lines). Therefore, not all parts of the image are recorded at exactly the same
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Figure 3.13: Illustration of the interpolation scheme given by the 576i50 video standard. The
camera first captures a field with the even scan lines, then the odd, and finally packs them together
into a frame. Each field has a 288×720 resolution resulting in an output frame with a resolution of
576×720, where the even rows were captured 1/50 s earlier than the odd rows.

instant, which can result in various distortion effects such as wobble and smear. These
distortions are especially pronounced when the camera is recording a moving object or
moving itself (e.g. due to vibration or when mounted onto a moving vehicle). There are
ways to model and compensate for a rolling shutter. For example, [15] proposes a math-
ematical model of the rolling shutter to determine the relative image motion between an
object and the camera. After fitting a polynomial to smooth the estimated motion, it can
be used to align the scan-lines correctly. Alternatively, [16] presents a robust, real-time
video stabilization and rolling shutter correction technique using commodity gyroscopes
to effectively correct rolling shutter warping.

Unfortunately but not surprisingly, our chosen camera is of the rolling shutter type. How-
ever, modelling and compensating for it is not addressed further in this thesis and we
assume the camera to use a global shutter.

Fish-Eye Distortion

As we use a wide angle lens with a 138◦ diagonal field of view, the resulting camera images
are heavily distorted. For example, all the lines of the chess board in Figure 3.14 should be
straight and parallel. We model and compensate for this distortion type in subsection 4.1.5
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Figure 3.14: Fisheye distortion caused by the wide angle lens. Ideally, the edges of the black
squares would all be straight and parallel.

3.3.2 Image Transmission and Reception

The only way to wirelessly transmit an image from the Crazyflie mounted camera to
a ground station was to use an analogue transmitter (TX) and receiver (RX). The main
limitations here were current draw, size and weight. Both a 2.4 GHz and 5.8 GHz TX/RX
combination were tested, both of which operate at 10mW and are thereby within the
German legal limits [17]. The hardware was obtained from http://www.fpvhobby.com/
and each component TX/RX pair costs around e50. The 5.8GHz TX weighs 1.19 g and is
therefore more than double the weight of the 0.57 g 2.4 GHz TX. Unfortunately, the heavier
5.8 GHz TX proved to be less prone to transmission interference and was therefore deemed
the better choice, despite the larger mass and dimensions. Once again, these are hobby
grade components so neither the transmitters or the receivers came with a specification
sheet.

(a) Receiver

Ground
Data -
Data +
VCC 5V

(b) USB Cable

Ground
Video

RCA
Connector

(c) RCA Cable

Figure 3.15: Cables and antenna mount soldered to the 5.8GHz receiver. The RCA cable solders
onto the GND and VIDEO points, and the USB cable solders onto the +5V and GND points. This
allows the receiver to easily be powered by a USB port and directly interface with the USB video
digitiser.

The camera outputs an analogue signal that is directly connected to the video-in through-
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hole of the transmitter, which is then wirelessly broadcast. See subsection 3.3.3 for details
on how to connect and power the various components. The 5.8Ghz transmitter and re-
ceiver can be configured to use one of eight different channels. We found that we occa-
sionally had to change frequencies as we seemed to be picking up interference in some
environments. However, interference is not always avoidable so we developed a method
to detect corrupted images in subsection 6.6.2.

The broadcast radio signal is then picked up by an antenna which is connected to a re-
ceiver. The receiver requires 5 V, so we stripped the end of a USB cable (Figure 3.15b)
and soldered the ground and power cables to the corresponding points on the transmitter,
allowing us to power it from a standard USB port. We also stripped an RCA cable (Fig-
ure 3.15c) and soldered the ground and video cables to the corresponding video output
and ground points on the transmitter. To digitise the analogue signal video signal, we
connected the soldered-on RCA cable to a USB digitiser which exposes itself as a video
device at /dev/videoX on linux. See section 6.3 for details on how we expose this image
over the ROS network and subsection 7.1.4 for a quick evaluation of the lag and range.

Note that one has to be careful when choosing a USB analogue video digitiser as not all
are compatible with the linux kernel. The e35 Hauppage USB-Live2 shown in Figure 3.16
worked flawlessly out of the box.

Figure 3.16: The Hauppage USB-Live2 digitises an analogue video signal (yellow RCA connector)
and exposes it to the linux kernel as a video device, much like a webcam.

3.3.3 Powering from the Crazyflie

As we do not have enough payload capacity to power the camera system from a separate
battery, we power it directly from the Crazyflie. This proved to be a little harder than
expected as the motor-induced electrical noise was enough to render the image transmitter
useless without some sort of filtering. The Crazyflie exposes VCOM (voltage from the battery
or USB if connected, after the power management chip), VCC (digital power supply), VCCA
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(analoge power supply), DGND and AGND (digital and analogue ground) via a 10 ×2 pin
1.27 mm (0.05") pitch through-holes. VCC and VCCA bother operate at 2.8 V while VCOM will
vary between 2.8 V-4.2 V when flying and run at 5 V when attached to USB.

Noise

As the electrical components require 3.2 V-5 V to operate, we first attempted to directly
drive them from VCOM and DGND which should provide enough voltage for most of the
flight. As VCOM comes from the power management chip, it is only active when the
Crazyflie is turned on, so one doesn’t need to manually disconnect anything between
flights. However, this also means that the additional current required by the camera sys-
tem negatively effects charging time. Initial tests were good, with a clear image being
received across rooms. However, once the motors spun up the transmission garbled and
the incoming images were completely useless. We concluded the image noise was caused
by electrical noise produced by the motors. When a motor runs, a commutator switches
the direction of the electricity that flows in the coil windings. Occasionally sparks occur
between the motor brushes and commutator at the timing of the commutation. These
sparks when coupled with the inductance of the motor coils and motor leads can cause
noise on the power lines. One typically solders capacitors across the motor terminals to
suppress motor noise. This was not a desired solution as the capacitors would be very
exposed and greatly increase the fragility of the flying platform. An additional source
of noise is from the nature of using pulse width modulation (PWM) to drive the motors.
We experimented with adding various ceramic inductors between VCOM and the camera
system. While this greatly reduced the image nosie during flight, it was still dominant
enough to render the received images useless for pose estimation. Figure 3.17 shows some
examples of images received from the Crazyflie under different conditions. Also, occa-
sional voltage drops caused complete frame drop-outs and after two minutes of flight the
voltage decreased below the required amount.

Voltage Regulator

On paper, a Pololu 3.3 V Step-Up/Step-Down voltage regulator (VREG) seemed like ex-
actly what we needed. It would take the 2.8 V-4.2 V from VCOM and output a stable 3.3 V the
camera system required. These voltage regulators also have the added benefit of smooth-
ing out any noise during the voltage reduction/increase. Unfortunately the 3.3 V VREG
did not help the noise issues despite solving the drop-out problems. However, the Pololu
S7V7F5 5.0 V VREG worked flawlessly, both in removing noise and maintaining the volt-
age required to drive the components, even after the inductors were removed. At only
8.2 × 13.2 mm2 and being under 0.5 g the voltage regulator was small and light enough to
be added to the camera system without any negative side effects. An image of the voltage
regulator is shown in Figure 3.18.
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(a) No thrust (b) 65% thrust

(c) 65% thrust after 30 seconds (d) 65% thrust using a 22µH inductor

Figure 3.17: The four images above show the images received when the transmitter is directly
connected to the Crazyflie’s power. Image quality is very sensitive to the thrust, as the transmitter
and camera are extremely sensitive to electrical noise created by the running motors. (a) Shows
image transmission while the motors are not powered. It is noise free and demonstrates the absence
of external interference. (b) Shows the noise caused by the motors. The flickering black bars change
in size and position over time. Additionally, the whole image moves up and down. (c) Shows
transmission problems caused by the voltage drop after a minute of hovering. Note the pure blue
lines at the bottom: the digitiser outputs blue frames if it cannot successfully decode the image.
(d) Shows the noise improvement over (b) by introducing an inductor between the transmitter and
power source on the Crazyflie.

Figure 3.18: The Pololu S7V7F5 5.0 V Step-Up/Step-Down voltage regulator effectively removes all
motor induced electrical noise that corrupted the camera images while providing a stable 5.0 V to
the camera system.

32



3.3 Camera and Image Transmission

Full Camera System

We now have all the requirements for the full camera system. We soldered a male 1.27 mm
pitch JST Micro Connector to pins 16 ((DGND) and 18 (VCOM) and a compatible female con-
nector to VIN and GND on the voltage regulator (making sure that the polarity matches
up) to facilitate easy connecting and disconnecting of the system. A photo of the camera
system is shown in Figure 3.19 and a wiring diagram shown in Figure 3.20.

Figure 3.19: Photograph of the video system added to the Crazyflie. The 5.0 V voltage regulator on
the bottom is plugged into the Crazyflie and powers the 5.8Ghz transmitter on the left and camera
on the top.

3.3.4 Camera Attachment

To rigidly attach the camera to the Crazyflie, we designed a 3 dimension model in Blender
[18] which we could 3D print and use to holder the camera in place.

The design needed to fulfil the following criteria:

Rigidly attach the camera without slack The holder must be designed in such a way that
the camera is rigidly attached without any slack to the Crazyflie PCB as later we
assume the IMU to Camera transform is constant.

Position the camera well The holder should position the camera such that (a) the camera
field of view is minimally occluded by the Crazyflie itself (b) the added mass does not
shift the center of mass off the Crazyflie and (c) the camera observes the environment
in front of the Crazyflie. Therefore, we decided to position the camera centrally
under the Crazyflie and align the optical axis with the Crazyflie X axis. The mass
of the lens which is offset from the center of mass is compensated by the mass of
the voltage regulator and transmitter, which are to be positioned behind the camera.
Note that this position causes a small amount of self occlusion as the forward motor
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Figure 3.20: Zoom in on the Crazyflie expansion header. Identify pin 16 as DGND and and 18
as VCOM. The step up voltage regulator transforms the 2.8-5V from the Crazyflie to 5V for the
camera and transmitter to use. Either GND on the transmitter can be used.

(a) Orthographic Top View (b) Detailed Perspective View (c) Pin Details

(d) Orthographic Front View (e) Orthographic Side View (f) Orthographic Top View

Figure 3.21: Renders of the designed camera holder model. The transparent blue object represents
the position of where the camera will be fitted. Notice the bored hole in the center to save weight,
and the arrow head like shape of the pin to allow the model to click into the Crazyflie’s PCB.
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mount is within the field of view (see Figure 3.23b for an example image from the
mounted camera). Alternatively, one could rotate the camera around the Crazyflie Z
axis by 45◦ so that it looks between the motors. However, this proved to cause even
worse self-occlusion as the wide angle lens captures a large portion of the PCB which
is wider than and closer than the motors mounts. Additionally, one would have one
pin less to suspend the holder from resulting in decreased rigidity. See Figure 3.23a
for a photo of the camera mounted to the Crazyflie.

Protect the camera from crashes Ideally, the holder would protect the camera from crashes,
especially as the camera is mounted under the flie. For this reason, the holder was
designed to surround the camera at the cost of a small additional weight. This design
also serves the purpose of a ’fixed landing gear’. As can be seen in the cross sections
of Figure 3.21, the bottom part of the holder is slightly convex which defines four
points of contact on the ground, allowing the Crazyflie to land and remain upright.

Low Weight Multiple iterations of the model with decreasing material thickness were
tested until the model could not withstand a fall from two meters. An average
thichkness of roughly 3 mm was determined to give the ideal strength versus weight
ratio. To acheive this thickness in the base, a smooth hole was bored out of the center,
as can been seen in Figure 3.21b.

Flex rather than snap A nice side effect of using a thinner model is that it flexes under
stress, acting as a shock dampener in case of fast vertical descents into the floor.
Three different printing technologies and materials were tested. Extruded ABS was
too fragile as it would easily break apart between the printed layers. Also, the
precision was not enough to make the pins work. Models printed from a stereo-
lithographic printer (a laser solidifies a liquid resin from which a mode is pulled out
of) had the highest resolution and stiffness. The pins even made a clicking sound as
they were inserted into the Crazyflie PCB. Unfortunately, the material would snap
rather than flex under high stress which was deemed too fragile for everyday use.
From the tested materials, only the models printed by selective laser sintering (SLS)
of a nylon based powdered (such as those printed by ShapeWays), were precise
enough to function and strong and flexible enough to survive a crash.

Easily attach and detach the holder from the Crazyflie Idealy, one would be able to de-
tach the holder from the Crazyflie without too much effort. Using super glue or
other semi-permanent solutions was to be avoided. Fortunately, the Crazyflie has
four 1.8 mm deep × 1 mm wide holes in the corners of the PCB. See Figure 3.22a for
a close-up picture. The designed model makes use of these holes by have four pins
which can slide through the holes. The pins have an arrowhead like shape which
allow them to easily be inserted in one direction and then clicked into place. Finding
exactly the right shape was difficult due to the small scale and printing imperfec-
tions. In order for the fins to fit through the hole but stick out enough to click into
place behind the hole, a printing precision of 0.1 mm is required. We tested many
different shapes and sizes (see Figure 3.22b for some prototypes) and opted for the
design shown in Figure 3.21c. Inserting the pins can be a little challenging, but once
inserted they are firmly in place. Alternatively, the 3d model has holes directly in
line with the pin. These indicate drilling locations for a 1 mm wide drill to enable
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(a) PCB hole

(b) Prototyping 15 different pins with varying arrowhead shapes

Figure 3.22: holepcb caption

(a) Mounted Camera System (b) Camera’s view during hover

Figure 3.23: The camera is rigidly attached to the Crazyflie. (a) This model was printed by a
Formlabs 3d Stereolithographic printer [19]. (b) View from the mounted camera during a hover at
2 m altitude, note the self occlusion.

the use of tiny screws that can also fasten the holder to the PCB. In practise these
were not required as the pins were more practicle and worked well enough.

Easily attach and detach the camera from the holder We also wanted a method to se-
curely fix the camera to the holder. This is done by means of a 3/4 ring that clips
around the camera housing. See Figure 3.21b for a close up picture. Note, that while
this solution holds the camera in place and prevents it from rotating, it does not
prevent the camera from sliding away from the ring.

Fix the focal length by not allowing the lens to rotate To lock the camera in place and
prevent it from sliding out of the ring holding it in place, we added a protruding pin
that pressed against the camera lens. This allows the user to shave the pin to exactly
the right length, such that when the lens is tightly screwed into the camera housing
it not only keeps the camera in place, but also keeps the lens from accidentally being
unfocussed.
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In this chapter we introduce the reader to the notion of pose and attitude estimation and
discuss the three developed ways we use to estimate the pose of the Crazyflie in realtime.

VI-SLAM In section 3.3 we devised a way to receive images from a camera mounted to
the Crazyflie. In section 4.1 we discuss how one can efficiently use these images to
estimate the full 6D pose of the quadrotor by developing a monocular Visual-Inertial
Simultaneous Localisation and Mapping (VI-SLAM) framework.

MoCap Pose Estimator Using a professional motion tracking system , one can accurately
determine the pose of infra-red markers, which when attached to the Crazyflie allow
us to track the it as outlined in subsection 4.2.1.

Kinect based Pose Estimator We developed a pose estimator using the input from a Kinect
structured light depth camera. This allows us to run various control experiments at
home without relying on the usage of a motion capture studio or a mounted cam-
era. This is discussed in subsection 4.2.2 and implementation details are given in
subsection 6.5.2.

In section 4.3 at the end of the chapter we briefly cover the Crazyflie’s on-board attitude
estimation method, which provides rotation estimates for the VI-SLAM and Kinect Tracker
systems.

Pose Estimators can be categorised by how many dimensions they estimate (e.g. just a
3D translation vs. a full 6D pose) and by whether or not the estimation is being done
externally or not. For example, a pose estimator using a ceiling-mounted camera could
tell the robot where it is, or the robot could use an on-board camera to compute its own
3D motion (also called egomotion estimation). Once one has an estimated pose, one can use
this to compute the error between a desired pose and the estimated pose, which one can
feed into a controller that then actuates the robot so it moves towards the desired pose,
thus allowing it to hover or fly via waypoints for example. Control using estimated poses
as input is covered in chapter 5.

The pose estimators we implemented are summarised in Table 4.1.

Table 4.1: Pose Estimation Methods

Method Dimensions Rate Type Details
Monocular VI-SLAM 3T+3R 25Hz Ego section 4.1
Attitude Estimation 3R 250Hz Ego section 4.3
Motion Capture Studio 3T+3R 200Hz External subsection 4.2.1
Kinect 3T 30Hz External subsection 4.2.2
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4.1 Visual Inertial SLAM

In this section we discuss how one can estimate the motion of an agent using images from
a monocular camera attached to it.

After covering the general concept of egomotion estimation, we take a closer look at each
of the required building blocks, emphasising where and how an IMU can be used to ro-
bustify and speed up the process. These building blocks include some projective geometry,
our 2D measurement representation and methods to incrementally construct, update, and
locate against a map. Finally we propose an entire pipeline looseley based on [20], with
implementation details in section 6.6 and evaluation results in section 7.3.

4.1.1 Introduction

Structure from Motion

Structure from Motion (SfM) refers to the process of reconstructing 3D structural geome-
try of a previously unknown but static environment from a potentially unordered set of
images, while simultaneously estimating the camera poses from which the images were
taken. SfM assumes that one can identify points in at least two images that represent pro-
jections of the same point in space. This is known as the correspondence problem and can be
solved using feature matching as described in subsection 4.1.2. Usually the final step of an
SfM pipeline is to refine the entire estimated structure and all camera poses in a non-linear
optimisation procedure often referred to as Bundle Adjustment (see subsection 4.1.11). SfM
is not usually assumed to run in real-time and usually favours accuracy over raw speed.

Simultaneous Localisation and Mapping

In the field of mobile robotics, Simultaneous Localisation and Mapping (SLAM) is the equiv-
alent of SfM when the measurements are sequential (i.e. temporally ordered, e.g. images
from a video sequence). Usually the goal is to estimate the motion (often in real-time)
of a mobile robot, while continuously mapping the unknown environment it is situated
within. Essentially this is a chicken and egg problem: one requires an unbiased map to
localise, but one must accurately localise to build a map. A good two-part tutorial broadly
introducing SLAM methods is given in [21, 22].

Sensors Multiple sensor types or combinations can be used such as active optical sen-
sors, tactile sensors, sonar sensors and cameras for example. Visual SLAM (VSLAM) is
the name used when referring to SLAM systems that use one or mores cameras as their
primary sensors [23]. In the remainder of this thesis, we focus on the monocular case -
ego motion estimation just using a single camera. This is mainly motivated by the limited
payload capability of the Crazyflie quadrotor we would like to attach the camera to (see
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subsection 7.1.1); the advantage of adding a second camera to the huge bandwidth of in-
formation provided by a single camera does not outweight the additional weight required.

History The desire to compute ones pose using visual information alone kicked off in the
1980ies, motivated by the requirement for planetary rovers to have the capability to deter-
mine their 6DOF pose in rough and deformable terrain where wheel odometry would fail
[24, 25]. Research into monocular VSLAM has exploded since 2005 due to the increasing
ubiquity of cameras in mobile devices such as mobile phones and MAVs/UAVs, [26, 27].
Furthermore, since most modern cellphones and MAVs/UAVs contain IMUs, much effort
has been put into fusing inertial and visual measurements together. This especially makes
sense in the monocular case as depth cannot be perceived and the measured acceleration
from an accelerometer can be used to estimate or correct the scale [20, 28, 29, 30]. Unfortu-
nately, the accelerometer we employ (section 3.2.1) is too noisy to be used to estimate scale
(see section 7.1.3) reliably. However, we can use a barometer to initialise the scale instead
as explained in subsection 6.6.4.

Global Consistency Like SfM, (VI-)SLAM aims to provide a globally consistent map
and estimate of the robot path at the cost of complexity. This means that the entire history
needs to be stored so we can recognise when we have returned to a previously visited
area, often referred to as place recognition or closing the loop. We can then integrate the
constraints derived from the detection of such a loop closures to reduce drift and improve
global consistency. State of the art place recognisers include [31] and [32], both which use
the bag-of-words approach to represent and compare images.

To enable the long term operation of a (VI-)SLAM system, we must restrict the size of the
bundle adjustment step as the cost increases with the number of poses and landmarks.
PTAM [33] for example runs full bundle adjustment in a parallel thread and is there-
fore limited to desktop sized spaces. Therefore, many approaches select a small subset
of past frames to process, either by using sliding window [34], or using spatially dis-
tributed keyframes [33, 35] which enables long-term drift free operation. More recently
[36] presented a constant-time framework with the accuracy of offline bundle adjustment
in long and loopy datasets by employing a double window optimisation scheme where
an inner window of point-pose constraints is supported by an outer window of pose-pose
constraints. The constraints of both windows are then coupled into a single optimisation
framework.

Types SLAM algorithms generally fall into one of two categories which sparsify the prob-
lem in different ways: (a) those based on sequential filtering techniques which marginalise
out past poses and summarise the information gained over time with a probability distri-
bution [37, 38, 39], and (b) those based on keyframe methods which retain the optimisation
approach of global bundle adjustment [33, 36]. Work has also been done on combining
both approaches [40, 36], attempting to aggravate and aleviate eachothers advantages and
disadvantages.
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Visual Odometry Visual Odometry (VO) is a particular case of VSLAM where one is
mainly interested in the local consistency - only the recent history is of interest and the
rest discarded. This provides performance benefits over SLAM. VO was named in [35]
and chosen due to its nature being similar to that of wheel-based odometry: incrementally
estimating ones pose from a previously estimated pose. Therefore, a VSLAM system
without the optimisation backend can be considered a pure VO system. To help remove
the accumulated drift inherent in the incremental nature of VO, one often includes an
optimisation backend but employs a sliding window: only keeping and optimising the last
n keyframes and their associations and discarding the rest [41]. Note that as opposed to
a SLAM system, the history is eventually discarded and loop closures beyond the sliding
window will not be detected. A great introduction to VO is provided in the two part
tutorial [42, 43].

Direct Methods

While the remainder of this thesis only focusses on the keyframe based approach, it might
be important to note a recent tend. Both keyframe based and filter based methods pre-
viously mentioned almost exclusively rely on sparse-feature extraction to associate mea-
surements. Alternative Dense methods also exist such as those based on dense optical flow
[44] or featureless tracking. They operate directly on pixel intensities thereby eliminating
the need for expensive feature extraction & matching routines for tracking and mapping.

Recently there have been advances in the monocular case: In 2013 Engel et al presented
semi-dense visual odometry algorithm which could run in real time on a single core CPU
[45]. The implementation was extended in 2014 with a SLAM back-end resulting in Large
Scale Dense SLAM (LSD-SLAM)[46] and even ported to a mobile phone [47] in 2015.

[8] presents a precise semi-direct monocular visual odometry algorithm that also operates
directly on pixel intensities, resulting in sub-pixel precision at 55fps on an embedded
computer and over 300fps on a laptop. This approach also proves to be surprisingly
robust against scenes of repetitive, little, and high-frequency texture.

These algorithms are robust and fast but do require a decent quality camera, meaning that
for our purposes they are not suitable due to the slow frame rate, poor quality, noisy nature
and transmission losses associated with the camera we will be using (subsection 3.3.1).
Therefore, for the rest of this thesis we will concentrate on sparse feature keyframe based
methods.

Keyframe Based Method Concepts

For a summery of commonly used terminology regarding these concepts please see sec-
tion 2.1. The keyframe based SLAM method we implement follows one of the typical
paradigms commonly used and can be summarised as follows:

1. Using 2D-2D image correspondences, wait for the current frame to have enough
distance from the first frame.
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2. Using these correspondences, estimate the relative transformation between the im-
ages.

3. Derive local 3D structure by triangulating the correspondences - initialising a map
with a point cloud of landmarks, and keyframes consisting of the first and current
frames.

4. For the following incoming images, use 2D-3D image correspondences to derive
incremental relative displacements with respect to the landmarks, associated via the
last keyframe.

5. If required, triangulate new landmarks and add new keyframes to expand the map.

6. Maintain this map of previous landmarks and key frames we can find correspon-
dences to and optimise over.

To execute these steps we need to implement the following methods, some of which can
be aided by using IMU measurements.

Inertial Priors Measurements from the IMU can be used to help speed up and robustify
many of the procedures below. Often, this includes reasoning over relative rotations
priors between two camera frames with associated IMU measurements and rotating
bearing vectors with these priors. How this is done is shown in subsection 4.1.7

Obtaining 2D-2D and 2D-3D correspondences We need a way to find common points
between two images and between an image and landmarks. To do this, we detect
features, describe their appearance and match appearances. Landmarks have asso-
ciated observations and can be matched via the descriptor in the frame that saw it.
Obtaining image correspondences and using IMU measurements to robustify and
speed up the procedure is covered in subsection 4.1.2.

2D-2D relative pose estimation Given 2D-2D correspondences between two frames, we
need to estimate the relative transformation between them. Note that we cannot es-
timate scale, so we have no way of knowing the magnitude of the baseline from the
images alone. Relative pose estimation as well as how to incorporate IMU measure-
ments into the process are covered in section 4.1.10. Note we can roughly estimate
the baseline using the barometer as described in subsection 6.6.4.

Estimating disparity In order to triangulate landmarks from point correspondences, the
baseline between the camera poses must be large enough. Therefore, the initialisation
procedure must waiting until the the current and initial views exhibit enough dis-
parity. Furthermore, the disparity can be used to trigger new keyframes. We require
the IMU for this procedure. Estimating the disparity is covered in subsection 4.1.9.

Projecting 2D measurements into the world In order to triangulate points, we need to
know how our 2D image measurements relate to the 3D world. We convert our 2D
measurements on the imaging plane into bearing vectors. How to do this as well as
how to compute errors between them is covered in subsection 4.1.6.

Triangulation Once we have the relative pose between two frames, we can triangulate a
point cloud of landmarks between them. This is covered in subsection 4.1.8.
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2D-3D absolute pose estimation Once we have initialised landmarks, we can determine
our pose relative to them. In this way, the visual scale factor is implicitly propagated
between pose estimates. This is covered in section 4.1.10. The IMU can be used to
provide rotation priors which can help speed up the process.

Dealing with noisy and incorrect measurements We will have to deal with noisy mea-
surements and outliers. This is covered in subsection 4.1.3.

Local Optimisation Everytime we triangulate new landmarks, we add them to the map.
They have associated measurements from camera frames. It is not feasible to store
every frame, measurement and association. Therefore we only retain a subset of
the frames, called keyframes. We can then optimise the map using only the local
keyframes and their observed landmarks, keeping the complexity constant. This is
mentioned in subsection 4.1.11.

A visual summary of the steps is given in Figure 4.1 and a flow chart of the implemented
solution shown in Figure 4.2.

4.1.2 2D Image Features

The keyframe based methods above rely on image point correspondences. That is, two
projections of the same 3D point projected into two views need to be associated. Two
main approaches exist: (a) identify points in the first image and track them in the following
images using local search techniques, or (b) independently detect interesting points in each
image and match these based on a similarity measure between a description of their local
neighbourhoods. In this thesis we focus on the latter approach as it handles large motion
between viewpoints better, a requirement due to the noise and frequent transmission loss
of our quadrotor mounted wireless video system. Furthermore it allows arbitrary image
pairs to be matched which simplifies the design of a recovery system in case features of the
current image cannot be tracked or matched against the previous keyframe. This approach
is usually a three part process summarised in Figure 4.3 and below:

Keypoint Detection As it is computationally infeasible to compare every pixel of one
image with every pixel of the other, one aims to locate interesting points (often called
features) of an image that are associated with distinctive, repeatably identifiable 3D
entities. These features are subsets of the image domain, and usually in the form of
points, continuous curves, lines, blobs or connected regions. In this thesis we only
deal of the point type, usually referred to as keypoints. The process of finding such
keypoints is called keypoint detection and is discussed in section 4.1.2.

Descriptor Extraction Once one has identified a set of distinctive keypoints that can be
reliably localised, one needs to compute an abstraction of the image information that
describe the local appearance around the keypoint. Ideally this abstraction of the 2D
appearance would be identical for all views of the 3D point, even under the presence
of noise. These local neighbourhood representations are called descriptors and com-
puting them is called descriptor extraction. They are discussed in section 4.1.2 and
an IMU can be used to achieve rotation invariance.
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(a) Pre-Initialisation: The first frame is considered
a keyframe and all successive images are matched
against it. From the pairs of corresponding mea-
surements one can estimate the angular disparity.
If the disparity is too small, we drop the current
frame.

new landmarks

initial keyframe current keyframe

cu
rre

nt obse
rv

ati
ons

previous
observations

relative transformation

(b) Post-Initialisation: The current frame displays
sufficient angular disparity, so the corresponding
2D-2D bearings are used to estimate the relative
transform and triangulate landmarks. The cur-
rent frame is added to the map as a keyframe,
which the next frames will match against.
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(c) New images match against the most current
keyframe, obtaining associations to landmarks
via the keyframe. Using these 2D-3D correspon-
dances an absolute pose is computed. If the angu-
lar disparity is insufficient, the frame is dropped.
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(d) With sufficient angular disparity a new
keyframe is added to the map as well as addi-
tionally triangulated points. Global optimisation
can then be done over all correspondences, e.g.
some landmarks can be seen from more than two
keyframes.

Figure 4.1: Overview of a typical feature based keyframe SLAM algorithm
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Figure 4.2: Diagram depicting the control flow of the implemented VI-SLAM algorithm. Coloured
boxes indicate that an IMU is used to aid the corresponding procedure.
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Descriptor Matching Once one has two sets of keypoints with associated descriptors from
two different views, one can attempt to find the corresponding points between im-
ages by comparing the descriptors. Similar descriptors should yield small matching
distances while incorrect descriptor matches should have large ones. How one can
compare descriptor sets is discussed in section 4.1.2. Once again, an IMU can be
used to speed up the process by pruning potential match combinations.

Image 1 Image 2Matches

keypoints

descriptors

Figure 4.3: Finding corresponding points between two images. First, keyoints are detected (red);
then descriptors are extracted (yellow); finally descriptors are matched, of which some yield posi-
tive matches. Ideally the descriptors encode the local information with invariance to rotation, scale,
affine projection, lighting and noise.

A vast amout of research has been conducted in this field and a plethora of keypoint
detection and descriptor extraction algorithms exist. It is beyond the scope of this thesis
to compare, evaluate or give a full explanation of how each one works. We therefore
restrict ourselves to briefly mentioning some of the more well known algorithms and only
describing and justifing the algorithms we employed. We refer the interested reader to [48,
49, 50] for literature that evaluates various detection and extraction methods. Furthermore,
OpenCV[51] readily offers implementations of many detectors and extractors.

Keypoint Detection

The goal of the keypoint detection step is to localise distinctive points in the image that
can be repeatably detected despite varring conditions. For example, corner points (an
intersection of at least two edges) or blobs (an image region differing from its immediate
surroundings in colour/texture/intensity) are often sought as their position in the image
can be accurately determined. Well known blob detectors include

• SURF (Speeded Up Robust Features) [52]

• SIFT (Scale Invariant Feature Transform) [53]

• AKAZE (Accelerated-KAZE). [54]

while corner detectors include
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• Harris [55]

• SUSAN (Smallest univalue segment assimilating nucleus)[56]

• FAST (Features from Accelerated Segment Test) [57]

• AGAST (Adaptive and Generic Accelerated Segment Test) [58]

• Shi-Tomasi [59]

• ORB (Oriented Fast and Rotated Brief) [60]

They all have different pros and cons regarding the following characteristics:

Repeatability The same keypoints should be redetected in the previous/next image.

Distinctiveness Detected keypoints should also have a wide range of appearances so that
they can be distinguished from one another allowing them to be accurately matched.

Localisation Accuracy Ideally keypoints are accurately detected with respect to scale and
position. Some detectors such as SIFT[53] even achieve sub-pixel accuracy by fitting
a 3D quadratic function to the local sample points to determine the interpolated
location. Note that we require a contrast rich for this. or example, if we consider a
point in a contrast uniform region, we are not able to determine its exact position, as
we cannot distinguish it point from its neighbours.

Robustness Detections should be robust to various levels of noise, blur and even compres-
sion artefacts.

Computational Cost In order to be feasible for real-time operation, the detection step
must be executed very quickly. Corner based approaches (FAST, Harris, etc) usually
outperform blob based approaches (SURF, SIFT, etc) in terms of detection time, but
often at a cost of distinctiveness.

Scale Invariance Detections should be invariant to scale. This means that two views of the
same scene, where one view is zoomed in, should yield the same detections in within
the overlapping observable area. This is often achieved by applying the detector at a
lower-scale and upper-scale version of the input image

Illumination Invariance Detections should also not be affected by various photometric
changes.

Rotational Invariance Rotation (i.e. rotating the camera round the optical axis) should not
affect the detections.

Invariance to Perspective Distortion Projections of objects on to the image plane may
look different between different camera poses due to perspective distortion. Ide-
ally this would not change the detections. For simplicity, one often approximates the
perspective distortion as an affine one.

Most detectors work in a two phases, with an optional third:

1. First, a detector applies a feature response function to every pixel, which yields a
detection score. This function could be the Harris corner response function or the
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Laplacian of Gaussian (LoG) approximation used in SURF.

2. Finally, it applies non-maximal-suppression (NMS) over the feature response. This
effectively removes multiple responses that belong to the same detection, leaving
only one maximal response left. For example, imagine a detection of a large blob. A
group of pixels at the center of this blob will have a high blob measure, yet we are
only interested in a single response to represent the detection.

3. Optionally, one can threshold the maximal responses to further eliminate current
responses. This threshold parameter effectively allows us to control roughly how
many responses we obtain. Furthermore, one could sort the detections by their
responses and only keep the top N if fewer are required.

FAST Detector For our VI-SLAM implementation we decided to use the FAST [57] de-
tector as it is computationally extremely inexpensive and yields many keypoints.

Remaining true to it’s acronym, the FAST corner detector was designed to be as compu-
tationally efficient as possible while remaining repeatible [57, 61]. It is significantly faster
than other corner detection methods, such as a 17× speed up over the Harris detector
and 6× speed up compared to the SUSAN detector [61]. Example detections are shown
in Figure 4.4.

Figure 4.4: The top 150 FAST detections on an image from the quadrotor.

The FAST detector builds upon an intuitive idea: a pixel p can be considered a corner if
a sufficiently large continuous arc of pixels around p are either all significantly brighter
or darker than p itself. In practise, this means arranging 16 pixels on a Bresenham circle
of radius 3 around p. Pixel p is deemed to be a corner if the intensities of at least 12
contiguous pixels of the 16 are all above or all below the intensity of p by some threshold,
t. See Figure 4.5 for an illustration. The condition can be optimised to reject candidate
pixels as early as possible. For example, by examining the top/bottom and then left/right
pixels of the circle, one could potentially dismiss the pixel since a feature can only exist
if three of these test points are all above or below the intensity of p by threshold t. This
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idea was later extended in [57] by using an offline machine learning approach to learn a
decision tree that decides if each pixel in an is a corner or not, using as little comparisons
as possible. The resulting decision tree can then be converted into a huge if-then-else
construct and used to classify pixels as corners or not at great speed.

Figure 4.5: The FAST keypoint patch at pixel p: The red squares indicate the pixels used, the blue
line passes through 12 contiguous pixels which are brighter than p plus a given threshold. The
initial FAST detector first tested the green squares for rapid rejection. Image modified from [61]

.

As each pixel is classified as a corner or not a corner, there is no corner response function
and therefore non-maximal suppression cannot directly be applied. Therefore, [57] pro-
pose to define the corner strength to be the maximum threshold t for which a point is still
detected as a corner and apply non-maximal suppression over the corner strength with a
3× 3 mask. In practise this leads to total detection time in the 5 ms range over VGA image
to detect 500-1000 corners.

Scale Invariant Detection Inherently, corner detectors such as FAST or Harris only detect
corners of a certain size. In order to identify keypoints at different sizes, a multi-scale
approach is used: the input image is blurred and sub-sampled, increasing the relative
patch to image size ratio. Running the corner detector on each sub-sampled image allows
’larger’ corners to be detected.

Constructing a Gaussian Pyramid is a commonly used multiscale approach which dictates
how one downsizes (zooms out from) the input image. They are a collection of images that
are successively down-sampled until some desired stopping criteria is reached - one often
down-samples a fixed number of times. One can imagine each downsampled image as a
’layer’ in a pyramid (see Figure 4.6) where the higher the layer, the smaller the image size.
To produce the next layer, one blurs the current layer by convolving it with a Gaussian
kernel and then sub-samples it by removing every even row and column, effectively halv-
ing the image dimensions (quartering the area). The Gaussian blurring is vital to avoid
aliasing artefacts.
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Figure 4.6: Multi Scale Gaussian Pyramid used for scale invariant detection. Running a corner
detector on each level allows for corners of different sizes to be detected.

Grid Adapted Detection The FAST detector has its share of disadvantages. As with any
corner detector, the FAST detector relies on textured surfaces or cluttered scenes. Weaker
textures and blank walls or floors often have no visible features, making detection in these
areas less repeatable and accurate.

The distribution of the features in the image is very important for VO/VSLAM [62]. Both
the image coverage and the number of features matter. Ideally one would have many
keypoints equally distributed over the image. If one has an area with strong texture and
uses a corner response function to determine which keypoints to keep, one might end up
only keeping the ones detected on the high texture area and dropping the rest. In order
to avoid this behaviour, one can partition the image into a grid, and apply the detector to
each sub-image and tune the detection thresholds independently until a minimum number
of features are found in each cell [62]. An illustration showing an example is given in
Figure 4.7 An implementation of this functionality is available in the OpenCV Library.

Descriptor Extraction

Once we have identified keypoints, we need a compact way to describe the region around
them in a representation that allows us to efficiently reason over the similarity between
them. These abstractions are called descriptors and comparing them to one another is
called descriptor matching. Intuitively, detected keypoints and their descriptors provide a
sparse representation of images by capturing the essence of their interesting structure.
Once again, much research was conducted in this field with the goal of designing highly
discriminative yet efficient descriptors. Some of the more popular approaches are listed in
Table 4.2 and are available in the OpenCV Library [51].

An obvious and often effective way to construct a descriptor is simply to use its appear-
ance directly: directly use the intensity of the pixels within a small window around the
keypoint. To compare the patches, one can then simply use common error metrics such
as the sum of squared differences (SSDs), the sum of absolute differences (SADs), or for
a more illumination invariant approach use the normalised cross correlation (NCC). One
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Figure 4.7: Setting the response threshold to keep the top n detections can result in very uneven
coverage. One way to improve this situation is by adjusting the threshold of sub-images indepen-
dently, such that each sub-image has enough features.

Table 4.2: Popular Descriptor Extractors

Algorithm Type Rotation Inv.
SIFT (Scale Invariant Feature Transform) [53] Float Yes
SURF (Speeded Up Robust Features) [52] Float Yes
BRIEF (Binary Robust Independent Elementary Features) [63] Binary No
BRISK (Binary Robust Invariant Scalable Keypoints) [64] Binary Yes
ORB (Oriented Fast and Rotated Brief) [60] Binary Yes
AKAZE (Accelerated-KAZE) [54] Binary Yes
FREAK (Fast Retina Keypoint) [65] Binary Yes
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can further increase the robustness of patch matching with regard to affine projection by
pre-warping/rotating the patches if the camera motion has been estimated. However, local
appearance based matching only works well when the images are very similar, i.e. taken
from neighbouring positions. They are not invariant to scale, rotation or larger viewpoint
changes.

Many more advanced techniques have since been constructed, such as the SIFT extractor
which basically encodes a region into histograms of local gradient rotations. SURF uses in-
tegral images and approximations to speed up a similar process. Both SIFT [53] and SURF
[52] store the descriptor as a 128 element float vector and matching scores are computed
by simply taking the euclidean distance between them.

Binary descriptors represent descriptors as binary strings and have recently become pop-
ular because of the speed at which they can extract and match descriptors. For the first
time, it was feasible to do real time extraction on mobile devices.

All the various descriptors are various pros and cons with regard to the same desirable
properties of the keypoint detectors. It is not in the scope of this thesis to compare and
contrast existing solutions, here we will soley focus on the descriptor we chose to use in
our implementation: the BRIEF [63] descriptor.

BRIEF Extractor Since 2010, many binary descriptors have been proposed that attempt
to reach the same levels of repeatability and accuracy as the SIFT extractor but at a fraction
of the computational cost.

The BRIEF descriptor was one of the earlier ones, which was designed with computational
effort and memory efficiency in mind. To shorten descriptors, approaches such as Prin-
cipal Component Analysis (PCA)[66] or Linear Discriminant Embedding (LDA)[67] were
proposed to apply dimensionality reduction to existing descriptors. Furthermore, [68]
proposed to use hash functions to reduce SIFT descriptors to binary strings, resulting in
a drastic size reduction and faster matching process. While these approaches worked and
reduced the descriptor dimensionality, they did so at the cost of computational resources,
as the original descriptor required additional post processing steps. As the acronym might
suggest, the idea behind BRIEF was to short cut the extraction and post processing steps
to a single, direct reduced binary string.

BRIEF simply uses pairwise intensity comparisons sampled within patches around key-
points, which form the bits of the descriptors. As the intensity of single pixels are used,
the binary test is very noise-sensitive. Therefore, one pre-smooths the image to reduce the
sensitivity and increase the stability and repeatability of the descriptors. The effect of the
spatial arrangement and number of binary tests were analysed in [63], which showed that
tests sampled from an isotropic Gaussian distribution proved to be most discriminative
even with only 256 tests (resulting in 32 byte descriptors). Note that the testing sequence
and spatial arrangement are then fixed after the first extraction to yield compatible de-
scriptors. See Figure 4.8 for an example of a testing spatial arrangement for a 128 bit
BRIEF descriptor. Furthermore, the resulting descriptors are not designed to be rotation
or scale invariant, but one can achieve scale invariance by can running the extractor over
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patches on multiple image pyramid levels (see Figure 4.6).
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Figure 4.8: The 16 Byte BRIEF Descriptor: 128 Binary tests within a 50 × 50 patch sampled accord-
ing to an isotropic Gaussian distribution. Each line represents a binary test that yields true if the
pixel intensity of one predetermined end of a line is larger than the other.

Due to its simplicity and binary nature, BRIEF descriptors can be extracted with very
little computational effort, and therefore work well in tandem with the large amount of
keypoints the multi-scale FAST detector returns. BRIEF yeilded extraction times with a
35− 41× speed up compared to SURF without compromising recognition rates [63] where
rotation invariance was not required. As we do not need rotation invariance (see the next
paragraph), the BRIEF extractor became the clear candidate for our requirements.

Using IMU Rotation If one has a way to estimate the camera rotation around the prin-
ciple axis, one can use it to rotate the descriptors back, thereby elimination the need for
rotation invariant descriptors. As the rotation estimation steps of descriptor extractors are
usually relatively expensive, one can acheive noticable speed gains.

As our quadrotor has an IMU, we can simply use the roll estimate of the quadrotor to
unrotate our descriptors in the image plane. For example, one could omit the rotation
estimation step of the SURF extractor and directly set the rotation using the IMU roll
estimate. See Figure 4.9 for an illustration.

As we use BRIEF descriptors, this amounts to rotating the spatial configuration of the
binary tests. BRIEF descriptors were shown to be rotation invarient up to ±10 degrees[63].
Therefore, we can discretise the rotations into 10 degree steps.

Descriptor Matching

Descriptor matching is the process of assigning a score to a pair of descriptors, where a
high score corresponds to a high similarity between them. The goal is to determine which
query descriptors from one image correspond to the same descriptors in another image.
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Figure 4.9: We can unrotate the BRIEF binary pattern using roll estimates from the IMU to achieve
rotation invariance. Here two images of the same object but taken with different roll are shown.
Unrotating the descriptors allows us to successfully match the descriptors.
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Figure 4.10: Visualisation of different matching and match filtering methods.

Comparing Descriptors For most float descriptors, one simply uses the Euclidean dis-
tance between the descriptor vectors, for appearance based descriptors SSD, SAD or NCC
is used, and for binary string descriptors, the Hamming distance is used. The Ham-
ming distance is the number of positions at which the corresponding values of two binary
strings are different, which can be computed as the population count (the number of
bits set to 1) of two binary strings XOR’d (exclusive or) with one another. For example,
1011 0101 XOR 1111 0001 = 0100 0100 which gives a population count of 2. Most modern
CPUs that include the SSE4.2 instruction set also implement the POPCNT, meaning that one
can compare binary descriptors extremely efficiently.

Finding Matches The simplist way to obtain matching features is the brute force strategy:
compare all feature descriptors in the first image to all other descriptors of the second
image. Then for each descriptor of the first image, either chose

• the N most similar descriptor(s),
• all descriptors within a specified matching distance (radius matching),
• a combination of the above,

from the second image. Note that depending on the application, a k-d tree implement-
ing radius search or k nearest neighbours search could greatly speed up the matching look-
ups, where one would use Locality-sensitive hashing (LSH) for indexing. However, for
our purposes building the k-d tree was computationally more expensive than brute force
matching.

Filtering Matches As matching often generates many outliers, one usually performs a
post processing step that aims to remove false positives. One can:

• increase the matching score threshold if more than enough matches have been found,
• perform the mututal consistency check,
• perform the Lowe distance ratio test [53],
• a combination of the above.

The mutual consistency check retains all matches that are bidirectional: only matching
pairs of corresponding descriptors that mutually have each other as the closest match are
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kept. See Figure 4.10c for an illustration.

The Lowe ratio test requires the best two candidate matches per query descriptor based
on the distance between them. By comparing the ratio between the distance of the best
and second best match, we can remove ambiguous ones: If the ratio is high, we can
safely accept the first match as it is unambiguously the best, and if the ratio is low, the
possibility of selecting the wrong match is higher and it is better to reject both matches.
See Figure 4.10d for an illustration.

Predictive Matching Using IMU Rotation Priors Exhaustive brute force matching has
the disadvantage that is it quadratic in the number of descriptors. If one has additional
information that could help predict where corresponding matches could be, one could
avoid comparing all descriptors from one set with another, thereby reducing the number
of comparisons and reducing the probability of outliers. There are two cases:

Initialisation When we first initialise our map, we have no relative transformation infor-
mation between the initial keyframe and the current frame. However, we do have the
relative rotation between them and can therefore rotate the bearing vectors associated
to the keypoints/descriptors into the same rotational frame (covered in section 4.1.7).
This allows us to efficiently compare and threshold potential matching pairs based
on the efficient error calculation of the angles between. Therefore, we only match
pairs where the associated bearing vectors have an angular error between a mini-
mum and maximum threshold.

Landmark Matching In the general case we want to match the descriptors of incoming
frames to the descriptors associated with landmarks. In this case we can make use
of the estimated full 6DOF transform of the latest pose estimate W

Ki
T · Ki

Ct−1
T as well as

the relative rotation Ct−1
Ct

R between the previous frame Ct−1 and the current frame Ct.

Landmark’s descriptors are the descriptors from the associated keypoints/bearings
of keyframes that observed it. Therefore, we express all the landmarks of the match-
ing candidate descriptors of the closest keyframe in the frame of the previously
estimated pose, and finally rotate them into the current frame using the relative ro-
tation priors between the previous frame and the current frame. See Figure 4.11 for
an illustration. As before, this allows us to remove matching candidates where the
angle between the corresponding bearing vectors is beyond a certain threshold.

Adding a new Keyframe When promoting the current frame to a new keyframe we as-
sume we know it’s 6D pose. Therefore, we do the same as above but use all land-
marks within the field of view and omit the additional relative rotation step.

In practise this massively reduces the number of required matches (usually by over 90%
with liberal thresholds) as well as removing most outliers. The remaining outliers are
removed with RANSAC, a roboust model fitting algorithm explained in the next section.
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Figure 4.11: Using the previous pose estimate and relative rotation between it and the current
frame, we filter potential matches (corresponding to the descriptor of measurement ~fi) before
matching, by looking at the angular error between (a) the bearing vectors corresponding to the
descriptor and (b) the bearing vector formed by expressing the landmark in the rotated frame.

4.1.3 Robust Model Fitting

In real world scenarios, one must deal with data contaminated by outliers. For example,
feature points may be incorrectly associated by the feature matcher. False matches could
occur for a number of reasons, including (a) occlusions, (b) different but similar appear-
ing landmarks, (c) blur, and (d) any changes in illumination or view point for which the
mathematical model of the keypoints and descriptors do not correctly account for. To
accurately fit a model, such as camera motion, the outliers must be removed before the
data is used.

RANSAC

RANSAC (RANdom SAmple Consensus) [69] is a standard method to process such con-
taminated datasets by classifying data points as either inliers or outliers. It is a non-
deterministic, iterative procedure that generates a hypothesis by randomly choosing a
minimum number of data points required to estimate a model. The generated hypothesis
is then verified on the remaining subset of the data and is deemed to be the best solution
thus far it has a higher consensus than the current best estimate.

This hypothesize and test procedure allows us to identify the inlier subset, after which
a least-squares result can be obtained by generating a model from or applying a non-
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linear optimization scheme over all inliers. The algorithm is illustrated and summarised
in Figure 4.12.

Select s points
randomly

Compute
hypothesis from
selected points

Compute error ε
of all points to

hypothesis

Set all points
with ε < εthresh

as inliers

Compute
remaining
iterations

Refine best fitting
hypothesis over

all inliers

Remember
hypothesis as

best fit

Number of
inliers improve?

Iterations left?

Start

Return refined
model

NO

YES

YES

NO

[1] [2] [3]

[4]

[6][7]

[9] [8]

[5]

Figure 4.12: Graphical representation of of how RANSAC iteratively guesses models, evaluates
them, retains the current best fitting one and ultimately terminates with a best guess.

Model Size and RANSAC Iterations

The number of remaining iterations is recomputed after every iteration using the a proba-
bilistic heuristic. Given the following parameters

s = minimal size of the model
ε = estimated fraction of outliers

N = the number of necessary iterations left to guarantee an outliers free solution
p = desired probability of producing a usable result

we can define p as

p = 1 −

Probability that N samples were contaminated︷ ︸︸ ︷
(1 − (1 − ε)s︸ ︷︷ ︸

Probability of choosing s inliers in a row

)N (4.1)

after which we can determine the number of required iterations by solving for N, giving

N =
log(1 − p)

log(1 − (1 − ε)s)
. (4.2)

Table 4.3 summarises the number of iterations N required with respect to various s and ε,
computed using equation (4.2) with p = 0.99.

Viewing the table one can observe that the number of iterations N is exponential in the
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Figure 4.13: A brief example of using RANSAC to estimate the best line model to the noisy data.
Illustrated is a set of 250 2D points within a 100 × 100 grid of which 75% are outliers.

Table 4.3: Number N of RANSAC iterations given p = 0.99 for varying s and ε

Model Size (s) 1 2 3 4 5 6 7 8
ε = 0.2 3 5 6 9 12 15 20 25
ε = 0.3 4 7 11 17 25 37 54 78
ε = 0.4 5 10 19 33 57 96 162 272
ε = 0.5 7 16 34 71 145 292 587 1177
ε = 0.6 9 26 70 178 447 1122 2808 7025
ε = 0.7 13 49 168 566 1893 6315 21055 70188
ε = 0.8 21 113 573 2876 14389 71953 359777 1798892
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minimum number of points necessary to best fit the model. Therefore, it is desirable to
have a minimal parametrisation of the model.

RANSAC will be used through out this thesis to robustly estimate camera motion between
camera images. Introduced by [20] and highlighted in section 4.1.10 and section 4.1.10, the
model estimating camera motion between two frames is reduced from size s = 3 to s = 2
by incoporating IMU measurements, thereby decreasing the number of required iterations.

4.1.4 Pinhole Camera Model

This subsection deals with relating our 2D measurements (such as detected keypoints) on
the image plane to the world that has been (possibly imperfectly) projected onto the image
plane.

Image Sensor Lens

Object

Optical Center

Focal Length

Figure 4.14: Incoming light gets reflected from a single point of an object, of which some hits the
camera lens which focuses the light onto a single point on the imaging sensor.

Digital cameras capture images by measuring light projected onto an imaging sensor, usu-
ally a charge-coupled device (CCD) or a complementary metaloxidesemiconductor (CMOS)
array. A lens ensures that all light travelling from a single point in the real world that hap-
pens to hit the lens gets focussed on to the same point on the image sensor. This only
works if the points in the real world are at the correct focusing distance, if they are further
or closer away, the lens cannot focus the light to a singular point but rather a disc, with a
radius proportional to the focusing distance offset.

Figure 4.14 shows light rays reflecting from an object in all directions, of which a subset are
captured by a lens and focussed onto the same point on the image sensor. Light incoming
from different points in the world are focussed onto different points on the image sensor.
In reality, cameras might use multiple lenses. Further more, no lens is perfect and minor
production imperfections can cause significant distortion and/or blur.

To simplify things, we only consider rays of light that pass through the optical center.
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Bearing vector

Image Sensor Lens

Focal Length

Some possible points of origin

Larger, more
distant object

Smaller,
closer object

Figure 4.15: This figure shows 3 of the infinitely many size-distance combinations the green-blue
object could have, without changing what the imaging sensor would register. It also shows a
bearing vector point towards the bottom of the object.

Figure 4.16: In the photo, a house is visible in the distance which is indeed larger than the gap
between the thumb and index finger. Looking at this 2D image as humans we know this, because
we have an intuitive understanding that buildings on the horizon are large and far away, while our
own hands are at arms length and smaller. Computers do not have this ontogenic knowledge and
therefore have no way of knowing the size or distance of the building.
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This reduces the complexity of the geometry later as all light passing through this point
travels in a straight line, giving us the direction the observed point is in from the optical
center. Note that we cannot tell how far the light has travelled before it hits our imaging
sensor, it could have been light-years or nano-meters away. As a side effect, we cannot
tell if an object is small and close, or large and far away. This loss of depth information
when projecting the 3D world onto a 2D surface is called scale ambiguity, as illustrated in
Figure 4.15 and demonstrated in Figure 4.16. In the context of SfM algorithms, the ratio
between the scale in the algorithm and the metric scale is call the visual scale factor

Later we represent the direction from the optical center, along the ray of light, to the object
where the light emanated from as a vector. As we do not know the vector length, we fix
the length to 1, obtaining a unit vector which we will call bearing vector from now on.

Virtual Image Plane

Optical Center

Image Plane

Lens

Figure 4.17: One can consider the geometrically equivalent virtual image plane which then has the
uninverted image projected ’through’ it.

To further simplify things, we consider the virtual image plane, which we place in front
of the optical center with the same focal distance. This then has the uninverted image
projected onto it and is geometrically equivalent to the real image plane as Figure 4.17
illustrates.

We essentially have described the pinhole camera model above. It describes the camera as
a single point (i.e. the ’hole’) in space through which light from the observed scene passes
before hitting the image plane.

Camera Projection

Camera projection deals with mapping 3D points in space to and from their projection
onto the 2D imaging plane. If we assume we have a perfect lens and there is no distortion
the mapping function is at its simplest. Figure 4.18 defines the camera and image frames
and shows the mapping of a 3D point CX = (X, Y, Z)T in the camera frame onto the
image plane at point x = (ux, vx)T. The camera z-axis is called the principal axis, and the
principal point is defined to be the intersection point between the principal axis and the
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Figure 4.18: Pinhole Camera Geometry

image plane. The focal length f is given by the shortest distance between the image plane
and camera center as illustrated in Figure 4.19. Here one can see that one can determine x
using geometry of similar triangles, resulting in

ux = f
X
Z

vx = f
Y
Z

(4.3)

If f is given in meters we need to convert to pixel units by dividing by the pixel size d.
As pixels are usually not square we distinguish between dx and dy. We define fx = f /dx
and fy = f /dy giving us units in pixel distance. Furthermore, we wish to have the pixel
coordinate (0, 0)T be on the top left so we add the center pixel planar offset (u0, v0)T

resulting in

ux = fx
X
Z
+ u0 vx = fy

Y
Z
+ v0 (4.4)

Putting everything together and using homogeneous coordinates we can express the pro-
jection function as matrix operation

ux
vx
1

 =

 fx ux 0 0
0 fz ux 0
0 0 1 0




X
Y
Z
1

 = K
(CX

1

)
(4.5)

where K is called the matrix of intrinsic parameters.

To back-projection a point WX in the world frame into image space one must also consider
the exterior orientation of the camera and transform the point to the camera frame C. If
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Figure 4.19: Pinhole Camera Geometry

W
C ~t denotes the position of the camera center in a world frame and W

C R the rotation, we
can put everything togetherux

vx
1

 =

 fx ux 0 0
0 fz ux 0
0 0 1 0

 (
W
C R −W

C RT W
C ~t

) (WX
1

)
= K P

(CX
1

)
(4.6)

where P is called the matrix of extrinsic parameters.

4.1.5 FOV Camera Model

The lens we employ in subsection 3.3.1 is a cheap, wide angle lens. While a wide angle
lens is great as a greater portion of the scene is projected onto the image sensor, they so at
the expense of introducing considerable radial distortion. In this subsection we will look
at a different camera model that can handle large field of views better.

The cheap and wide angle nature of the lens results in a distorted image for which the
usual projective pinhole camera model with radial and tangential factors are insufficient
to accurately rectify. The best calibration achieved with the ROS camera_calibration package
resulted in reprojection errors with over 8 pixel RMS (where an RMS < 0.5 pixels would
be desired). Additionally, the calibration could not deal well with the large opening angle
of the lens - the outer third of the image suffered from large incorrect distortions, rendering
only the center part of the image useful.

The pinhole model is often referred to as rectilinear projection as it preserves the rectilin-
earity of the projected scene. This means that straight lines in the world are projected as
straight lines on the image sensor. The rectilinear projection mapping function is given as

ru = f tan θ (4.7)

where ru is the projected radial distance from the principal point on the image plane
and θ is the incident angle of the projected ray to the optical axis of the camera. See
Figure 4.19 (in this case ru = xu ) for an illustration. However for wide FOV lenses under
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using the pinhole projection, the size of the projected image becomes very large, even
approaching infinity when the rays are almost parallel to the image sensor at a field of
view approaching 180◦. Therefore, we need incorporate the wide angle nature of the used
lens into the projection function.

[70] proposed a distortion model for fish-eye lenses which they call the field of view
(FOV) model. It was designed from the ground up with fish-eye lenses in mind, taking
their overall design into account: the angular resolution is usually roughly proportional
to the image resolution along an image radius. This means the distance between an image
point and the image center is roughly proportional to the angle between the bearing vector
pointing to the corresponding 3D point from the optical center and the optical axis. See
Figure 4.20 for an illustration.

Z

Y

Projection Sphere

θ

p

f

Image Plane

Optical Center

Optical Axis
ru

rd

Figure 4.20: FOV distortion model projection representations, showing the projection of point p to
the projection sphere and the following reprojection of the point on the projection sphere to the
image plane. Intuitvely, the distance rd is proportional to the angle θ.

They named this model after the only paramters it takes, the field of view (FOV) ω of
the corresponding ideal fish-eye lens. This angle ω may not actually correspond to the
real camera’s FOV, since the fish-eye optics may not exactly follow this model. The FOV
distortion function is given by

rd =
1
ω

arctan
(

2ru tan
(ω

2

))
(4.8)

and the inverse is given by

ru =
tan (rdω)

2 tan
(

ω
2

) (4.9)

which describe the conversion between rectilinear image space and the FOV fish-eye model
image space and vice versa.

To model further imperfections in the optics, the distortion function can be concatenated
with polynomial elements to account for deviations between the lens and the projection
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(a) Unrectified image. (b) Rectified image.

Figure 4.21: Comparison of the same image before and after rectification.

function. The FOV model is basically the first order parameter, so when we add the
additional radial distortion coefficients An we obtain:

rd =
1
ω

arctan
(

2ru tan
(ω

2

))
+ ∆rd (4.10)

where
∆rd = A1r3

u + A1r5
u + A1r7

u (4.11)

A calibration procedure such as the one outlined in[70] and implemented in the work of
[33] can be used to estimate all the parameters, given camera images viewing a rectangular
pattern.

4.1.6 Bearing Vectors and Error Models

Using the notation from subsection 4.1.4, we can estimate the optimal absolute camera pose
(extrinsic camera matrix) W

C Poptimal from measurements Wxi = (ui, vi)
T of observations of

points WXi by iteratively minimising the optimal least squares formulation

W
C Poptimal = arg min E(WC P) = arg min ∑

i
εT

i εi (4.12)

over all n observations where

εi =

(
ui
vi

)
−

[(
0 0 1

)
K W

C P
(WXi

1

)]−1 (
1 0 0
0 1 0

)
K W

C P
(WXi

1

)
(4.13)

is the reprojection error.

One can also optimise the optimal relative transformation C
C ′P between two camera frames C

and C ′ by expressing all the points in the first frame C and minimising the joint reprojection
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error

εi =


(

ui
vi

)
−

[(
0 0 1

)
K I3×4

(CXi
1

)]−1 (
1 0 0
0 1 0

)
K I3×4

(CXi
1

)
(

u′
i

v′i

)
−

[(
0 0 1

)
K C

C ′P
(CXi

1

)]−1 (
1 0 0
0 1 0

)
K C

C ′P
(CXi

1

)
 (4.14)

over all n points in both frames.

Note that the world points WXi need to be re-triangulated after each optimisation step as
the relative transformation is iteratively updated. This two-frame non-linear least squares
optimisation essentially represents an interleaving batch optimization approach and re-
quires the back projecting of the world points in each iteration - a potentially costly pro-
cedure depending on the complexity of the camera model. Following the framework of
presented in [20], we can obtain a less computationally expensive error estimation by
first transforming all 2D image measurements into unit bearing vectors and then using
the angle between these bearings to define our error ε. A 2D image measurement xi is
transformed into a unit bearing vector ~fi =

(
fxi fyi fzi

)
by

~fi =
K−1 (ui vi 1

)T∥∥∥K−1
(
ui vi 1

)T
∥∥∥ (4.15)

Instead of defining our error ε to be the explicit angle α = atan2(‖( fi × f ′i )‖ , fi f ′i between
two bearing vectors fi and f ′i , we can use an alternative error metric. As [71] points out,
the most efficient way to error representation using the angle between two bearing vectors
is given by taking their dot product, which is equals to cos α. As this returns a value
between over [1,−1] and as we wish to have an error that minimises to zero, we simply
subtract it from one giving

ε = 1 −~fi
T~f′i = 1 − cos α (4.16)

to express our error. Other error functions include

ε =
∥∥∥~fi ×~f′i

∥∥∥ ε =
∥∥∥~fi −~f′i

∥∥∥ ε = (~fi −~f′i)
T (~fi −~f′i) (4.17)

which are all plotted in Figure 4.22.

Sometimes one needs to define if an error is within a threshold. RANSAC (see sec-
tion 4.1.3) for example needs to determine if a measured bearing vector ~fmeas is close
enough to the actual bearing vector ~fmodel explained by the model. Intuitively we can
adopting a threshold angle αthresh, which constrains ~fmodel to lie within a cone with open-
ing angle αthresh of axis~fmeas as illustrated in Figure 4.23. If one wishes to express the repro-
jection threshold in pixels pxthresh, one can approximate it with αthresh = arctan (pxthresh/ f )
where f is the focal length giving

εthresh = 1 − cos (αthresh) = 1 − cos
(

arctan
(

pxthresh

f

))
. (4.18)
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Figure 4.22: Various Approximation functions for angles between unit bearing vectors.

For the remainder of this thesis we use dot-products between the vectors on the unit

C

p

~fmodel

~fmeas

αthresh α

Figure 4.23: Errors between bearing vectors are given by the angle between them. The bearing
vector is within the threshold if it lies within the illustrated cone.

sphere as described by equation (4.16) as our error function, resulting in the following
reprojection error which can analogously be used for the relative pose case:

εi = 1 −~fi
T ·

 W
C P

(
CXT

i 1
)T∥∥∥∥WC P

(
CXT

i 1
)T

∥∥∥∥
 (4.19)

Any camera model can then be used as long as they support projecting image features
onto the unit sphere.
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4.1.7 IMU Priors

The Crazyflie does on-board attitude estimation at 250 Hz (section 4.3) so we have a readily
available 3D rotation estimates at all times. This allows us to estimate relative rotations
between two frames.

In [72] a similar idea was used to increase the robustness of a SLAM framework by estimat-
ing inter-frame rotation to aid tracking. There the authors estimate inter-frame rotation by
using direct second-order minimisation to aling sub-sampled and blurred images instead
of using IMU measurements.

When using an IMU, the yaw rotation priors drift, but if we only compare rotation esti-
mates that are temporarily bounded (such as those temporarily aligned with successive
keyframes/frames) the angular errors introduced remain small and can be easily compen-
sated for later in nonlinear refinement steps.

In [73] the authors show how one can incorporate these short term full 3D relative ro-
tations to support the geometric computation of the relative and absolute pose problem
formulations (see section 4.1.10 and section 4.1.10 respectively), reducing the minimum
number of points of both models down to two, thereby helping to minimise the required
RANSAC iterations (see Table 4.3).
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C R

C

keyframe

world frame

IMU frameI
CR

R
C ′U

R

IMU frame

I
CR

I

W
C ′ R

C ′

C
C ′R =?

intertial
reference
frame

R
C U

current camera frame

Figure 4.24: The rotation between the IMU and camera I
CR is assumed to be known and fixed. R

C U
gives the orientation of the IMU in its inertial reference frame with C indicating the camera frame
that the rotation temporarily corresponds to. C

C ′R is the relative rotation of a current camera frame
C′ with respect to a keyframe C.

To determine the relative rotation between two frames C and C′, we introduce the IMU
frame I and its inertial reference frame R. We assume the rotation between the IMU and
camera I

CR is known and fixed. This can be computed offline in a number of different IMU
to camera calibration methods such as those presented in [74] and [75]. Using Figure 4.24
as a reference, one can easily see that the rotation of the current camera frame C′ with
respect to a keyframe C can be computed using

C
C ′R = I

CRT · RC UT · RC ′U · ICR. (4.20)
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In case we know the absolute rotation of C, we can obtain a prior of the absolute rotation
of C ′ by

W
C ′ R = W

C R · CC ′R = W
C R · ICRT · RC UT · RC ′U · ICR. (4.21)

Unrotating Bearing Vectors

Once one has estimated the relative rotation between two camera frames C and C′, one
can rotate the bearing vectors ~f′ of C′ into the frame of C giving C~f′ by

C~f′ = C
C ′R ·~fi (4.22)

Expressing corresponding bearing vectors in the same rotational frame can be used in a
number of ways such as to aid feature matching (see section 4.1.2) and help us decide
when to trigger new keyframes (see subsection 4.1.9).

4.1.8 Triangulation

One requires 3D points in the world (landmarks) to compute an absolute pose from or to
optimise a relative pose.

This subsection introduces triangulation, the process of determining a point in 3D space
given its projections onto two frames and a relative transformation between. Intuitively
this is done by intersecting the back-projected bearings (rays) of 2D image correspon-
dences. The correspondences come from feature matching as described in section 4.1.2.

C

C ′
C
C ′P

pi

~fi ~f′i

Figure 4.25: Triangulating a point visible from two views

The situation is illustrated in Figure 4.25. It is obvious that the baseline (i.e. the transla-
tion) between the two frames C and C ′) must be non-zero (i.e. we must have a triangle).
In reality, the bearing vectors never really intersect due to (a) image noise, (b) camera
model/calibration errors, (c) keypoint detection accuracy, and (d) feature matching uncer-
tainty. Therefore the point at minimal distance from all the intersecting bearings is used
as the 3D point position estimate. When one deals with noisy measurements the baseline
magnitude corresponds to the uncertainty of the triangulation, as illustrated in Figure 4.26.
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Therefore it is desirable to have a sufficiently large baseline before initiating point trian-
gulation. How we decide when to trigger triangulation is discussed in subsection 4.1.9.
Once one has triangulated 3D points one can then compute absolute poses and optimise
relative poses relative to these points as discussed in subsection 4.1.10.

pi

C C ′ C C ′

pi

vs.

Figure 4.26: The point triangulation uncertainty decreases with a bigger baseline.

Each 3D point pi =
(

pxi pyi pzi
)

that can be observed by two frames W
C P and W

C ′ P has
two associated unit bearing vectors ~fi and ~f′i. If C

C ′P =
(C
C ′RT −C

C ′RTC
C ′~t

)
back projects

points expressed in camera frame C to C ′, then one can derive

fxi

fzi
=

Cpix
Cpiz

,
fyi

fzi
=

Cpiy
Cpiz

,
f ′xi
f ′zi

=
C ′

pix
C ′piz

and
f ′yi

f ′zi
=

C ′
piy

C ′piz
(4.23)

from the bearing constraints and using Cpi = C
CP

(CpT
i 1

)T and C ′
pi = C

C ′P
(CpT

i 1
)T

formulate the linear least square problem:
fxi

(
0 0 1

) C
CP − fzi

(
1 0 0

) C
CP

fyi
(
0 0 1

) C
CP − fzi

(
0 1 0

) C
CP

f ′xi
(
0 0 1

) C
C ′P − f ′zi

(
1 0 0

) C
C ′P

f ′yi
(
0 0 1

) C
C ′P − f ′zi

(
0 1 0

) C
C ′P

 ·
(Cpi

1

)
= 0 (4.24)

Using singular value decomposition (SVD) one can then derive the coordinate of Cpi.

4.1.9 Angular Disparity

Here we define the concept of angular disparity between camera frames, which we will
later use as method to trigger to new keyframes. Disparity is usual meant as the distance
between two corresponding pixels in the image plane, but as we represent our 2D mea-
surements as bearing vectors, we can compute an angular disparity instead, saving us the
reprojection step. Furthermore one can efficiently and intuitively incorporate IMU rotation
priors into the measurement.
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We define the angular disparity C ′
C ∆ between two frames C and C ′ as the unrotated median

difference between all the common observations between both frames.

The IMU is used to rotate all the unit bearings ~f′ from frame C ′ into the same rotational
frame of C giving us C~f′ as explained in section 4.1.7 and the difference between them is
defined by equation (4.16). This means that C ′

C ∆ is small when the translational distance
between both frames is small, regardless of the rotational difference. This procedure can
effectively be seen to compensate for disparity caused by rotation. This is desired as it
allows us to set an angular disparity threshold C ′

C ∆thresh above which we can assume our
baseline is large enough to initiate our first triangulation of the common observations.
A similar threshold can be set to trigger new keyframes. Figure 4.27 shows a simplified
scenario with and without using the un-rotated bearings.

C C ′ C C ′ C C ′

p p p

~f ~f ~f~f′ ~f′
~f′

C ′
C ∆ C ′

C ∆ C ′
C ∆

~f ~f′ ~f ~f′ ~f

~f′

No Baseline Small Baseline Wide Basline

~f = C ′~f′
~f ~f

C ′~f′

C ′~f′

C ′
C ∆C ′

C ∆C ′
C ∆ = 0

Sc
en

ar
io

U
si

ng
U

n-
ro

ta
te

d
Be

ar
in

gs
U

si
ng

U
su

al
Be

ar
in

gs

Figure 4.27: A simple 2D example showing how unrotated bearing vectors allow us to reason over
the baseline magnitude. In the first row, the scenario is presented: two frames C and C ′ share the
common observation of landmark p and have associated unit bearing vectors. The dashed axis of
C ′ is parallel to that of C by means of C ′

C R. The left column has a baseline magnitude of zero (i.e.
both frames share the same origin), the center column has a small baseline relative to the distance
of p, and the right column has a large baseline. The second row shows the angular disparity
between both keyframes using the unrotated bearings. Notice that in the case of no baseline it is
zero. The last row shows the disparity using the usual bearings, which is completely useless.

4.1.10 Relative and Absolute Camera Pose Estimation

In this section we discuss the heart of any monocular feature based SLAM system: the
ability to estimate a relative camera pose given 2D-2D feature point associations and es-
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4 Pose Estimation

timate an absolute camera pose relative to some 3D points in the world. We assume that
we have a calibrated camera and can compute unit bearing vectors from 2D image plane
measurements using Equation 4.15.

Relative Pose Estimation using 2D-2D Correspondences

The goal of the relative pose estimation problem is to recover the relative transforma-
tion between two camera frames that observe a common set of associated but unknown
3D landmarks, meaning only corresponding 2D image measurements in both frames are
available. The situation is illustrated in Figure 4.29b.

C

p1

p2

pn

~f1

~f2

~fn

C
C ′T = ?

. . .

C ′
~f′1

~f′2
~f′n

Figure 4.28: Relative Pose Problem: finding the pose of a camera w.r.t another camera given n
2D-2D correspondences between bearing vectors in the camera frames.

This is a well understood problem and multiple solutions exist. Five feature correspon-
dences are required at minimum and therefore the problem is often called the Five Point
Relative Pose Problem and was first solved in 1913 [76]. Additional solvers including five-
point minimal solvers [77] and [78] and non-minimal six point [79], seven point [80], eight
point [80] and seventeen point[81] solvers have since been developed. An excellent open
source library called OpenGV - Open Geometric Vision implements a number of algorithms
and is readily available 1.

Using Rotation Priors Of particular interest is the two point solver [73] that only solves
for translation using a known rotation. As we can estimate the relative rotation between
two frames using an IMU (see subsection 4.1.7) the approach is particularly well suited for
our case. The scenario is given in Figure 4.29a and the derivation from[73]. We show it
here for completeness.

Using equation (4.20) we can obtain C
C ′T, the relative rotation between two frames C and C ′.

One can then express the corresponding bearing vectors in frames with identical rotation

1OpenGV is available under http://laurentkneip.github.io/opengv/
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Figure 4.29: The two-point method that computes the translation between two camera frames with
a known relative rotation, as derived in [73].

using (4.22). Then the normal vector of the epipolar frame of each feature correspondence
is given by

~ni = ~fi ×
(
C
C ′R ·~f′i

)
. (4.25)

If the two epipolar planes are distinct one can then intersect them for the direction of the
translation vector, given by

C′
C
~d = ~n1 × ~n1 (4.26)

The scale is not determinable so we normalise it to have unit length

C′
C~t = ±

C′
C
~d∥∥∥C′

C
~d
∥∥∥ (4.27)

and impose (
~fi − C

C ′R ·~f′i
)
· C′

C~t > 0 (4.28)

to determine the sign to return a unique solution. When running this algorithm in a
RANSAC based hypothesize-and-test procedure one can skip potential degenerate sam-
ples identified cross-product magnitudes which are two small. Additionally, if one uses
the efficient error function defined in equation (4.18) one can skip the forward and back-
ward projection steps, resulting in a very fast RANSAC iteration, and as the model size is
only two very few iterations are required.

This relative pose estimation method using IMU priors gives us our initial point cloud
of landmarks that initialises our map. The initial scale is defined by the baseline magni-
tude

∥∥∥C′
C
~t
∥∥∥ between the two camera frames used. It is then propagated through successive

absolute pose estimates against this pointcloud. The baseline is not determinable so we
implemented a few heuristics to estimate it in subsection 6.6.4, such as setting the magni-
tude to an estimated altitude difference obtained from a barometer.
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4 Pose Estimation

Absolute Pose Estimation using 2D-3D Correspondences

The absolute pose problem consists of estimating the pose of a camera frame given n
2D-3D correspondences between bearing vectors in the camera frame and landmarks in the
world frame. It is illustrated in Figure 4.30. This problem is also known as the Perspective-
N-Point Problem (PnP). The minimal case is called the Perspective-3-Point(P3P) problem,
which only uses n = 3 correspondences and return a finite number of solutions. One
usually needs a 4th point to disambiguate, generally resulting in a unique solution. In the
strive for computationally efficient methods the standard approach has been to solve the
P3P problem in a RANSAC based hypothesize-and-test procedure to remove outliers and
then solve PnP over all remaining inliers.

C
p1

p2

p3W

~f1

~f2

~f3

W
C T = ?

Figure 4.30: The P3P problem: estimating the camera pose, given 2D image measurements and
associated 3D landmark positions.

PnP was first coined in 1981 [82] and first studied in 1841 [83]. Once again this is a well
investigated problem and and a plethora of linear, non-linear and iterative solutions exist
A more recent very robust solution, provided by [84] in 2003 has become popular. It is
beyond the scope of this thesis to compare and contrast many of the existing solutions so
we refer the reader to [20] where a large collection of related work is given. Furthermore,
[20] provides an additional closed form state of the art P3P solver that provides comparable
accuracy and precision to [84] at a substantially lower computational cost as it enables the
computation of the position of the camera in a single stage.

Using IMU Rotation Priors In [73] the P3P solution is extended to use relative rotation
priors given by equation (4.21) resulting in another two point algorithm that returns a
unique translation. The solution is non-trival out of scope of this thesis. We refer the
reader to [73] for the derivation. Similar to the relative case, this two point solution is
execute Equation 4.18 is used as the error function avoiding projections onto the image
plane.
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4.2 External Pose Estimation

4.1.11 Global Optimisation - Bundle Adjustment

Until now we have described methods that operate on correspondence pairs. We initi-
ate a pair of camera poses and triangulated landmarks in the relative estimation method
described in section 4.1.10. Until now, the landmarks were only optimised over correspon-
dences from two views only. Once we have our initial landmarks, the absolute pose esti-
mation methods described in section 4.1.10 computes a pose relative to the landmarks that
were associated via the current keyframe only. While this might be desirable for perfor-
mance reasons, better results can be achieved if we consider correspondences over multiple
frames. In practise, a landmark is usually tracked over over multiple views, therefore we
can achieve a more optimal result by considering all observations of each landmark that
have more than one correspondence. Optionally, one can also optimise over the camera
intrinsics, but we assume the calibrated case so this is not required. This constitutes a joint
optimisation of all 3D point and camera frame poses resulting in a large non-linear optimi-
sation problem usually referred to as bundle-adjustment. The name arose from bundles of
light rays originating from each landmark, converging onto each camera’s optical center,
which are adjusted optimally with respect to the landmarks.

Bundle adjustment is especially useful for handling loop closure. If one can recognise a
place one has previously visited, (by using a place recogniser for example, such as those
based on Bag of Word (BoW) approaches) but one has accumulated enough drift that the
camera poses do not converge, bundle adjustment can smoothly ’close the loop’ if one can
provide landmark correspondences simultaneously to frames at the beginning and end of
the loop.

Levenberg Marquardt [85], also known as damped least-squares (DLS), has proven to
be one of the more successful non-linear least-squares optimisers due to its use of an
effective damping strategy that enabled it to converge quickly from a wide range of initial
guesses. Depending on the number of landmarks, camera poses and initial estimates, the
optimisation can quickly become computationally expensive. Many optimisations exist,
such as exploiting the sparse block structure arising from the the lack of correspondences
among parameters for different 3D points and cameras. We refer the reader to [80, 86, 87]
for more information. A few open source bundle adjustment libraries exist such as g2o[88]
(which we use in our framework), SBA [89], etc.

For our purposes, we employ windowed bundle adjustment - only optimising over a fixed
amount of keyframes at most, resulting in constant complexity. We trigger bundle adjust-
ment when adding a new keyframe to the map.

4.2 External Pose Estimation

To facilitate debugging and to have a source of ground truth information, we needed an
accurate way to determine the 6D pose of the Crazyflie during flight relative to some fixed
world frame. This is usually easier than ego-motion estimation but only works while the
observed target is in the field of view of the external system. As this is rarely the case
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outside of research labs, external tracking is usually not a viable option. Nevertheless it
serves as a good debugging and prototyping tool and can be used to validate ego-motion
estimation. We implemented two such methods based on different sensors.

4.2.1 Motion Capture System

We used a Qualsys Motion Capture Studio to track infra-red markers attached to the
quadrotor with 12 ceiling mounted cameras. All the cameras are connected to a central
computer which fuses all the detections and estimates poses of pre-defined marker con-
figurations. Depending on the exposure time and calibration quality the motion capture
system can estimate the pose of these marker configurations at up to 500 Hz with mm
accuracy. Implementation details are given in subsection 6.5.1.

4.2.2 Kinect

As one does not always have access to a professional motion capture studio, we imple-
mented a way to detect and estimate the pose of the Crazyflie using a Kinect. This allows
only user to set-up a small external tracking environment at home for very little cost.
However, the accuracy and tracking area is far inferior to a proper motion capture studio.
The general set-up is illustrated in Figure 4.31.

The kinect can estimate 640 ×480 resolution depth images at 30 Hz using structured light.
Therefore, if one knows which pixels on the incoming depth images correspond to the
quadrotor, one can determine not only the bearing but also the depth giving us a 3d po-
sition KQ of the quadrotor relative to the sensor We do background segmentation on the
incoming depth iamgaes to determine which pixels correspond to the Crazyflie, imple-
mentation details are given in subsection 6.5.2.

Usually, the projection of the Crazyflie on the Kinect imaging surface is very small as the
quadrotor is so small. This means the number of the segmented pixels on the depth image
(e.g. giving us a small point cloud corresponding to the Crazyflie in 3D space) is very
limited and we can therefore not determine the quadrotors rotation K

QR. However, we
can use the on-board attitude estimate of the Crazyflie to estimate the rotation. In theory,
this would not work as the yaw component drifts, but in practise the yaw does not drift
enough in the short flight time to cause any problems (see section 7.1.3) and assume there
is no yaw drift. If we initially align the IMU rotation estimate with the world frame, we
can estimate the pose W

Q T of the quadrotor in the world frame using a combination of the
translation K

Q~tKinect estimated with the Kinect and the rotation W
Q RIMU estimated from the

IMU, giving:
W
Q T =

(W
Q RIMU

W
K R K

Q~t
01×3 1

)
(4.29)

Implementation details are covered in subsection 6.5.2 and evaluation details of using the
pose estimated by the detector for control is given in subsection 7.4.2.
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Figure 4.31: The Kinect is used to determine the pose of the quadrotor K
QT. If we assume we know

the rigid transform W
K T, we can compute the error between the Crazyflie pose and a goal pose W

G T
in the world frame using G

QT = W
G T−1 W

K T K
QT. This error can be used to determine the control

response required to move the quadrotor to the goal.
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4.3 Attitude Estimation

The Crazyflie estimates the attitude on-board in real-time at 250 Hz using gyroscope and
accelerometer measurements. The rotation estimate is then fed into the attitude controller
so the Crazyflie can remain level or hold target roll and pitch angles. Figure 4.32 illustrates
the pipeline from sensor readings to rotation estimation.

Gyro
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Figure 4.32: The Crazyflie samples IMU data and smooths the signals using a low pass filter. Basic
yet effective bias estimation is done when the Crazyflie is an a stable state. The rotation estimation
runs at 250 Hz.

When performing attitude estimation Combining data from multiple sensor types can
significantly improve attitude estimation as one can combine the advantages and alleviate
the disadvantages of each type. For example, gyroscope rotational velocity measurements
can be integrated to produce angle estimates that are reliable in the short-term, but tend
to drift in the long-term. On the other hand, accelerometers are sensitive to vibration
and other non-gravity associated accelerations in the short-term, but do not drift in the
long-term and thus provide angular estimates that do not continuously degrade That being
said, it is a natural conclusion to combine gyroscope and accelerometer measurements
allowing for angle estimates that are resistant to vibration and also immune to long-term
angular drift. Note that the heading estimate is a bit of a special case: roll and pitch
can be measured by a static accelerometer by looking at the direction of the gravitational
pull. However, the yaw rotation axis is defined to be parallel to the gravity vector and
is therefore not recoverable from the accelerometer measurements. Unless an additional
sensor is added, the yaw component will drift. The Crazyflie has a magnetometer with
which one could determine absolute magnetic north, thereby providing a way to estimate
yaw directly. However this was not deemed necessary for this thesis as in practise the yaw
drift is low enough, as shown in section 7.1.3.

Bitcraze AB opted for Madgwicks implementation of Robert Mahony’s DCM filter in
quaternion form. It is computationally inexpensive requiring only 109 scalar arithmetic
operations for each filter update and thus is well suited for real-time operation on an em-
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bedded platform with limited computational capacity [90]. Furthermore, it is relatively
easy to tune as it has a single adjustable parameter defined by observable system charac-
teristics. Intuitively, the filter resembles a non-linear complementary filter that combines
accelerometer measurements for low frequency attitude estimation and integrated gyro-
scope measurements for high frequency estimation. Note that in this configuration yaw
cannot be observed and therefore the yaw estimation drifts over time. However, as men-
tioned in the previous paragraph, for the short flight time of the Crazyflie this is of little
consequence. The filter derivation is not trivial and refer the interested reader to [90] for
more details.
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Control theory studies how dynamical systems react over time when given input and
how their behaviour is modified through feedback. In this chapter we will discuss how
to implement a basic controller that is used to let a system (i.e. the quadrotor) reach a
target state despite not knowing the relationship between the control signal and output
behaviour and despite having unknown external disturbances act on the system. A con-
troller is used twice in this thesis: (a) a four part position controller is used to set the
desired quadrotor roll, pitch, yaw velocity and thrust percentage to move the Crazyflie
to a desired 3D position and heading. The output is then fed into (b) three individual
controllers that control the four quadrotor motors to achieve the desired roll angle, pitch
angle and yaw velocity.

First we cover basic control principles, then we introduce the PID controller and explain
how to tune it, and finally we explain how one can achieve attitude and position control.

5.1 Control Principles

In this section we cover basic control principles. The general goal in control theory is to
control a system, commonly referred to as a plant, so that it reaches a (potentially chang-
ing) desired set point called the reference. With this in mind, one designs a controller that
computes an error signal from the difference between the measured system state and the
reference target state. This difference is then applied as feedback to the system input to
reduce the error by bringing the actual output closer to the reference. In summary and
with Figure 5.4 at hand: we wish to compute input values u(t) such that the measured er-
ror e(t) between a given target w(t) and measured system state y(t), is stably yet quickly
minimised over time, while counterbalancing any unknown external disturbances. A good
controller will converge to and remain at zero error very quickly and stably without oscil-
lating around the set point.

5.2 PID Control

The proportional-integral-derivative controller (PID controller) is a specific type of con-
troller and has historically been regarded as the best type of controller when one has no
knowledge of the underlying process [91]. It emerged during the design of ship autopilots
in 1910 and is used in over 90% of today’s practical control systems[92].
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Controller System
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System
Input u(t)
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Reference
w(t)

Unknown Disturbances

Figure 5.1: Schmetic representation of a feedback control loop. The goal is to compute system
input values u(t) that allow the measured error e(t) = w(t) - y(t) to quickly yet stably converge to
zero.

The PID control scheme is named after its three correcting terms which are based on
current rate of change and are summed to calculate the output of the PID controller giving
the system input u(t):

• the proportional term which depends on the present error e(t),

• the integral term which depends on the accumulation of past errors
∫ t

0 e(τ)dτ,

• the derivative term which depends prediction of future errors ė(t) = d
dt e(t)

Note that some controlled systems may only need a subset of the control terms which, is
achieved by setting the corresponding gains to zero. Such controllers are called P, PD or
PI controllers.

Each term has its own user-tunable constant parameter which effects the magnitudes of
the respective contributions, resulting in

u(t) = Kp · e(t)︸ ︷︷ ︸
P

+Ki ·
∫ t

0
e(τ)dτ︸ ︷︷ ︸
I

+Kd · ė(t)︸ ︷︷ ︸
D

(5.1)

where Kp, Ki, and Kd are the respective gains - tuning parameters, e the error, t the instan-
taneous time and τ, a variable of integration that takes on values from time 0 to the present
t. As we are dealing with a discrete system, we approximate the integral and derivative
errors by numeric integration and differentiation:

∫ t

0
e(τ)dτ,≈

t

∑
τ=0

e(τ)
d
dt

e(t) ≈ e(t)− e(t − δt)

δt
(5.2)

A typical block diagram of a PID controller is shown in Figure 5.2.

5.2.1 PID Gain Tuning

The three gains of a PID controller are simultaneously its strength and weakness: they
can be tuned to provide a control action designed for a wide range of specific process
requirements on one hand, but on the other hand finding good values for the gains is
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Kp · e(t)

System
Input u(t)

Measured
Error e(t) Ki ·

∫ t
0 e(τ)δτ

Kd · ė(t)

PID Controller

Figure 5.2: Schematic representation of a Proportional-Integral-Derivative (PID) controller. The
controller is tuned by manipulating the Kp,Ki and Kd gains and calculates the system input values
u(t) by summing the individual parts.

not trivial; one must usually resort to experimentally hand tuning them through trial
and error, despite their conceptually intuitive nature. This usually involves analysing the
system output as a function of time after subjecting the system to a step change in input.
Experience certainly helps, heuristic methods exist to determine decent initial values (such
as the ZieglerNichols method [93]), and software tools are available that can aid the user
too [92].

Note there are not optimal gains as a PID controller does not in any way guarantee opti-
mal control of the system or system stability, which can be intuitively explained: as PID
control is only a feedback system with constant parameters with the assumption that one has
no direct knowledge of the process it is controlling, the overall performance is a reactive
compromise. If one would have knowledge about the system, one could incorporate feed-
forward control into the loop and improve performance. Alternative feed-forward con-
troller designs exist, such as the linear-quadratic regulator (LQRs) that requires a model
of the underlying system.

Evaluation Metrics

Before we start tuning a PID controller, we need to define our goals and a way to evaluate
them Ultimately, one desires a controller that is stable and behaves optimally:

• Stability is the most basic requirement and means the controller eventually con-
verges, e.g. there is no unbounded oscillation. An unstable controller’s output di-
verges (possibly without oscillation), and is limited only by the system itself. Excess
gain causes instability, which is often caused by the presence of feedback lag (e.g. if
the time to measure the system state is large).

• Optimum behaviour with regard to external disturbances or set point changes is
application specific. For example, an application might require very fast responses
at the expense of stability while another might desire an energy efficient way to reach
a new reference value. Often multiple conflicting objectives such as short response
times and high stability are desired, which is where PID tuning becomes difficult
and trade-offs occur. Generally one distinguishes between:
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– regulation, also called disturbance rejection, which refers to how well a con-
troller can keep the controlled variable at a given reference point while it is
being subjected to external disturbances, and

– command tracking, which refers to how well the controller can let the controlled
variable follow set point changes.

To quantise the above, we characterise the response of a controller to a step reference
change using the following metrics:

• Rise Time, which is the time required for e(t) to reach less than 10% of the initial
error at the time of reference change,

• Overshoot, which is the maximum magnitude of e(t) after the set point has been
reached,

• Convergence Time, which is the time needed for the system to converge to its steady
state, and

• Steady State Error, which is the magnitude of e(t) after the system has converged
to its steady state.

How the three weighted terms of a PID controller effect the metrics above is explained in
the following subsections, with a summary given in Table 5.1.

The Proportional Gain

The proportional term is usually dominant and is responsible for directly reducing the
error: a larger error directly produces a stronger, corrective control signal, with magnitude
given by the proportional gain. If the proportional gain is too high, the system can become
unstable, leading to overshoot and oscillations. A low gain results in a less sensitive
controller and setting it too low would result in a control signal not strong enough to
counteract disturbances. Figure 5.3 demonstrates the behaviour of a system after a step
reference change for multiple PID-Controllers with different Kp gains.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

w(t) Reference
y(t) for medium Kp

y(t) for large Kp

y(t) for small Kp

Figure 5.3: The influence of different Kp gains. Large gains lead to a faster rise time, overshoot and
oscillations.
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The Integral Gain

The contribution of the integral component is governed by the integral gain Ki. The in-
tegral term is proportional to both the magnitude and duration of the error. It integrates
the error over time and will thereby give the accumulated offset that should have been
previously corrected. Residual steady-state errors of biased systems are eliminated as the
integral term will increasingly compensate for the bias until the error is zero. However, as
the integral term responds to accumulated past error, it reacts slowly to current changes
and causes the present value to overshoot the target value, causing low frequency oscila-
tions. Figure 5.5 shows an example of how the integral term compensates for steady state
error by comparing a PD and PID controller.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

(w)(t) reference
y(t) of PID
y(t) of PD

Figure 5.4: Notice that the PD controller never reaches the reference signal. Adding an integral
term eliminates the steady state error.

The Derivative Gain

The derivative gain determines the magnitude of the contribution of the derivative term.
This term improves convergence time and helps reduce over shoot and eliminate oscilla-
tions by anticipating the future behaviour of the error: the faster the error reduces, the
more it contributes to slowing down this rate of change, thus dampening the system.
However, the derivative response is highly sensitive to noise in the measured output sig-
nal y(t). If this sensor feedback signal is noisy, the derivative component can make the
control system unstable. The effect of the derivative gain Kd is shown in Figure 5.5, where
a too high value leads to an over dampened system and a too value an under dampened
system.

Manual Tuning

Much theory and work has been done concerning PID tuning and we restrict ourselves to
the basics, only giving an intuitive, simple guide to obtaining usable gains. We refer the
interested reader to [94] for a short tutorial and [95] for a more in depth analysis regarding
PID tuning methods and tools.
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Figure 5.5: Three PID controllers with different Kd gains. Notice how a larger derivative gain
reduces oscillations but increases rise time.

To manually tune an online PID controller, one can perform the following steps:

1. focus on the Kp gain fist by setting Ki and Kd to zero and Kp to a small value.

2. while observing the error e(t), introduce a step in the reference signal w(t).

3. increase Kp to reduce the rise time until the controller becomes unstable, i.e. does
not converge and begins to oscillate.

4. increase Kd, to reduce the overshoot and dampen the oscillations. A responsive PID
loop usually overshoots some what before converging.

5. if required, increase Ki until any steady state error is corrected in sufficient time for
the process.

a) However, be conservative, as too much Ki will cause low frequency oscillations.

6. depending on the requirements, repeat the above from point 2. and

a) either be more conservative on the gains for a more stable system,

b) or be more aggressive for a more responsive system.

7. if the system oscillates at a low frequency, this could be caused by too much Ki.

8. if the system oscillates at a high frequency, this could be caused by too much Kp and
not enough Kd.

Table 5.1: Manaul PID Tuning Guidelines [94][95]. Effects of independently increasing a parameter.

Gain Rise Time Overshoot Convergence Steady-State Stability
Time Error

Kp decrease increase small change decrease degrade
Ki decrease increase increase eliminate degrade
Kd increase decrease decrease none Improve if Kd small
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5.3 Crazyflie Attitude Control

The Crazyflie performs on-board attitude control so that it can hold desired roll and pitch
angles and maintain a desired yaw velocity.

PID controllers can be used together to yield better dynamic performance by cascading
them: one can arrange two PID controllers so that the first one controls the setpoint of
the next one. The latter controller is set to operate at a higher frequency so that it has
time to manipulate the system to reach the it’s own desired set point. This can be seen as
having two control loops, a slower outer control loop, controlling a nested, inner loop. For
example, on the Crazyflie the outer loop controller controls the roll and pitch angles by
feeding the inner loop controller desired rotational velocities.

The right block of Figure 5.6 shows the two on-board nested control loops in action. Each
degree of freedom (roll, pitch and yaw velocity) have their own controller, and as the roll
and pitch cases are analogous we only consider the roll case. The desired roll wα(t) angle
is given at 100 Hz, and the error eα(t) between it and the estimated angle yα(t) determined
by the on-board attitude estimation (see Figure 4.32) is fed into the attitude controller at
250 Hz. This feeds the angular rate controller a reference rotational velocity wα̇(t) which it
attempts to maintain at 500 Hz, using the gyro measurements yα̇(t) directly to compute the
error eα̇(t). Note that the yaw velocity is directly controlled, not the yaw angle. Therefore,
the yaw velocity reference signal wγ̇(t) by-passes the outer control loop. The resulting
roll, pitch and yaw velocity system input signals uα̇,β̇,γ̇(t) are then used to distribute the
available thrust to the four motors using

Motor1 = thrust − uα̇ + uβ̇ + uγ̇ (5.3)

Motor2 = thrust − uα̇ − uβ̇ − uγ̇ (5.4)

Motor3 = thrust + uα̇ − uβ̇ + uγ̇ (5.5)

Motor4 = thrust + uα̇ + uβ̇ − uγ̇ (5.6)

which can be derived from subsection 3.1.3.

5.4 Position Control

Positioning the Crazyflie in 3D space is one of the major goals of this thesis. To accom-
plish this, we need to be able to compute the translational error ex,y,z/heading error eγ

between the measured position yx,y,z/heading yγ and target position wx,y,z/heading wγ.
The majority of this thesis is specifically about ’measuring’ this heading and position -
either externally or using an on-board camera. See chapter 4 for details.

To move the Crazyflie to a desired position and heading, we add an additional outer
control loop (i.e. an initial, additional cascade) that runs at the maximum sensing rate
of the used sensor (see Table 4.1). This controller actually consists of four controllers in
parallel, each controlling one degree of freedom:
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5.4 Position Control

• the roll angle α - to control lateral motion,
• the pitch angle β - to control forward and backward motion,
• the yaw velocity γ̇ - to control the heading, and
• the thrust - to control the altitude.

To relate distance to angles, we simply assume a linear relationship. Using a motion
model to directly compute which inputs are required to move the Crazyflie to the target
with greater efficiency are not in scope of this thesis, as a PID control proved sufficient.
Any bias in the Crazyflie, caused by unbalanced motors for example, is compensated for
by the attitude control, and therefore the integral term of the position controller used was
not required, resulting in a PD-controller.

To control the thrust, we had to add a pole to altitude controller. The Crazyflie requires
a certain base thrust to hover and small changes in this result in an altitude increase or
decrease. Therefore, a constant output was added to the thrust controller system output.
As this bias greatly varies with the condition and current discharge of the battery, a strong
integral term was required. See subsection 7.1.1 for details on how the battery discharge
affected the required thrust bias.
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6 Implementation

In this chapter we will look at the implementation of the various software components,
how these components communicate with one another and how the hardware is inter-
faced, as summarised in Figure 6.1.

The Robot Operating System (ROS) is used as the main ’plumbing’, essentially glueing
the different software modules and hardware drivers together. For a brief overview of
ROS and explanation why it was chosen as an underlying framework, we refer you to
section 6.1.

The joystick hardware and drivers are examined in section 6.2 and various camera drivers
are compared in section 6.3. A custom driver was written to interface with the Crazyflie,
with details provided in section 6.4. Details on the implementation of basic external pose
estimation using a motion capture studio as well as a Kinect are provided in section 6.5.
Implementation specific notes on the proposed VI-SLAM system and Control Module are
covered in 6.6 and 6.7 respectively.

USB Capture

RX

Dongle

Joystick

Cam Driver

CF Driver

Joy Driver

Camera

TX

Crazyflie

VI-SLAM

PID Controller

Joy Controller

Ground Hardware ROS Nodes & NetworkAirborne Hardware

2.4 GHz

5.8 GHz

RCA

Power Est. Pose

Goal Pose

Joy Cmd

Cmd
Cmd 100Hz

USB

USB

Bluetooth

Images

IMU 100Hz

25Hz

25Hz

25Hz

100Hz

25Hz

Analogue

Digital

Figure 6.1: Overview of the various hardware and software components used.

6.1 Robot Operating System

The Robot Operating System (ROS)[96] is a flexible, open source (BSD) framework com-
posed of a meta-operating system, a collection of tools, many libraries and defined con-
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ventions that facilitates collaborative robotics software development. It provides hardware
abstraction, device drivers, a build system, package management, inter-process communi-
cation and an implementation of commonly used algorithms and functionality.

ROS was chosen as an underlying framework for numerous reasons. It strongly facili-
tates a modular design structure as it provides robust and easy to set up communication
between different processes, which allows the software to be separated into various stand-
alone components. Many of these components were already implemented, such as the
ones required to interface with USB cameras or other input hardware such as joysticks.
As each component can be its own process, they can be written in different programming
languages. This allowed us to write performance oriented software in C++ and higher
level software in Python. Furthermore, it provides many useful tools, such as those for 2D
and 3D data visualisation and playing back data recorded during a previous runtime.

6.1.1 ROS Concepts

ROS defines three main levels of concepts: (a) the Filesystem level (using Package Resource
Names), (b) the Computation Graph level (using Graph Resource Names) and (c) the Com-
munity level. Each will briefly be discussed below.

Filesystem level
This level deals with concepts that cover on disk ROS resources. ROS allows software
to be broken up into packages and meta-packages. Packages are the most atomic build
and release item and contains anything that is usefully organised together, such as
ROS run-time processes, libraries, datasets, configuration files, etc. Meta-packages
serve to represent a group of related packages. For example, a meta-package called
joystick_drivers1 contains a set of packages that interface with various joystick de-
vices: joy2 (for generic joysticks), ps3joy3 (for Sony PS3 Controllers) and wiimote4 (for
Nintendo Wiimotes). Each package must contain a manifest which provides package
meta-data, such as it’s name, version, license, dependencies, etc. Packages also con-
tain definitions for the messages and services that they provide.
The software accompanying this thesis is divided into two packages: (a) crazyflieROS5,
which is used to interface with the Crazyflie covered in section 6.4 and (b) ollieRos-
Tools6, which contains implements a monocular inertial SLAM system covered in
section 6.6.

Computation Graph level
The Computation Graph is the peer-to-peer network of concurrently running ROS
processes. This graph consists of various entries described below.

Nodes
1http://wiki.ros.org/joystick_drivers
2http://wiki.ros.org/joy
3http://wiki.ros.org/ps3joy
4http://wiki.ros.org/wiimote
5https://github.com/omwdunkley/crazyflieROS
6https://github.com/omwdunkley/ollieRosTools
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6.1 Robot Operating System

Nodes are individual processes that perform computation and are written using
a ROS client library such as roscpp for C++ and rospy for Python. For example,
the Crazyflie driver is a node that exposes its functionality to the ROS network.

Messages
Nodes communicate with each other by sending messages over channels called
topics. Messages are user definable data structures called msgs which are much
like C structs. Common message types (e.g. for sending images or IMU data)
are already defined and additional ones can be specified.

Topics
The third etc . . . A topic is the name of a communication channel over which
messages are transported. They fulfill the many-to-many one-way transport
paradigm with publish/subscribe semantics. A node receives messages by sub-
scribing to a topic, after which messages published on this topic can be handled
by a callback the node implements. Nodes push out messages on a topic by
publishing to one. Each topic may have multiple, concurrent publishers and sub-
scribers. Topics should be used for continuous data streams, such as an image
stream from a camera or IMU sensor data from a quadrotor.

Services
Services implement the request-reply communication paradigm and used like
Remote Procedure Calls. Nodes can provide services under a name with a user-
definable data structure called srvs. A srv is a pair of message structures, one
for the request and one for the reply. A client node then sends a request srv
to the service name and awaits a reply. Note that requesting a service results
in a blocking call, so client code execution cannot continue until the service
provider responds. Therefore, services should only be used for quick remote
procedure calls that terminate quickly, such as querying a node state or setting
some parameters in another node.

Paramter Server
A blackboard communication architecture is implemented using the Parameter
Server, which serves as the blackboard. It is currently part of the Master and
therefore only one at a time can exist. Nodes can anonymously store and re-
trieve data by key on the Parameter Server. This is mainly used to store and
look up global configuration options. For example, we store camera model
parameters, an enumeration to select the desired joystick/camera, etc.

Master
The ROS Master provides a central name registration and look up to the rest of
the ROS Computation Graph. Nodes communicate with the Master to report
their service and message registration information. Without the ROS Master,
nodes would not be able to find each other and exchange messages or invoke
services.

Bags
ROS Bags and their associated tools provide a very easy way to record, store and
play back ROS messages. One could for example record a quadrotors’s IMU

93



6 Implementation

data and camera feed and develop nodes that process this information. One
can then play the bag file (even at different rates, everything is timestamped)
and test, debug and evaluate the nodes performance on exactly the same input
data multiple times without needing to access the hardware. Nodes do not
distinguish if the incoming data is from a bag file or the real robot, it appears
the same way.

Community level
The ROS Community Level concepts are defined ROS resources, facilitating software
and knowledge exchange between separate communities. Distributions are collec-
tions of meta-packages that ensure all dependencies and meta-packages are compat-
ible with eachother thanks to strict versioning. The software for this thesis is based
on ROS Hydro Medusa, released 04.09.2013.
Furthermore, the ROS Community level consists of repositories that contain software
components from various institutions, the ROS Wiki7 which is community driven
and provides the main source of documentation, a questions and answers website
called ROS Answers8, a bug ticketing system 9 and a blog 10.

6.1.2 ROS Tools

ROS provides many GUI and command line tools that aid the developer in building, main-
taining, visualising, configuring and recording complex systems during or after runtime.
For a complete listing, please look at the ROS tools wiki entry 11. A few of the tools
commonly used in this thesis are highlighted below.

rqt_graph
ROS computation graph visualisation.

rqt_plot
2D plotting - used to visualise all the data coming in from the Crazyflie such as
thrust, IMU and barometric data, voltages, etc. Additionally, the individual PID
control signals can be observed which was extremely useful during online tuning.

RViz
3D plotting - used to visualise keyframes with 6D poses, the current pose estimate
with the previously flown trajectory, 3D landmarks and observations and the current
goal pose. Additionally, RVIZ can be configured to show the raw image stream
from the camera, point cloud from the kinect and a debug image stream from the
VI-SLAM module.

rqt_reconfigure
Runtime parameter changes - all the settings that can be changed during run-time

7http://wiki.ros.org/Documentation
8urlhttp://answers.ros.org/questions/
9http://wiki.ros.org/Tickets

10http://www.willowgarage.com/blog
11http://wiki.ros.org/Tools
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6.2 Joystick Driver

are exposed to this node, which generates a GUI to easily manipulate the available
parameters. For example, the user can switch out the detector type, change the
number of RANSAC iterations, alter the size of the bundle adjustment window, etc.

Bags
Recording and playing back sensor data, extremely useful for debugging without the
quadrotor at hand.

Launch Files
Easily start multiple nodes and their individual parameters with a single command.

6.2 Joystick Driver

The joystick driver is used to send control commands to the Crazyflie. As an input device
we opted to use a Sony PS3 game pad controller. It communicates with a computer
via USB or Bluetooh and is easy to set up thanks to the availability of the ps3joy12 ROS
driver of the joystick_drivers13 package. We configured the ps3joy node to send the current
controller axes and button values at a fixed rate of 100 Hz. Our joystick driver then handles
these messages in a callback and forwards the resulting commands to the Crazyflie driver,
outlined in section 6.4.

Roll

Pitch

Yaw

Thrust

Deadman (half press)

Autopilot (full press)

Set Trim

Pitch Trim

Set Goal

Roll Trim

Reset Trim

Prev Waypoint

Next Waypoint

Figure 6.2: The input device used to control the Crazyflie

Four modes of operation exist, which determine what the input buttons and axes do. Refer
to Figure 6.2 for an illustration of the game pad with labeled axes and buttons.

Fail Safe This is the default mode and blocks all user input and is activated when the user
releases the dead man switch (L1).

12http://wiki.ros.org/ps3joy
13http://wiki.ros.org/http://wiki.ros.org/joystick_drivers
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Manual flight mode To activate this mode, the pilot must press and hold the dead man
button (L1) half way. This then enables the pilot to directly control the desired roll
and pitch angles, the desired yaw rate and thrust percentage. Some parameters exist
to scale the joystick input to angles, such as setting the maximum desired roll/pitch
angle and maximum thrust. The node also has some functions that can aid a novice
pilot, such as the ability to limit the speed at which thrust can be reduced. This
greatly helps novice pilots, as they often kill the throttle when the Crazyflie increases
altitude (which cause instability as the Crazyflie has no thrust left to self stabilise
with) only to then react too slowly to increase the throttle as the quadrotor begins
to plummet into the ground, resulting in an unstable, vertical oscillatory flight path.
With the thrust reduction limiting enabled, the Crazyflie still has enough power to
self-stabilise and prevent vertical oscillatory behaviours caused.

Altitude hold mode This mode is activated by depressing the dead man switch (L1) all the
way. The crazyflie will attempt to maintain its current altitude based from barometric
measurements and the pilot does not need to manipulate the throttle. The throttle
stick now increases/decreases the target altitude.

Autonomous flight As above, this mode is activated by depressing the dead man switch
(L1) all the way and will activate if a a valid 6D pose can be estimated using an on-
board or external camera, as described in chapter 4. The Crazyflie will automatically
fly to and hold a goal pose (way-point), which the two analogue controller sticks
now directly control. The pilot can also cycle between way-points with the triangle
and circle buttons.

Trimming the Crazyflie can help increase the attitude stability in case the motors or pro-
pellers are not well balanced. The on-board attitude controller will eventually adapt to
these constant biases (thanks to a modest integral gain), but manually adding a constant
offset can help the controller converge faster. The trim can be reset any time using the R1
button. Two methods can be used to set the roll and pitch trim. The pilot can either

• manually increase or descrease the trim using the D-Pad, or
• hover the Crazyflie manually (using the analogue stick to control roll/pitch keeping

the quadrotor still) and then set the trim to the current analogue stick values by
pressing the square.

The latter can be successively repeated if required. Trim values can directly be written to
the firmware with the supplied flashing utility so that the values remain between power
cycles.

6.3 Camera Node

In order to process the analogue image from the Crazyflie, we digitise the image with a
Hauppauge USB-Live2. This exposes the incoming images to the Linux kernel as a video
device, which can then be accessed by VLC for visual inspection or by various ROS nodes
which expose the image stream to the ROS network. To determine which ROS image
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capture node to use, we devised a way to measure the input lag. The evaluation results
are summarised in section 7.1.4.

6.3.1 Measuring Input Lag

We are interested in measuring the time between acquiring an image (measuring the light
on the camera’s CMOS chip) and receiving the image in a ROS node. This includes

• the capture time (camera induced lag),
• wireless transmission (transmitter/receiver induced lag),
• analogue to digital conversion (Hauppage USB-Live2 induced lag),
• accessing the digital image (kernel/V4L2 induced lag),
• publishing it to the ROS network (ROS capture node induced lag) and
• receiving it in a ROS node (ROS message overhead induced lag).

While it would be interesting to measure the duration of each sub-step, the total time
needed from capture to reception suffices for our needs. From now on, we refer to this
total time as image input lag. Later on when we process the incoming images, we need
to estimate at which point in time they originate from to more accuaretly match an IMU
measurement to each frame.

t
tset tchange tobserve

monitor lag image input lag

measured duration
Figure 6.3: Measuring the image input lag. A timer is started the same time a monitor is instructed
to change intensity (tset), the monitor then actually changes intensity (tchange), and the timer stopped
when the intensity change is detected by the camera (tobserve). Subtracting the time it takes for the
monitor to change the pixel intensity from the measured time results in the image input lag.

To measure the image input a lag, we measured the time required to detect a change in
the camera’s field of view. A ROS node was implemented that listened to the image topic
and computed the mean pixel intensity of each incoming image. An additional ROS node
was then set-up to control a full screen window that would alternate between being purely
white or purely black at known, but random intervals. The camera system was then setup
to observe the monitor. We could then measure the time between of setting the screen
intensity and an observing transition detection. Note that some additional time is in that
measurement, namely the time it takes for the monitor’s pixels to actually change their
brightness. See Figure 6.3 for an illustration. If one knows the monitor’s input lag, one
can simply subtract it from the measured time to obtain the total input lag. As this is fully
automated procedure, one can rerun the experiment many times.
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We considered three ROS image capture nodes: (a) gscam 14, (b) usb_cam 15, and (c) uvc_cam-
era 16 See section 7.1.4 for a brief evaluation of their associated lag and CPU utilisation
percentage.

Unfortunately but not surprisingly, our chosen camera is of the rolling shutter type. How-
ever, modelling and compensating for it is not addressed further in this thesis and we
assume the camera to employ a global shutter.

6.4 Crazyflie Node

The Crazyflie Node can be seen as a ROS driver for the Crazyflie. The node is written in
Python and Qt and runs as a full blow GUI application.

The node serves multiple purposes:

Connect to the Crazyflie The node allows the user to scan for available Crazyflies, select
one and initiate a connection. Once the connection has been initiated, the Table
of Contents (TOC) is downloaded. The previously connected Crazyflie TOC can
be cached to reduce the connection initiation time. The node can be configured to
connect on start up and automatically reconnect in the case of a connection failure.

Request and receive logging data Upon connection, the Crazyflie transmits its TOC to
the node. The TOC logging groups with their entries (an exposed set of variables
on the firmware one can request) are then displayed to the user (see Figure 6.5b).
The user can select at which rate he/she would like to receive which combination of
variable values (for example float gyro.x at 100Hz), which results in Log Configuration
object. The node then sends this Log Configuration to the Crazyflie. If accepted, the
Crazyflie will start pushing data according to the contents of the configuration to the
node, and if not, an appropriate error message is displayed and the GUI behaves as
expected. Multiple log configurations may exist in parallel. As the GUI components
are directly generated from the received TOC, the user can make changes to the
Crazyflie firmware (such as removing, changing, or adding logging configurations)
without the need to change update the node code. To put the above into ROS terms,
the Crazyflie is a node which is configured by service call from the GUI that contains
a Logging Configuration. If the call is successful, the Crazyflie will start publishing
messages (logs) with the data that was requested.

Monitor the logging rates All incoming logs have associated target rates and actual rates.
The GUI measures and displays the latter. Often, if too much information is being
request from the Crazyflie the incoming logging rates begin to drop.

Forward all logging messages to ROS The node generates ROS msg types for each full
logging configuration, instantiates a publisher of that type and forwards all received
logs to the appropriate topic. Once again, this is all generated from the TOC alone

14http://wiki.ros.org/gscam
15http://wiki.ros.org/usb_cam
16http://wiki.ros.org/uvc_camera
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6.4 Crazyflie Node

so the user does not need to manually make or change ROS msgs or the node code
after changing the firmware. For example, if the user added a logging configuration
to debug the LED status, the node would generate an appropriate LEDStatus msg
and forward the logs to the /crazyflie/LEDStatus topic.

View and change runtime parameters on the firmware The firmware contains variables
(called parameters) which are either read-only (R) or read-write (RW). A The node
displays all available variables (according to the TOC) and keeps the displayed values
in sync with those on the firmware (see Figure 6.5a). Variables with write access can
be changed, at which point the node requests a variable change from the Crazyflie
and updates the GUI accordingly. If for some reason this fails, an appropriate error
message is shown and the GUI continues to accurately reflect the true value of the
variable on the firmware.

Synchronising Clocks Just as we needed to estimate the image input delay, we need to
be able to estimate the delay of communication with the Crazyflie. Crazyflie logs
are timestamped with the Crazyflie clock, but we need a way to relate it to the ROS
(CPU) time. To estimate the clock difference ∆t0, the node sends ping messages to
the Crazyflie on a specific port. The Crazyflie responds to the ping with its own
CPU time QtR (pong response). The time between the ping request at time Ctping and
response at time Ctpong gives us the round trip duration ∆packet. If we then assume
the outgoing and incoming durations are equally long, we can use the time-stamp
of the packet arrival time QtR on the quadrotor in the pong response to estimate the
offsets between the computer and quadrotor clocks. See Figure 6.4 for a timeline
illustration.

QtQ0

CtC0

Qt

Ct

∆t0 =C tpong −C tR

Ctping
CtR

Ctpong

QtR

∆packet =
C tpong −C tping

∆packet/2

Figure 6.4: By assuming symmetric up and down latencies we can estimate CtR (the time the ping
packet was received on the Crazyflie relative to the computer clock) which we can align to QtR
(packet receive time relative to the quadrotor clock) allowing us to estimate ∆t0 (offset between the
two clocks)

Send control commands The node listens on the command topic to roll, pitch, yaw rate
and thrust commands. These either originate from the joystick driver (section 6.2) or
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from the position controller node (section 6.7). The commands are forwarded to the
Crazyflie (unless the disable thrust fail-safe is set in the GUI) on a specific port. The
GUI allows the user to see the commands that are being sent, which can be useful
for debugging (see Figure 6.5f)

Summarise the current state During field testing, we needed a quick way to visualise the
status of the Crazyflie to help avoid recording badly conditioned experiments. An
artificial horizon with a colour coded information overlay (red = problem, yellow =
warning, green = okay) provides the user with the following information at a quick
glance: (a) connection quality and status, (b) battery percentage, (c) battery charge
state, (d) roll & pitch as an artificial horizon, (e) yaw as a compass, (f) calibration
state, (g) which messages are being logged at which frequency (colour coded for
target vs actual frequency), (h) current vertical acceleration, (i) motor thrust con-
tributions, (j) kill switch status, (k) control commands, (l) upstream & downstream
radio transmission throughput, (m) temperature, and (n) barometric pressure. This
allowed us to quickly identify if something was going wrong, even while manually
piloting the Crazyflie. Furthermore, the camera feed can also be displayed as an
additional overlay. See Figure 6.5e for an example.

Display console information from the Crazyflie The quadrotor firmware can print mes-
sages, which are appropriately picked up by the GUI and displayed for the users
convenience.

Kinect Pose Estimation The node implements the Kinect-based Crazyflie pose estimation
method discussed in subsection 6.5.2 and exposes all the relevant options to the user.
Figure 6.5h shows a screen shot.

Manage various options and settings Many additional settings are grouped together which
control aspects of the GUI (e.g. update/polling rates) and the Crazyflie (e.g. North
yaw offset). See Figure 6.5g for a screen shot.

Barometer base station As the barometric pressure is unstable (e.g. due to people open-
ing windows, air conditioning, etc), we allowed multiple instances of the Crazyflie
Node to run in parallel, each dedicated to a single quadrotor. This allows us to
set-up one quadrotor as a ground station for reference barometric readings. The
nodes can communicate with each other to share this information to better estimate
pressure differences caused by altitude changes only. See subsection 6.6.5 for more
information.

All the settings, including logging configurations, the window size, settings, etc. are
saved/read from disk using the Crazyflie URI as an index key when closing/starting
the node. This allows the user to automatically recover configurations unique to each
Crazyflie.
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(a) Parameters (b) Logging Configuration (c) Console Output

(d) Misc. Information (e) HUD Overview (f) Control Commands

(g) Various Settings (h) Tracking Options (i) Clock Synchronisation

Figure 6.5: Screenshots from the Crazyflie Node GUI
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6.5 External Pose Estimation

For debugging and testing purposes we devised a way to track the pose of the Crazyflie
externally. Initially, a motion capture studio was used, but as they are not freely avail-
able we implemented a kinect based tracker for home use. This section discusses both
approaches briefly.

6.5.1 Qualisys Motion Capture Tracking

A motion capture system, often abbreviated with MoCap system, uses multiple infra-red
cameras and illuminators to track the position of round infra-red reflective markers. These
markers can be attached to objects and coordinate frames can be defined. Depending on
the calibration quality of the cameras, precision around 1 mm is possible. However, in
practice the calibration is not perfect and the precision suffers.

We used a Qualisys Motion Capture Studio with 12 cameras for our experiments.

Marker Placement

We used the motion tracker system to track three infra-red markers attached to the back,
left and right arm of the quadrotor, about 1 cm in from the motors, under the propellers
(which did not effect visibility). The position of the markers is critical for the performance
of the motion track:

• We used the smallest available markers (5 mm diameter) to save weight and reduce
the impact on flight behaviour.

• Usually one attempts to put the marker in a non-ambiguous, asymmetric configura-
tion but there was not enough space to do so.

• If we put the markers any closer together (such as a configuration attached to the
battery), the motion capture system would treat the cluster as a single marker and
not correctly detect the quadrotor.

• If we moved the markers further out, they would often be occluded by the motors.
The more cameras that can see the markers the better.

• We experimented with attaching markers to the outside of the motor mounts, but
they repeatedly fell off on landings and this solution deemed impractical.

The coordinate system of the Crazyflie was defined relative to the markers and was config-
ured as shown in Figure 2.1. Figure 6.6a shows a photo of the quadrotor with the markers
attached.

Furthermore, we attached markers to a stick and defined a goal position to be a fixed
distance in front of the stick, there by allowing the user to dynamically move the goal
position around during flight.Figure 6.6b show a first person view example.
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(a) Marker placement (b) Dynamic goal set using pointing stick

Figure 6.6: Motion Capture Configuration Photos

Motion Capture Settings

The default timing and exposure configuration of the system was inadequate to detect
the fast moving, small markers. Usually the motion capture system runs at 500 Hz, but
we reduced it down to 100 Hz so we could ramp up the exposure time, illuminating the
markers stronger to allow the camera to see them despite keeping the (noisy producing)
imaging sensor gains low.

Qualisys Node Details

A ROS node was written that listened to the TCP/IP socket associated with the output of
the dedicated motion capture studio computer. Due to the configuration restriction of the
markers, the node performed some post processing on the captured pose to remove the
ambiguity of the rotation caused by the symmetric marker placement. The node then time
stamped the pose estimate and sent it out over the ROS network as a TF transform, ready
for other nodes to query and RVIZ to visualise in real-time.

6.5.2 Kinect Based Crayzflie Pose Estimation Node

We implemented an external detector that uses a Kinect to estimate the pose. As described
in subsection 4.2.2, the on-board Crazyflie attitude estimation is used to determine the
heading as the Kinect is only used to detect the position.

The detector was designed with simplicity and rapid production in mind, it is by no
means an optimal solution. It outputs its results to RVIZ where the detections can be
superimposed over the camera image.
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Crazyflie Detection

A ROS node was implemented that listens to incoming depth images supplied by nodes
of the ROS freenect_stack17. Using depth images, the algorithm first builds a background
scene to later segment the Crazyflie against. To improve the detection quality when the
Kinect observes the quadrotor from the side, one can add a small piece of paper as shown
in Figure 6.7 to increase the silhouette area.

(a) Add paper on the battery to reduce reflections
when using a ceiling mounted Kinect.

(b) A little paper cube can improve detection dis-
tance.

Figure 6.7: Increasing the silhouette and reducing reflection of the quadrotor improves detection

Background Generation We assume the background is not moving during the back-
ground generation phase and that the camera is static. Incoming depth images D1, . . . , Dn
are buffered for a few seconds to create a static scene depth background map B, by using
the minimal depth value per pixel over all depth images in the buffer:

B(u, v) = min
x=1,...,n

Dx(u, v) (6.1)

Special care is taken to handle in f and nan values correctly by setting them to a maximum
distance.

Segmentation To compute a foreground mask F segmenting parts of the incoming depth
image I from the background B we perform the following steps:

1. Compute the minimum depth between each pixel of the background and incoming
image

D(u, v) = min(I(u, v), Bx(u, v)) (6.2)

2. Subtract D from the incoming depth image, giving us the distance to the background.

Fδ = I − D (6.3)

17http://wiki.ros.org/freenect_stack
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3. Create our foreground mask by thresholding Fδ with our minimum required back-
ground distance parameter δmin:

F(u, v) =

{
1, if Fδ(u, v) ≥ δmin

0, otherwise
(6.4)

4. Perform some morphological opening (erosion followed by dialation) on foreground
mask F to fill small gaps and remove noise. The mask might now contain discon-
nected components, which represent areas in the depth image segmented from the
background.

Pose Estimation

1. To identify the center of each component we compute the distance transform (OpenCV’s
implementation of [97], approximating Euclidean Distance with linear complexity on
the number of pixels) Dist of our mask foreground mask F.

2. For every connected component, we compute the center of mass and approximate
pixel size by repeating the following until the distance transform image is blank

a) Locate the maximum value of the distance transform image, which roughly
corresponds to its center of mass. The maximum value corresponds to its radius
and if it is too small, we break out of the loop and continue.

umax, vmax = argmax
u,v

Dist(u, v) (6.5)

b) Compute the estimated 3D position of the quadrotor relative to the Kinect cam-
era

Cquad =

(umax − cx)/ fx
(vmax − cy)/ fy

1

 ∗ I(umax, vmax) (6.6)

where fx, fy, cx, cy correspond to the pinhole model parameters (see subsec-
tion 4.1.4) of the Kinect.

c) Flood fill that connected component with zeros using (umax, vmax as the seed.
This essentially clears that connected component and we can loop to the next
one.

3. Optionally filter components by their

• expected metric size with regard to the diameter in pixels 2 ∗ Dist(umax, vmax
and depth I(umax, vmax),

• contour shape,
• maximum depth variation,
• or other methods. For our needs the above was sufficient.
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4. Pick the best remaining component and assume it is the Crazyflie by prioritising the
component

• furthest from the background,
• closest to the camera from the background,
• closest to the previously detected 3D position,
• etc. Once again, for our needs the above was sufficient. Note that motion

models, Kalman filters, particle filters, etc. could be used at this point to perform
tracking.

In subsection 4.2.2 we explain how to fuse the position estimation from above with the gyro
rotation estimate to provide a full 6D pose in the world frame. The above functionality
was implemented and integrated into the Crazyflie GUI driver with visualisation being
handled by RVIZ. This node can directly be used instead of the Qualisys Motion Capture
Node or the VI-SLAM node to provide pose estimations to the Position Controller Node.

(a) Depth image from the kinect with the segmen-
tation and detection overlayed. The numbers cor-
respond to the depth, the estimated radius of the
detected object and the distance from the back-
ground.

(b) A view from the same scene at the same time
from a different perspective. The quadrotor is the
small dark blob between the three wall paintings.

Figure 6.8: Using a Kinect one can achieve external position control in small home environments.

6.6 Monocular Inertial SLAM Node

In this section we briefly take a look at the general implementation details of the VI-SLAM
node, and specifically how we estimate scale, detect badly transmitted images and remove
interlacing artefacts.

The VI-SLAM node listens to images published by the camera driver node as well as tele-
metric data from the Crazyflie that contains information regarding acceleration, attitude
estimation and barometric altitude. The goal of this node is to publish a pose estimation
over TF that the position controller can use. In summary, it performs the following steps
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(a) The removed regions. (b) The remaining regions.

Figure 6.9: Self occlusion is handled by a binary bask that determines the locations where features
can be detected.

• Preprocess incoming images,
– skip the image if the it suffers from too much transmission noise (covered in

subsection 6.6.2).
– apply a binary mask to remove self-occluded image regions from the processing

pipeline (example shown in Figure 6.9)
– deinterlace images to remove the interlacing artefacts associated with PAL (cov-

ered in subsection 6.6.4).
• Keep a buffer of attitude estimates from the Crazyflie, so that the incoming images

can be time aligned with them.
• For each incoming image and time aligned attitude estimate, perform the VI-SLAM

algorithm outlined in Figure 4.2.
• Output the pose estimate result as well as debugging and visualisation information.

The node also works without IMU measurements if the corresponding parameter is set at
run-time.

6.6.1 Implementation Specific Details

The node implements the VI-SLAM algorithm outlined in section 4.1. All the parameters
are exposed to dynamic reconfigure so they can be changed in real-time, such as

• some controls to force resetting everything, force initialisation and force keyframe
generation

• the detinerlacing interpolation method
• an image quality threshold which determines how sensitive we are to dropping im-

ages dues to transmission noise
• PTAM camera parameters
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• detector and extractor settings
– which detector to use (all available ones from opencv)
– the size of the grid to use when reducing the number of features (see Figure 4.7)
– the maximum number of key points to detect
– the detection threshold
– the number of octaves and octave layers to use for the image pyramid
– which extractor to use (all available ones from Opencv)
– if descriptors should be rotated using IMU information

• matching settings (see section 4.1.2)
– which distance norm to use
– option to use mutual matches only
– matching distance threshold
– minimum ratio required for matches to pass the Lowe ratio test
– predictive matching angular error thresholds

• VI-SLAM settings
– the disparity threshold to trigger initialisation
– the disparity threshold to trigger new keyframe generation
– the relative and absolute pose estimation method (all methods implemented in

OpenGV [71], including translation only using IMU rotation priors [73])
– ransac thresholds, maximum iterations
– pose graph optimisation settings (iterations, structure only, window size)

RVIZ can then be used to inspect the transformations of the Crazyflie, camera and keyframes
as well as landmark positions, currently matched landmarks and the entire fight path and
heading since take-off.

It was implemented in C++ and in a modular way such that sub-modules such as image
processing, camera models, landmark, map, frame, auxillary functions, matching, detec-
tion and geometric computation related functions were split into different classes. Many
of the more math intensive components were originally written in Matlab for easier de-
bugging. The following external libraries were used.

• Eigen [98] was used for all linear algebra,
• OpenCV [51] for image processing and representation,
• OpenGV [71] for geometric vision functions,
• ROS [96] to share transformations, to visualise data, to pass messages between pro-

cesses, and
• g2o [88] for pose graph optimisation.

The map was represented as a list of landmarks and keyframes with mutual references:
each keyframe has landmark references for each descriptor associated with one; and each
landmark had a list of keyframes (and corresponding descriptors ids) from which it was
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(a) Feature matching flow visual-
isation: purple lines represent in-
liers.

(b) RVIZ debugging infomation: coordinate frames corre-
spond to keyframe poses, purple blobs are landmarks and
blue lines associations.

(c) 2D depth visualisation of landmark initialisation between the first two keyframes.

Figure 6.10: Visualisation of the VI-SLAM running and showing debugging output.

visible from. Therefore, the data association is bi-directional, facilitating quicker lookups
and traversals, especially when setting up the required structures for RANSAC, keyframe
generation and pose graph optimisation.

6.6.2 Corrupt Image Detection

Image transmission quality is dependant on environmental conditions. Depending on
interference levels in the 5.8 GHz range, up to 20% of the transmitted images were not
usable. Images either suffered from contrast artefacts, or less distinct pixel alignment
offsets, usually caused my pixel clock offsets. For example, an image might be shifted
multiple rows up or down which completely destroys the relationship between image
measurements and the 3D world projected onto the sensor.

Therefore, we required a very fast way to determine if incoming images were accurate
and undistorted. Luckily, the imaging sensor does not fully encompass the PAL resolution
and therefore the transmitted images have a distinct black border around them where no
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(a) A highly corrupted image. (b) A less obviously corrupted
image.

(c) Zooming in reveals that some
rows have shifted into an image
region not used by the sensor.

Figure 6.11: Examples of corrupted images.

measurement was taken. By analysing these borders one can determine if the image has
been transmitted correctly.

Figure 6.11b shows an image that suffered from transmission interference and Figure 6.11b
shows a close-up of the border region marked in red. Simply by counting the number
of pixels beyond a certain intensity threshold (i.e. non-black) within the border region
one can obtain an indicator whether or not the image was corrupted. This proved to be
extremely reliable and not a single image was falsely classified in our tests. If an image is
deemed to be corrupted, it is simply skipped and visually displayed with a red tone.

6.6.3 Image Deinterlacing

As discussed in section 3.3.1, the used camera transports images using the 576i50 video
standard, meaning that the images are interlaced. As this causes undesirable artefacts
and makes feature detection/extraction imprecise and unreliable we needed a way to
preprocessing step to remove the artefacts.

For our purposes, simply interpolating the even rows from the odd rows was sufficient.
Effectively, this can be seen as overwriting the even rows with a reconstruction based on
its neighbouring rows. We chose to eliminate the even rows as they contain older measure-
ments. Figure 6.12 shows the same image twice, once interlacted and once deinterlaced. A
zoom in is provided that highlights the details - one can clearly see even and odd rows. We
use the OpenCV interpolation function to provide differerent ways to interpolate with dif-
ferent mask sizes. We defaulted to using bilinear interpolation, which in this case means
that pixels on even rows simply take the average value of the pixel directly above and
below.

6.6.4 Scale Estimation

Once the scale has been estimated after the intial relative pose estimate, it is implicitly
propagated throughout the following absolute pose estimates. However, we cannot deter-
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(a) Interlaced (b) Deinterlaced (c) Ghosting Artifact (d) Artifact Removed

Figure 6.12: Comparison between the same image with and without deinterlacing. Details of the
cross on the floor demonstrate the interlacing artefact appearance.

mine the initial depth of the triangulated landmarks using a monocular camera alone. As
mentioned in section 4.1.1, other scale estimation techniques exist that make use of ad-
ditional external information such as measured acceleration or information about visible
landmarks. However, as shown in section 7.1.3, our accelerometer is too noisy for this
purpose due to the vibration of the PCB it is mounted on.

Therefore, we can either set the scale manually by fixing the baseline between the two
views used to initialise the map or compute the relative translation magnitude that would
result in an averge given scene depth; or attempt to recover the scale automatically using
the barometer.

6.6.5 Barometer Based Scale Initialisation

The user can pilot the quadrotor so it takes off in a stable fashion and then active the
firmware based hover mode we implemented, which uses barometric pressure to compute
relative altitude differences and maintain the current altitude. Once the quadrotor sta-
bilises its altitude autonomously, it can initialise the first keyframe and raise its altitude
by an additional meter, at which point it can generate the second keyframe and initialise
the map with a baseline computed from the measured altitude difference. Note that if the
quadrotor drifts excessively the pilot must still take control of the roll and pitch angles.

As barometers measure air pressure, we can use this to reason over our altitude as the air
density decreases with increasing altitude. To compute the altitude above sea level (ASL)
in meters at time ti we use an approximation of the hypsometric formula [99]

ASLt = (T0/τ0) · (1 − (pt/p0)
−Rτ0/(µg)) (6.7)

where pt is the pressure measurement at time t in mmHg, p0 = is the pressure at the lower
limit of the troposphere, T0 = 15 ◦C = 288.15 K is the temperature at the lower limit of the
troposphere, τ0 = −6.5 ◦ km−1 is the temperature gradient of the lower troposphere, R =
8.314 32 N m mol−1 K−1 is the universal gas constant, µ = 0.028 964 4 kg mol−1 is the air
molar mass, and g = 9.806 65 m s−2 is acceleration due to gravity, which when substituted
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with numerical values becomes

ASLt = 44330.76923 · (1 − (pt/760)0.190263). (6.8)

To compute the relative altitude difference (RAD) between two times ti and ti−1 one simply
computes the difference

RADt−1
t = ASLt − ASLt−1. (6.9)

As the barometer is sensitive to micro-climate changes and other sources of noise as dis-
cussed in section 7.1.3, we can optionally use the pressure difference between a flying
Crazyflie and an additional static Crazyflie to compute relative altitude differences im-
mune to micro climate changes of the environment both quadrotors are situated within.
If the reference Crazyflie Qre f is at ground level, we can estimate the above ground level
(AGL) altitude of the flying Crazyflie Q f ly at time t with

Q f ly AGLt =
Q f ly ASLt − Qre f ASLt (6.10)

such that the micro climate change invariant relative altitude difference (RAD) between
time ti and ti−1 becomes

Q f ly RADt−1
t = Q f ly AGLt − Q f ly AGLt−1 (6.11)

which allows us to determine the relative altitude difference between two measurements
without being affected by changing micro climate conditions, ultimately enabling auto-
mated scale estimation by setting the unit length translational component K0

K1
~tnorm of the

relative pose estimate between the initial keyframe K0 and second keyframe K1 to

K0
K1
~tbaro = K0

K1
~tnorm ·

Q f ly RAD
tK0
tK1

K0
K1
~tnorm

z
(6.12)

before triangulation.

6.7 Position Control Node

The goal of the position controller is to determine roll, pitch, yaw velocity and thrust
percentage commands to send to the Crazyflie, so that the estimated pose of the Crazyflie
coincides with a given target position and heading.

The node is written in Python and listens to two TF transformations that represent the
current pose and goal pose and forwards commands to the Crazyflie driver node. It im-
plements a PID controller for each degree of freedom as explained in section 5.4. It exposes
all the relevant parameters (such as the individual gains and thresholds for the PID of each
degree of freedom) to dynamic reconfigure so they can be tuned in realtime. Furthermore,
it outputs the individual proportional, integration and derivative contributions as a ROS
msg so they can visualised in realtime, which greatly helps tuning.
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In this chapter we evaluate the effect of the hardware modifications as well as the timing,
performance and accuracy of the developed systems on data obtained from a number of
experimental test flights with the Crazyflie Nano Quadrotor.

We first focus on the hardware in section 7.1, then look at the developed VI-SLAM sys-
tem performance in section 7.3 and finish by validating that the various pose estimation
methods can be used to achieve position control on the Crazyflie, without requiring any
additional filtering or motion models in section 7.4.

7.1 Hardware

7.1.1 Flight Characteristics

In this subsection we consider the effect the modifications required to carry a wireless
camera system payload had on the flight characteristics.

Crazyfie and Payload Weight

As Table 7.1 shows, the default, ready to fly Crazyflie weighs just under 19 g. The wireless
camera system weighs 6.3 g, which might not sound like much but is over a third of the
weight of the quadrotor itself. With additional effort, the flight system could probably be
brought down to 5 g if shorter and thinner wire was used. Unfortunately we could not
use the lighter and smaller 2.4 GHz transmitter as there was too much interference and the
received images were too noisy. The weight of the lighter transmitter is included in the
table below for completeness.

Weight Distribution

Adding a 6.3 g payload to the Crazyflie is only possible if one can keep the center of mass
in the middle so that the motors can equally distribute the additionally required thrust.
Here we verify that our payload weight distribution and position does not cause an uneven
thrust distribution to keep the Crazyflie level.

Figure 7.1 shows the contribution of thrust of each of the motors before and after adding
the payload. Initially, there was a slight bias towards the left and right motor thrust
contribution. Adding the camera system caused a slight center of mass shift to the left,
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Table 7.1: Weight of each component used

Component Number Weight Σ Weight
Crazyflie PCB 1 5.20 g 5.20 g
Motors 4 1.64 g 6.56 g
Motor Holders 4 0.21 g 0.84 g
Rotors 4 0.26 g 1.04 g
Battery 1 4.82 g 4.82 g
Camera 1 1.49 g 1.49 g
Wide Angle Lens 1 1.58 g 1.58 g
Transmitter 5.8 GHz (2.4 GHz) 1 1.19 g (0.57 g) 1.19 g (0.57 g)
Voltage Regulator 1 0.45 g 0.45 g
Camera Holder 1 0.75 g 0.75 g
Reflective Markers 3 0.25 g 0.75 g
Cables, solder, etc. 1 0.86 g 0.86 g

Crazyflie Weight 18.46 g
Camera System Weight 6.32 g (5.70 g)

Total Flying Weight 25.53 g (24.91 g)

Front

23.5%

Left 26.5%

Rear

24%

Right26.5%

(a) Without Camera

Front

25.0%

Left 26.0%

Rear

24.5%

Right24.5%

(b) With Wireless Camera Payload

Figure 7.1: Visualisation of the contribution of thrust per motor required to achieve a stable hover
with and without the wireless camera payload.
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but the difference is negligible. We can therefore continue knowing that the payload
has been placed in such a way that minimises a difference in the flight characteristics.
See section 7.1.1 for details on how the thrust required to hover changed by adding the
payload.

Throttle and Lift

The amount of thrust the motors generate depend on the state of the battery and the
throttle. A throttle of 100% corresponds to running the motors with all available power. To
generate the additional thrust to carry the camera payload, the throttle must be increased.
Furthermore, if the camera and transmitter are drawing power, even more throttle must
be applied to make up for the additional current draw. The amount of throttle used over
the entire discharge of the battery is an important indicator of how well the Crazyflie can
respond to desired altitude changes, which is especially important when it needs to recover
from rapid altitude decreases. Here we evaluate the effect of carrying and powering the
wireless camera on the throttle use during hover.
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Figure 7.2: A plot showing the amount of throttle required to hover the Crazyflie (a) without any
payload, (b) carrying the camera system but having it turned off, and (c) carrying and powering
the camera system over the entire battery discharge time. The diamonds represent the time the
battery depleted. The thin lines represent the raw measurements.

Looking at item 7.2 it becomes apparent that that the payload weight of the camera is at the
practical limit of the Crazyflie. At the three minute mark, the Crazyflie required around
75% throttle to maintain its altitude in the normarl case. This increases to 90% when
carrying the payload, and 95% when powering the camera and transmitter. This means
that there is only an extra 10% or 5% thrust available respectively. For a stable hover that
might be sufficient, but for gaining altitude or for reducing negative vertical velocity safely,
it is insufficient. Therefore, the Crazyflie will only be able to safely decrease its altitude
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at extremely slow speeds if the camera system is used. We conclude that carrying and
powering the camera system is therefore barely practical as the Crazyflie simply does not
have enough thrust reserves to manoeuvre.

Flight Time

The current voltage which decreases at the LiPo discharges directly affects the amount of
thrust generated by the motors, assuming constant throttle. Therefore it is no surprise that
Figure 7.3 looks like the inverse of the thrust plot item 7.2.
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Figure 7.3: Evaluating the discharge of the Crazyflie during a stable hover. Usually, the Crazyflie
can remain airborne for around 7 minutes before powering down. However, the time decreases by
90 seconds simply because of the extra power required to generate the additional thrust required to
lift the payload. Ultimately, powering the camera system causes additional battery drain reducing
the flight time down to 03:48.

Here we evaluate the flight time of a the Crazyflie performing a stable hover in the mo-
tion capture studio. The data is taken at the same time of the thrust evaluation. The
extra payload reduces the flight time by roughly one and a half minutes and powering the
camera reduces it almost an additional two minutes. A flight time of 03:48 is achievable
while powering the on-board camera during a stable hover. For scientific purposes this
is enough, yet still impractical when running multiple experiments. Therefore we recom-
mend to use multiple batteries so that depleted ones can be recharged (takes around 20
minutes) parallel to further experiments. We noticed the battery performance decreased
beyond the 100 charge cycle mark.

7.1.2 Crazyflie Communication Throughput and Timing

We very briefly take a look at the average timing delay of the Crayzflie logging framework.
We devised a simple way to get a rough estimate of the timing involved with sending and
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receiving logged data to and from the Crazyflie in section 6.4. Here we simply show the
measured results, as with respect to the current out going bandwidth.

When requesting logging (e.g. sensor measurements) from the Crazyflie, one can chose
at which frequency one would like which logs. For example, one may wish to have ac-
celerometer data at 50 Hz and and attitude information at 100 Hz. The throughput varies
depending on the log types (e.g. an unsigned 8 bit integer vs a float), the frequency re-
quested and the number of logs/ If one requests too much data, the high throughput can
cause significant delays. In Table 7.2 we show the timing results around the throughput
threshold region. 1500 byte/s upstream is from sending control commands at 100 Hz.

Table 7.2: Packet Travel Time

Download [byte/s] Upload [byte/s] δpacket/2 [ms]
1400 1500 6.4 ± 2.2
1400 5900 9.1 ± 4.0
1400 6200 38 ± 3.1

Therefore we conclude that one should not exceed a downstream throughput of ∼5900 byte/s,
which corresponds to roughly 10 floats at 100 Hz.

7.1.3 Crazyflie Sensors

Accelerometer

As the Crazyflie consists of a single PCB that also serves the purpose of being the quadro-
tor frame, it and all components soldered to it receive the vibration from the motors di-
rectly. Usually one tries to cushion the IMU to isolate it from motor or other aerodynamic
induced vibration, but on such a small quadrotor this is simply not feasible.

As a result, the accelerometer measurements are extremely sensitive to the motor usage.
We demonstrate this by simply plotting the standard deviation of the acceleration mea-
sured in each dimension on a static quadrotor while gently increasing the thrust. The
quadrotor was held firmly against the foam padding it came shipped with and the pro-
pellers were put on upside down to avoid turbulence induced vibration.

As Figure 7.4 shows, the standard deviation of the accelerometer measurements increases
with additional thrust. The Crazyflie requires around 75-90% throttle to hover, at which
point the standard deviation of the accelerometer measurements is ∼0.1 m s−2. Therefore
we conclude that using the acceleration measurement magnitudes for some kind of ve-
locity or position estimate is simply not feasible. However, the direction of the measured
acceleration vector is good enough to keep roll and pitch from drifting in the sensor fusion
algorithm mentioned in section 4.3.
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Figure 7.4: Shows the standard deviation of measured acceleration forces of a static Crazyflie as
a function of increased throttle. This plot shows how the vibration induced noise increases with
increasing motor speed

Gyro Drift

In chapter 4 we assume the frame to keyframe relative rotation estimate provided (see
subsection 4.1.7) by the Crazyflie’s on-board attitude estimation (see section 4.3) has neg-
ligible drift, allowing us to solve for translation only in the the VI-SLAM pose estimation
steps. Furthermore, the Kinect based pose estimator relies on a the attitude estimate, as
described in subsection 4.2.2.

However, as mentioned in section 3.2.1, the yaw compnant does drift slowly. Here we
check that the yaw drift is indeed negligible for the short flight times the Crazyflie can
provide. We collected yaw measurements over an 8 minute window and plotted them
over time in Figure 7.5. One can observe that the yaw does indeed drift very slowly,
around 1.18 ◦/s. This estimate does correspond to what we observed during the other ex-
periments. However, it is important to note that this drift can indeed be increased through
violent acceleration - such as during a crash. We conclude that yaw drift is negligible
under normal circumstances for the <7 minute flight time the Crazyflie endures.

Barometer

We use the barometer for scale initialisation in subsection 6.6.4 and obtain measurements
at 90 Hz from the custom driver we implemented ( details in section 3.2.2). We briefly
evaluate the barometer performance in this subsection.

Figure 7.6 plots barometer based altitude over the duration of a typical starting sequence.
We plot both the barometer altitude estimate from a single Crazyflie (denoted BaroOrig),
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Figure 7.5: Yaw plotted over time from a static Crazyflie. There certainly is drift, but for the short
flight time of the Crazyflie it is negligible.

the compensated estimated (which we obtain using barometric readings from another
Crazyflie acting as a base-station - see subsection 6.6.4, denoted BaroCompensated), the raw
altitude estimated (denoted BaroRaw) as well as the ground truth altitude as measured by
a motion capture system.

Initially, the quadrotor is on the ground. We zero the barometer altitude so we can esti-
mate our altitude relative to the ground level instead of sea level. The motors spin up,
which causes a huge dip in estimated altitude. This occurs as the air pressure between
the floor and rotors increases before the quadrotor eventually generates enough thrust to
take-off. The quadrotor autonomously can hold its altitude at 0.5 m and raise its altitude
to 1.5 m. This 1.0 m altitude difference can be used to initialise the scale of our VI-SLAM
implementation.

We can observe that BaroOrig drifts over time, while BaroCompensated does not. This is
expected as BaroCompensate uses relative pressure differences and therefore both the base-
station and airborne quadrotor suffer from the same environmental changes.

We conclude that using a relative pressure differences certainly helps in the long run as the
drift is successfully eliminated, but for the estimates for the initial 1.0 m altitude increase
used by the VI-SLAM system is accurately estimated by both BaroCompensated and BaroOrig,
assuming there are no sudden pressure spikes caused by opening windows, doors, etc.
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Figure 7.6: Barometer altitude estimates plotted over time from a typical starting sequence. Note
that the compensated measurements drift less than the original ones. Also note the incorrect
measurements caused by the turbulence right before take-off.

7.1.4 Wireless Image Transmission

Transmission Range

the 5.8 GHz transmitter/receiver combination worked fine for indoor use with a clear line
of sight. Ranges up to 15 m were relatively noise free in typical office/lab environments
with infrequent frames were classified as corrupt. In sparse environments with better line
of sight, the range improves but we restricted our use to the indoors. However, near the
end of a battery discharge cycle the number of corrupted frames increased, depending
on interference and other environmental factors, up to about one in five. We noticed that
that frequency was often crowded and often had to switch channels (e.g. from 5725 Mhz
to 5865 Mhz using the dip switch on the transmitter and soldering the appropriate pins
to ground on the receiver). The 5.8GHz frequency has troubles penetrating walls and
therefore the signal is almost immediately lost when flying into adjacent rooms.

Image Delay

In subsection 6.3.1 we implemented a way to estiamte the camera lag, that is the duration
it takes from image acquisition to being able to access the image in a ROS node. For the
test, we used a Hazro HZ27WC monitor. This is a bare-bones IPS monitor with no on
screen display (OSD) menu or resolution scaler, meaning it has a low and stable input lag
of 8.8 ms (as determined by TFTCentral 1, a monitor enthusiast website).

In Table 7.3 we summarise the average recorded lag for various camera drivers as well as
their CPU usage (on an Intel Core i5 4650K). Roughly 1200 measurements were taken over

1http://www.tftcentral.co.uk/reviews/content/hazro_hz27wa.htm
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a 3 minute period at a varying frequency between 3 Hz and 13 Hz.

Table 7.3: Camera Driver Evaluation

Camera Driver Mean Standard Deviation CPU Utilisation
gscam 2 53 ms 16 ms 10%
usb_cam 3 50 ms 12 ms 7%
uvc_camera 4 21 ms 11 ms 20%

The uvc_camera node turned out to give us an image with the least lag but using the
highest CPU usage while gscam and usb_cam performed suffered from much more lag
but with a similar lag to CPU utilisation ratio. As we had enough processing power
available, we opted to use the uvc_camera node to provide images to the ROS network.
Estimating the lag allows us to better match IMU measurements with camera images
which is important for the Visual-Inertial SLAM system.

7.2 Kinect based Pose Estimation

Unfortunately, we could not compare the poses obtained from the Kinect pose estimation
node versus the ground truth poses from the motion capture system, as the infra-red
(IR) lights required by the motion capture system interfered with the kinect depth sensor.
The significant noise and infra-red glare on the floor was substantial enough to make it
impossible to estimate the depth of an obstacle as small as the Crazyflie. Background
segmentation failed hopelessly - the Crazyflie was not detected at all after one turned up
the pre-processing tolerances of the segmentation algorithm to overcome the noise.

However, we overlay the detection results over the RGB camera image to visually inspect
the output. We tested the algorithm in three different settings (a) a one room apartment
with the Kinect pointing forwards, (b) a garage and living room with the Kinect mounted
on the ceiling pointing downwards, (c) an office with the Kinect pointing forwards.

As hinted in subsection 6.5.2, to achieve reliable detection results we had to add a bit of
paper to increase the surface area of the Crazyflie. This is due to the small size of the
quadrotor and to prevent the IR projection reflecting off some of the quadrotor surfaces.

Using the additional surface area provided by the paper attachment, detection results were
stable up to a range of 3 m. Beyond this, the detection would occasionally fail. Beyond 4 m
range the detection would usually fail to segment the Crazyflie in the depth image - there
we simply no depth values. It takes around 11 ms to process each depth image and return
visual feedback, and some times increases up to 20 ms if there are multiple detections or a
lot of noise.

False positives only occurred in rare situations, such as when multiple, small objects were
in view simultaneously. Occasionally, the system would also detect false positives if no
Crazyflie was in view. In subsection 7.4.2 we give an example of a trajectory flown using
the estimated pose of the detector for control input, which demonstrates flying waypoints
within the Kinect’s field of view.
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7.3 VI-SLAM Evaluation

To evaluate the performance of the VI-SLAM system, we flew a set of waypoints in a
motion capture studio using the ground truth pose as input for the position controller.

7.3.1 Pose Estimation

To compare the the ground truth and VI-SLAM trajectories, we scaled the first 5 seconds of
the VI-SLAM system poses to those from the motion capture studio. The scale estimate of
the barometer was at 115% percent of the metric scale (usually within ±20% error - highly
dependent on environmental conditions), showing that it can be used as a rough estimate.
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Figure 7.7: 2D visualisation of the VI-SLAM estimated pose versus that of the motion capture
system for flying one waypoint circuit

Figure 7.8 shows the flown waypoints, the trajectory our VI-SLAM system estimated and
a colour coded ground truth trajectory in 3D, where the colour corresponds in the magni-
tude of the translational velocity. Figure 7.9 shows the same information 2D.

Figure 7.8 shows the flown waypoints, the trajectory our VI-SLAM system estimated and
a colour coded ground truth trajectory in 3D, where the colour corresponds in the magni-
tude of the translational velocity. Figure 7.9 shows the same information 2D.

We computed the root-mean-square-error (RMSE) between corresponding ground truth
and estimated poses for the individual translational dimensions X, Y and Z as well as the
3D euclidean distance between them (denoted XYZ). The results as well as the maximum
error in each dimension are summarised in Table 7.4.
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Figure 7.8: 3D plot of the flight trajectory used to evaluate the VI-SLAM system. Black lines denote
the VI-SLAM pose estimates and the coloured one is given by a motion capture system running
at 100 Hz. The colour corresponds to translational velocity: a hotter colours correspond to faster
speeds, with dark red being around 1.2 m/s
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Figure 7.9: 2D visualisation of the VI-SLAM estimated pose versus that of the motion capture
system for flying one waypoint circuit
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Table 7.4: VI-SLAM Translational Error versus Ground Truth

X [cm] Y [cm] Z [cm] XYZ [cm]
RMSE 9.66 6.69 5.12 8.19
MAX 19.02 24.51 18.81 41.07

Considering the cheap camera quality, rolling shutter and interlaced video transmission,
we are very satisfied with the overall RMSE being within 10 cm. Furthermore, the system
handled dynamic portions of the same perfectly well, such as when people walked past
or when furniture was moved. As long as RANSAC has enough correct matches to build
a correct model from, everything that doesnt fit the model (e.g. a moving object) is simply
not used. Depending on the number and distribution of features, a new keyframe was
successfully generated and integrated into the map every 0.5 m-0.5 m depending on the
feature distribution.

7.3.2 Timing

The algorithm runs in real-time, i.e. a pose is computed for every incoming camera frame.
In the ideal case, the camera supplies 25 fps, meaning we have 40 ms of compute time per
frame. As the image delay is estimated to be around 21 ms (section 7.1.4) and a frame
usually takes around 34 ms to process, the pose estimate has a combined delay of roughly
55 ms, which should be sufficient to achieve stable position control according to our tests
in section 7.4. However, it is important to note that depending on the environmental con-
ditions, we experienced up to 20% of frame loss due to transmission noise. The corrupt
frame detector worked flawlessly. Unfortunately, we did not have enough time to imple-

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Time [ms]

preprocessing detection extraction matching
SLAM new keyframe bundle adjustment

Figure 7.10: Breakdown of the timing of various steps in the VI-SLAM algorithm. Note that red
portion of the graph only occurs when keyframes are added, which is not the usual case.

ment a separate mapping thread, so depending on the size of the map and the size of the
bundle adjustment window, integrating a new keyframe into the map can cause a frame
to be skipped. Typical timing results are summarised in Figure 7.10. The scene had an
average of around 650 fast corners detected, of which usually around 70% were matched
and 50% were RANSAC pose estimation inliers.
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7.4 Control Evaluation

In this section we evaluate how well we can control the Crazyflie given control inputs
from different sources. First we consider using external cameras to provide pose estimates
and finally conclude by showing that our Visual-Inertial SLAM system is fast and accurate
enough for successful position control.

We consider two goals:

Hovering - the ability to remain at a fixed position without drifting.
Here we test how steadily we can hold our position for an entire minute. To eval-
uate this, we took off manually, started the controller, and allowed the Crazyflie to
autonomously stabilise its position before starting to record the translational error in
each dimesnion between the reference target position (usually (0, 0, 1.0)Tm) and the
ground truth position. In Table 7.5 below we summarise the root-mean-square-error
(RMSE) and the maximum error over each dimension and the 3D Euclidean distance.
We provide 3D plots all with the same scaling to give the reader an intuitive feeling
for how well the task was performed. Additionally 2D plot for each dimensions ere
provided for closer inspection.

Flying a series of waypoints - the ability to fly to specified goals efficiently.
This goal requires the quadrotor to fly from its current position to a newly specified
position, where it should remain until the next waypoint is given. Ideally, it would
fly to and converge on the new position directly, quickly, and without overshooting it.
Here we estimate the average overshoot, rise-time and convergence time as defined in
section 5.2.1 over multiple trials. Once again we provide 3D plots to better visualise
waypoint configurations and 2D plots for each dimension.

Table 7.5: Evaluation of Autonomous Drift-Free Hover

Pose Method
Param [ms, Hz, cm] RMSE [cm] Max [cm]
Lag Freq Noise X Y Z XYZ X Y Z XYZ

MoCap3 ms
100 Hz 3 100 0.3 5.9 3.7 0.6 7.0 17.5 12.8 1.7 19.3

MoCap75 ms
25 Hz 75 25 10 13.8 15.8 7.24 22.2 50.2 44.9 19.3 65.4

MoCap100 ms
25 Hz 100 25 10 28.9 45.6 32.4 63.0 n/a n/a n/a n/a

Kinect ∼20 30 ∼3 4.3 5.4 1.9 7.2 11.7 14.0 6.3 14.1
VI-SLAM ∼55 20-25 ∼10 9.9 10.2 3.4 14.6 25.8 20.9 10.3 26.8

7.4.1 Qualisys Tracking Based Control

We first tested the performance of the position controller using pose estimates from a
motion capture system. This should be the easiest case as the motion capture system
operates accurately at a high frequency with next to no delay.
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Hovering Stability with Pose Estimation Lag
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Figure 7.11: 3D visualisation of hovering using the motion capture studio pose estimates. RMSE
is ∼7cm.

Figure 7.11 and Figure 7.12 show the same trajectory for a minute of automated hover
without carrying the camera payload. Adding the camera actually improved the perfor-
mance as the quadrotor became more stable with the additional mass.

Instead of simply hovering under ideal conditions, we experimented to observe how the
quadrotor reacts to artificially induced delay, noise, and frequency reduction of the pose
estimate from the motion capture system. Specifically we were interested in seeing how far
we could push the pose estimate delay while keeping the other conditions similar to the
expected VI-SLAM system values, i.e. with poses coming in at 25 fps with some additional
gaussian noise. This should give us an estimate of the maximal frame processing time
available for the VI-SLAM system. The results are summarised in Table 7.5 and visual
comparisons can be made in Figure 7.13.

As expected, hovering under the best case conditions resulted in low translational offsets
and very stable behaviour. With an artificial 75 ms lag and additional 10 cm of Gaussian
noise at 25 fps we were still able to maintain our position but with reduced precision, with
the quadrotor eventually converging to a slow, converging oscillation. The limits were
exceeded when we attempted to hover with 100 ms lag and 10 cm noise. The quadrotor
circled the target position until oscillating out of control. As the VI-SLAM pipeline requires
around 55 ms from image acquisition to pose estimation, there is a reserve of 20 ms so it
should be fast enough for position control. See Table 7.5 for a summary of the evaluation
results.
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Figure 7.12: Results from hovering using motion capture studio pose estimates. Errors in each
dimension are under 7 cm.
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Figure 7.13: Visualisation to compare hovering under different conditions. Lag around 100 ms and
over resulted in unstable control, eventually leading to unbounded oscillations and a crash.
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Figure 7.14: 2D visualisation of the translation of the quadrotor during the hover experiment. We
can observe that the thrust control is most sensitive to additional delay in the pose estimates.

Waypoint Flying

We setup a few waypoints within the motion capture area such that they covered the
maximum space that the Crazyflie could reliably be tracked in. This involved some 2.5 m
step sizes in the plane and an altitude increase/decrease of 1 m. The configuration is
shown in Figure 7.15 and each translational component is visualised in Figure 7.16.

Table 7.6: Autonomous Waypoint Following: Motion Capture Studio

Step Size [m] Rise-Time [s] Overshoot [cm] Convergence [s]
x, y ±z x, y +z −z x, y +z −z x, y +z −z
2.5 1.0 2.1 1.7 1.4 22 12 19 0.6 0.4 1.2

The control evaluation results are given in Table 7.6. Considering the speed at which the
quadrotor is traversing the 2.5 m distance, the 22 cm overshoot is completely satisfactory.
We conclude that one can achieve reactive control performance by using the pose estimates
from the motion capture studio.

7.4.2 Kinect Tracking Based Control

Once again, we first evaluate the hover performance of the controller when using the
Kinect based tracker (method explained in subsection 4.2.2 and implementation details in
subsection 6.5.2) and then move onto evaluating waypoint flying. We mounted a Kinect to
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Figure 7.15: Flying waypoints distributed within the motion capture system
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Figure 7.16: 2D visualisation of the different translation components when flying waypoints.
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Figure 7.17: Kinect mounted to the ceiling for indoor position control at home.

the ceiling at a height of 2.5 m and had it facing downwards. See Figure 7.17 for a photo
of the set-up.

Hover Stability

After generating a background model (which in this case is simply a flat plane - the floor)
we started the tracker and let the Crazyflie hover at 1 m altitude in the center of the field
of view. The flown trajectory is shown in 3D (Figure 7.18) and 2D (Figure 7.19).

RMSE’s and maximum errors are summarised in Table 7.5. The system worked surpris-
ingly well, with RMSE’s very close to those from tests within the motion capture studio
(Euclidean distance RMSEs of around 7.2 cm, 0.2 cm worse when compared to the motion
capture studio based system). Note, that these values are not obtained from the motion
tracker studio as the Kinect failed to work there (see section 7.2). However, we believe the
results are accurate as we visually observed a very steady hovering performance during
the experiment. Therefore, we conclude that one can safely the pose estimates from the
Kinect based pose estimator to achieve very good hover control performance.

Flying Waypoints

We specified a list of waypoints within the Kinects field of view. The system tracked the
Crazyflie without a single outlier; all pose estimates were reliable and lag free. Unfortu-
nately the field of view is rather limited so the maximal step size we used was 1 m. The
flown set of waypoints are visualised in Figure 7.20 and Figure 7.21.
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Figure 7.18: 3D visualisation of the flown trajectory when simply attempting to hover.
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Figure 7.19: Hovering performance using the Kinect pose estimate. RMSEs around 7 cm
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Figure 7.20: We specified waypoints to fly a 1m × 1m square followed by an altitude increase and
decrease of 0.75 m. This shape was roughly what fit in the Kinect’s field of view.
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Figure 7.21: 2D visualisation of the goal and flown trajectory using the Kinect based pose estimator.
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The results are extremely satisfying, as the quadrotor could rapidly fly from waypoint to
waypoint with minimal overshoot and oscillation. The results are summarised in Table 7.7.
Minimal overshoot is very important to avoid the quadrotor leaving the limited field of
view. We conclude that the Kinect based system is a very attractive way to feed pose
estimates in to the position controller. Using this system, uses can achieve accurate and
responsive position control from the convenience of their home office.

Table 7.7: Autonomous Waypoint Following: Kinect Poses

Step Size [m] Rise-Time [s] Overshoot [cm] Convergence [s]
x, y ±z x, y +z −z x, y +z −z x, y +z −z
1.0 0.75 0.92 1.81 0.89 11.2 16.4 6.8 0.28 0.89 0.66

7.4.3 VI-SLAM Tracking Based Control

In this section we evaluate how viable it is to directly use our unfiltered raw VI-SLAM
pose estimates to control the Crazyflie. Aside from using cheap and lightweight hardware
for the wireless camera system, we also have the additional disadvantage that we must
carry extra weight. On one hand, this does make the control less responsive and therefore
the quadrotor does become easier to control, but as we are on the verge of not having
enough thrust to lift off (see section 7.1.1), PID control can become pretty unpredictable as
it does not take thrust limitations into account.

As discussed in subsection 6.6.4, we use the barometer to estimate the scale. However, we
use a different starting procedure to simplify running repetitive experiments. We manu-
ally hold the quadrotor in our hands and start the VI-SLAM system. This generates the
initial keyframe. We then raise the quadrotor roughly a meter and keep it steady for long
enough for the algorithm to detect that the barometer altitude has stabilised and the base-
line is large enough. Using the debugging information we then confirm that the computed
poses are roughly metric and that the system is online, after which we activate the con-
troller while simultaneously removing our hand. The quadrotor stabilises after a quick
altitude dip and we can then move to the desired position where we conduct our hover
and waypoint experiments. We primarily use this method to prevent potential crashes in
case the system initialisation fails. Generally initialisation was stable and worked roughly
9 out of 10 times.

Hover Stability

As usual, we first start off by verifying the quadrotor can hover. Once we have successfully
launched the Crazyflie, we track its position with the motion capture studio. In Figure 7.22
and Figure 7.23 we plot the flown ground truth trajectory and the trajectory estimated by
the VI-SLAM system.

The results were very satisfying. The quadrotor held its position, never deviating more
than 25 cm from the goal position. RMSEs in the 10 cm-15 cm range are better than we
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Figure 7.22: 3D visualisation of the Crazyflie hovering using the VI-SLAM pose estimate.
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Figure 7.23: 2D visualisation of the Crazyflie hovering using the VI-SLAM pose estimate.
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predicted they would be. Occasionally 5 or 6 frames in a row would suffer from transmis-
sion corruption which explains some of the spikes. We conclude that using VI-SLAM pose
estimates is a viable option for drift free hover

Flying Waypoints

Here we evaluate waypoint flying using the VI-SLAM system for pose estimates. We fly a
square shape as indicated in Figure 7.24 and Figure 7.25.
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Figure 7.24: 3D visualisation of the estimated trajectory, flown trajectory and goal trajectory. When
looking from this angle, the trajectory is counter-clockwise. Notice the large vertical overshoot on
the descent.

The control evaluation results are shown in Table 7.8. Generally speaking we were are
happy with the results. However, the overshoot on the vertical descent is disappointing
but expected. As the Crazyflie was not purpose designed to carry and power a 5 g camera
system, it suffers from a reduced thrust to weight ratio. The thrust is simply not enough
to compensate for the negative vertical velocity.

We conclude that while position control using VI-SLAM pose estimates is certainly pos-
sible, the Crazyflie lacks the required thrust to have controlled descents. As a temporary
work around, small step sizes can be used.

135



7 Evaluation

−0.2
0

0.2
0.4
0.6

Y
[m

]

−1
−0.5

0
0.5

1

X
[m

]

Control Reference VI-SLAM Ground Truth

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5
1

1.5
2

Time [s]

Z
[m

]

Figure 7.25: Following waypoints using the VI-SLAM estimated poses. The groundtruth and
estimated trajectory are visualised on top of the waypoints. Notice that we plot 3 circuits, the first
of which corresponds to the 3D visualisation above. The significant overshoot on the descents is
clearly visible.

Table 7.8: Autonomous Waypoint Following: VI-SLAM Poses

Step Size [m] Rise-Time [s] Overshoot [cm] Convergence [s]
x ±z x +z −z x +z −z x +z −z
1.0 0.5 4.26 2.01 2.09 24.9 31.7 3.89 1.66 1.42 3.41
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8 Conclusion

In this thesis we presented an open-source and open-hardware 25 g nano-quadrotor with
wireless video capability. We designed and implemented a visual-inertial SLAM system,
a position controller, the required drivers and fused them into a single software stack that
enables the quadrotor to perform autonomous drift-free hovering and waypoint following.
To the best of our knowledge, we demonstrated the smallest and lightest quadrotor with
such capability.

Additionally, we implemented a nano-quadrotor pose estimator using a Kinect camera,
facilitating exteroceptive control in case a motion capture studio is not available.

Experiments were conducted to (a) prove that the systems do indeed work in practice, and
(b) to evaulate the pose estimation accuracy and position control performance. Hovering
RMSEs were in the range of 15 cm when using the on-board camera for pose estimation
and half that when using the Kinect based approach. Waypoint following worked flaw-
lessly when using the Kinect, but unfortunately the amount of spare thrust required for
recovering from a descent while carrying and powering the camera system was a little
too low. This resulted in significant overshoot when using the VI-SLAM based system to
perform altitude reduction with step sizes over 50 cm. This problem could probably be
mitigated with further controller tuning and by using motors with more thrust.

By providing open and user-friendly, ROS based access to the Crazyflie along with tools
for pose estimation and position control, we hope to encourage and ease further research
into the field of autonomous nano-quadrotors.

8.1 Future Work

There are a number of interesting research directions to augment and build upon the cur-
rent system, which we will briefly discuss in this chapter. Most were simply not achievable
due to time constraints.

Better Motion Control
While PID controllers are simple to implement and achieve average results with
ease, they are probably not the best choice. It would be interesting to explore more
advanced controllers, possibly incorporating a full motion model.

Add Particle/Kalman Filter to Kinect Tracking
Currently, the Kinect based pose estimator is as simple as it gets. One could do far
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better if one would develop a motion model and perform tracking rather than just
detection. A Kalman filter or particle filter would make a be a good fit.

Outdoor Tests
Further and more in-depth evaluation of the system is required. It would be es-
pecially interesting to see how it copes in the outdoors, especially with respect to
longer trajectories and external disturbances such as wind.

Place Recognition
Currently our proposed VI-SLAM system lacks place recognition functionality. This
would allow larger loops to be closed when adding keyframes to the map, even if
significant drift had been accumulated. Practically speaking, all the required data
structures and their contents are in place, so it would be relatively simple to incor-
porate loop recognition functionality into the propsed system. We would suggest
exploring the DLoop place recogniser [31] as it was shown that it works well with
binary descriptors we currently employ and could therefore be added with minimal
effort.

Crazyflie 2.0
The next generation Crazyflie (photo of an early prototype is shown in Figure 8.1) is
close to completion and it promises significantly more thrust at practically the same
size. Th estimated 2-4 fold payload increase helps overcome the limited thrust prob-
lems we experienced while descending with the camera system of the first Crazyflie
generation. Furthermore, the new design will greatly ease the process of adding a
camera and the new shape results in far less self occlusion.

More Onboard Computation
Ideally, one would move more and more functionality onto the device itself as com-
putational capabilities increase. This reduces overall complexity and eliminates prob-
lems caused by communication delay. Furthermore, sensor measaurements could be
used at a higher frequency as the communication throughput bottleneck is removed.
The next generation Crazyflie with its STM32F4 is a step in the right direction.

Figure 8.1: A prototype of the next generation Crazyflie. With a revised shape, 20dBm RF power
amplifier and much more thrust, it is a significant improvement over the first generation, especially
with respect to carrying and powering an additional camera.
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