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Abstract

Even after over two decades, the total variation (TV) remains one of the most popular reg-
ularizations for image processing problems and has sparked a tremendous amount of research,
particularly to move from scalar to vector-valued functions. In this paper, we consider the gra-
dient of a color image as a three dimensional matrix or tensor with dimensions corresponding to
the spatial extend, the differences to other pixels, and the spectral channels. The smoothness of
this tensor is then measured by taking different norms along the different dimensions. Depend-
ing on the type of these norms one obtains very different properties of the regularization, leading
to novel models for color images. We call this class of regularizations collaborative total varia-
tion (CTV). On the theoretical side, we characterize the dual norm, the subdifferential and the
proximal mapping of the proposed regularizers. We further prove, with the help of the general-
ized concept of singular vectors, that an `∞ channel coupling makes the most prior assumptions
and has the greatest potential to reduce color artifacts. Our practical contributions consist
of an extensive experimental section where we compare the performance of a large number of
collaborative TV methods for inverse problems like denoising, deblurring and inpainting.

1 Introduction

Many problems in image processing require the choice of a good prior that makes assumptions on
the structure of the underlying image we seek to estimate. This prior often takes the form of a
regularization term for an energy functional which is to be minimized. Observing that quadratic
regularization did not allow recovering sharp discontinuities, Rudin, Osher and Fatemi proposed
the total variation (TV) penalty [46] for solving inverse problems. The total variation pioneered
as a discontinuity-preserving regularizer in the sense that it assigns the same energy cost to sharp
and smooth transitions. Therefore, it is one of the simplest (convex) variational models that allows
discontinuities, yet it disfavours the solution to have oscillations.

Although the TV was originally designed for image denoising, it has become one of the most
popular regularizations for many image processing problems and has sparked a tremendous amount
of research. While many extensions like anisotropic TV [17, 26, 49], weighted TV [11, 22, 25], higher

∗This work was supported by the Ministerio de Ciencia e Innovación under grant TIN2011-27539, and by ERC
Starting Grant “Convex Vision”.
†Universitat de les Illes Balears, Department of Mathematics and Computer Science, Anselm Turmeda, Ctra. de

Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain (joan.duran@uib.es, catalina.sbert@uib.es). During this work,
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order TV [2, 5, 9, 39, 51], nonlocal TV [14, 20, 21, 40, 41], or nonconvex TV [32, 37] have been
proposed, the general idea of penalizing image oscillations with one-homogeneous functions depend-
ing on the spatial derivatives of the image remain the same. A lot of recent research has focused
on extending the classical TV model for grayscale images to vector-valued (color or multichannel)
images. We provide below an initial overview on vectorial total variation, which will be detailed and
link to our framework in Section 3.

1.1 Vector Valued Total Variation

Let Ω ⊂ RM be a bounded domain, then the scalar total variation of a locally integrable function
u ∈ L1

loc (Ω,R) is

TV(u) := sup
ξ∈Ξ

{∫
Ω

u(x) div (ξ(x)) dx

}
, (1)

where x = (x1, . . . , xM ) ∈ Ω and

Ξ =
{
ξ ∈ C1

c (Ω,RM ) : ‖ξ(x)‖ ≤ 1,∀x ∈ Ω
}

(2)

is the set of continuously differentiable and bounded functions with compact support in Ω. The
definition given in (1) introduces a dual formulation according to which the TV is the convex
conjugate of the indicator function of the convex set KTV := {div(ξ) : ξ ∈ Ξ}. For a differentiable
function u ∈ C1(Ω,R), one has TV(u) =

∫
Ω
|∇u(x)| dx. Note that the TV can be defined differently

depending on the norm used in (2). For a better understanding, let us restrict ourselves to u ∈
C1(Ω,R) and denote its gradient by∇u(x) = (∂x1

u(x), . . . , ∂xMu(x)) ∈ RM at each x ∈ Ω. Therefore,

using ‖ · ‖2 as dual norm leads to the isotropic TV,
∫

Ω

√∑
m (∂xmu(x))

2
dx, whereas the anisotropic

TV follows from choosing ‖ · ‖∞ in (2),
∫

Ω

∑
m |∂xmu(x)| dx.

The idea of the vectorial total variation is to extend the above definitions to vector-valued func-
tions u : Ω→ RC . A major decision with color images is how to couple channels. A straightforward
approach proposed by Blomgren and Chan [4] consists in using a global channel coupling by pe-
nalizing the `2 norm of the TV contributions across channels. However, local coupling outperforms
global coupling in many theoretical and practical aspects [29]. In this setting, most of the methods
in color image reconstruction used an `1 or `2 norm to penalize the TV of the channels at each pixel
[1, 6, 16]. Additionally, some interesting approaches incorporated a change of color space [8, 12].
Further versions of vectorial TV in literature are based on the singular values of the submatrices one
obtains by fixing a pixel location and looking at the remaining matrix in the channel and derivative
dimensions. Important cases are the Schatten−∞ norm [23], which penalizes the largest singular
value, and the nuclear norm or Schatten−1 norm [34], which is a convex relaxation of minimizing
the rank of the image Jacobian at each pixel [42].

1.2 Problem Formulation

For the sake of simplicity, we will consider discrete versions of the TV for the remainder of this
paper. Let us define the Euclidean spaces X := RN×C and Y := RN×M×C , where N is the number
of pixels of the image, M is the number of directional derivatives, and C is the number of color
channels. We thus consider a color image as a two-dimensional matrix of size N × C denoted by
u = (u1, . . . ,uC) ∈ X, with uk = (u1,k, . . . , uN,k)

> ∈ RN for each channel k ∈ {1, . . . , C}. On the
other hand, we define the linear operatorK : X → Y such thatKu ∈ Y is a three-dimensional matrix
or tensor. In the rest of the paper, we use the colon to denote all elements along one dimension. For
example, the `p norm of A ∈ Y with respect to its third dimension reads ‖Ai,j,:‖pp :=

∑
k |Ai,j,k|p.
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The general problem we are concerned with is

min
u∈X

G(u) + ‖Ku‖~b,a (3)

where G : X → R is a proper, convex, l.s.c. functional and ‖·‖~b,a is a collaborative sparsity enforcing
norm penalizing the gradient of the color image to be detailed later.

In this paper, we propose a general and intuitive framework that allows us not only to handle pre-
existing vectorial total variation models, but also to introduce some new interesting regularizations
for color image processing. Our idea is that, in a discrete setting, the gradient of a vector-valued
image is nothing but a three dimensional matrix or tensor with the dimensions corresponding to the
spatial extend, the directional derivatives considered as linear operators containing the differences
to other pixels, and the color channels. The energy or smoothness of this tensor can be measured by
taking different norms along the different dimensions. Depending on the types of norms one obtains
very different properties of the regularization.

Two relevant examples immediately arise from the proposed framework. For the sake of clarity,
let us write A := Ku ∈ Y . If we first take the `p norm to the color dimension, then the `q norm
along the derivative dimension of the remaining 2D matrix and, finally, the `r norm to the final pixel
vector, one obtains the `p,q,r norm:

‖A‖p,q,r :=

 N∑
i=1

 M∑
j=1

(
C∑
k=1

|Ai,j,k|p
)q/pr/q


1/r

. (4)

In (4), any of the indices p, q or r being equal to infinity means taking the maximum of the absolute
values along the corresponding dimension. A second important example consists of penalizing with
the `p norm the singular values of the 2D matrices arising from each pixel (that is, the Schatten−p
norm), and then applying the `q norm along the remaining vector:

(Sp, `q)(A) :=

 N∑
i=1

∥∥∥∥∥∥∥
 Ai,1,1 · · · Ai,1,C

...
. . .

...
Ai,M,1 · · · Ai,M,C


∥∥∥∥∥∥∥
q

Sp


1/q

. (5)

As an illustrative example, Figure 1 shows the results of a numerical experiment regarding the
ability of different channel couplings to suppress color artifacts. We use a synthetic image where we
leave open if the colored wave pattern is signal content or noise. We see that the channel-by-channel
regularization due to the `1 norm eliminates all noise from constant regions but the color structure
of the underlying image is not touched. On the contrary, the `∞ norm leads to the strongest channel
coupling and is able to remove the color oscillations completely. In between both, the `2 channel
coupling significantly reduces the colors around the white square but does not eliminate them.
Therefore, we expect a color coupling with an `p norm to be stronger the larger p is.

1.3 Contributions and Preliminary Works

We streamline below the novelty of our approach. The major contributions of this work are:

• The introduction of a large family of (discrete) convex energy functionals that generalize the
TV to vector-valued images. Motivated by recent advances in compressed sensing, we interpret
the total variation as looking for an image for which the gradient is sparse. We use collaborative
sparsity [52] to model different types of TV which are then used in a variational formulation
to provide regularized solutions of ill-posed inverse problems in color imaging. We call this
family of regularizers Collaborative Total Variation (CTV).
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Noisy `1 coupling `2 coupling `∞ coupling

Figure 1: Denoising a synthetic image where we leave open if the colored wave pattern is signal
content or noise. One observes that uncoupling channels (`1 norm) keeps the colored waves but the
strongest channel coupling (`∞ norm) eliminates them. In between both approaches, the `2 channel
coupling suppresses but does not eliminate the wave pattern.

• The definition of general collaborative sparsity enforcing norms that characterize all CTV
regularizations. We further compute their dual norms and their subdifferentials, which play a
direct role in computing optimality conditions of several regularized problems.

• The proof, with the help of the generalized concept of singular vectors [3], that an `∞ channel
coupling leads to the strongest correlation, makes the most prior assumptions and has the
greatest potential to reduce color artifacts.

• The proposal of sophisticated collaborative norms such as `∞,1,1, `∞,2,1, `2,∞,1, and `∞,∞,1,
which lead to novel methods for color images. All variants can be solved very efficiently by
using the same splitting scheme, for instance, the primal-dual hybrid gradient (PDHG) method
[7, 19, 53]. Since the key to obtaining a fast PDHG algorithm is an efficient evaluation of the
proximity operators, they are provided in detail.

• An extensive experimental evaluation of some of the proposed CTV methods on several image
processing problems, such as denoising, deblurring or inpainting. A detailed performance
comparison on different databases for color image denoising using the ROF model together
with the proposed collaborative TV regularizations is provided in the companion paper [15].
We further include some experiments for cartoon and texture decomposition. Code and an
online demo to reproduce all examples will be made available soon.

In the original conference paper [14], which contains preliminary parts of this work, we proposed
to penalize the `p,q,r norm of the three-dimensional structure underlying the nonlocal gradient for
color image reconstruction. In particular, the newly proposed `∞,1,1−NLTV model yielded superior
results. In the current paper, we extend the original framework in order to include more general
collaborative norms: we propose novel `p,q,r norms and further incorporate Schatten (Sp, `q) norms.
We also provide a mathematical justification of the superiority of the `∞ coupling for restoring high
inter-channel correlated images, as well we develop general properties for collaborative norms useful
in optimization. Finally, we give a detailed performance comparison of more vectorial TV methods
derived from the proposed framework in additional image processing problems.

During the wording of this work, the conference paper by Miyata and Sakai [35], which pioneered
the `∞ channel coupling, came to our hands. To the best of our knowledge, [35] is the only paper
that uses the supremum norm for vectorial TV. However, the authors proposed to first perform a
color transform that reduces the inter-channel correlation. From our point of view, this change of
color space is counter-intuitive when combined with the strong inter-channel coupling of `∞. One of
our main contributions is to introduce the `∞ norm in a straightforward way and efficiently exploit
its properties.
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1.4 Outline of the Paper

The rest of the paper is organized as follows. The next section introduces the definition of collabora-
tive norms and develops some general properties which play a direct role when computing optimality
conditions of regularized problems. In Section 3 we summarize the current literature on different
definitions for extending the TV to multichannel images. All of them are analyzed as special cases
of the proposed approach. We investigate in Section 4 which channel coupling leads to the strongest
correlation, makes the most prior assumptions and has the greatest potential to reduce color arti-
facts. In Section 5, we give detailed explanations on how to determine minimizers of typical image
processing problems using CTV as a prior. Particularly, we write down the proximity operators for
all types of regularizations discussed in this paper. We compare different CTV methods in numerical
experiments for denoising, deblurring and inpainting of color images in Section 6, before we draw
conclusions in Section 7.

2 Collaborative Total Variation Regularization

In the following, we introduce a novel regularization family which we use to solve inverse problems
in vector-valued image processing within a variational setting. The proposed models are based on
the use of collaborative sparsity enforcing norms, which will be abbreviated as collaborative norms,
that are defined below.

2.1 Definition of Collaborative Norms

By considering the derivatives of a color image as a linear operator, one obtains a three-dimensional
matrix or tensor with one dimension corresponding to the pixels in the image, one dimension corre-
sponding to the directional derivatives, and one dimension corresponding to the color channels.

Example 1. For illustrative purposes, suppose that a color image given on a rectangular domain
of size Nw × Nh has been rearranged from left to right and from top to bottom into a matrix u =
(u1,u2,u3) ∈ RN×3. Consider K to be the standard gradient computed via forward differences along
x− and y−directions. Then, the two-dimensional submatrix obtained by fixing the n−th pixel in the
first dimension is (

un+1,1 − un,1 un+1,2 − un,2 un+1,3 − un,3
un+Nw,1 − un,1 un+Nw,2 − un,2 un+Nw,3 − un,3

)
.

Example 2. Let us see how a neighbourhood filter fits in our framework for a color image with
four pixels. Let K be defined as the nonlocal gradient with respect to a weighting function w, which
measures the similarity between two pixels in the image. In this case, we have N = 4, M = 4, and
C = 3. Contrary to the previous example, we fix here the color dimension to the k−th channel.
Therefore, the remaining two-dimensional submatrix along pixel and derivative dimensions is

0 w1,2 (u1,k − u2,k) w1,3 (u1,k − u3,k) w1,4 (u1,k − u4,k)
w2,1 (u2,k − u1,k) 0 w2,3 (u2,k − u3,k) w2,4 (u2,k − u4,k)
w3,1 (u3,k − u1,k) w3,2 (u3,k − u2,k) 0 w3,4 (u3,k − u4,k)
w4,1 (u4,k − u1,k) w4,2 (u4,k − u2,k) w4,3 (u4,k − u3,k) 0

 .

In general, the previous matrix is of size N ×N . However, one usually uses a few nonzero weights
in practical applications.

Although in the literature only `1 and `2 norms have been mainly used so far, it makes sense
to look at vectorial TV as applying the more and more popular mixed norms to the gradient of
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the image (see [18, 27, 31] and references therein). For a general tensor A ∈ Y , we introduce the
following family of norms that we call collaborative norms.

Definition 1. Let ‖ · ‖a : RN → R be any vector norm and ‖ · ‖~b : RM×C → R any matrix norm.
Then, the collaborative norm of A ∈ RN×M×C , which will be denoted by ‖ · ‖~b,a : RN×M×C → R, is
defined as

‖A‖~b,a := ‖v‖a, with vi = ‖Ai,:,;‖~b, ∀i ∈ {1, . . . , N}, (6)

where Ai,:,: is the (two-dimensional) submatrix obtained by staking the second and third dimensions
of A at each i−th position in the first dimension.

We note that the examples given in (4) and (5) follow from the above definition. Indeed, the
`p,q,r norm arises from taking ‖ · ‖~b as the matrix `p,q norm and ‖ · ‖a as the `r norm. On the
contrary, the (Sp, `q) norm is obtained when one considers ‖ · ‖~b to be the matrix Schatten-p norm,
that is penalizing the `p norm of the singular values of the submatrix Ai,:,:, and ‖ · ‖a, the `q norm.

Since the collaborative norms defined in (6) are non invariant to permutations of the dimensions,
we propose to denote ‖A‖~b,a(col, der, pix) for first applying the matrix norm ‖ · ‖~b to the submatrix
obtained by fixing each pixel and looking at the remaining derivative and channel dimensions, and
then using the vectorial norm ‖·‖a along the pixel dimension. Importantly, note that our framework
covers any transform along each of the dimensions, in particular, allows us to incorporate color space
transforms before applying any collaborative norm.

2.2 General Properties of Collaborative Norms

It is well known that duality plays a direct role in computing optimality conditions of several regu-
larized problems. The following result characterizes the dual norm to any collaborative norm.

Theorem 1. Let ‖ · ‖~b∗ and ‖ · ‖a∗ denote the dual norms to ‖ · ‖~b and ‖ · ‖a, respectively. Consider
A ∈ RN×M×C and define v ∈ RN such that vi := ‖Ai,:,:‖~b∗ for each i ∈ {1, . . . , N}. If ‖v‖a∗ only
depends on the absolute values of v′is, then the dual norm to ‖ · ‖~b,a, denoted by ‖ · ‖~b∗,a∗ , is

‖A‖~b∗,a∗ = ‖v‖a∗ , with vi = ‖Ai,:,;‖~b∗ , ∀i ∈ {1, . . . , N}. (7)

In other words, the dual norm of the composite is the composite of the dual norms.

Proof. We aim at proving that

sup
{
〈A,B〉 : B ∈ RN×M×C , ‖B‖~b∗,a∗ ≤ 1

}
= ‖A‖~b,a,

where ‖ · ‖~b∗,a∗ is defined in (7). Let B ∈ RN×M×C satisfying ‖B‖~b∗,a∗ ≤ 1 be fixed but arbitrary,

and define v
~b
i := ‖Ai,:,:‖~b and v

~b∗

i := ‖Bi,:,:‖~b∗ for each i ∈ {1, . . . , N}. Applying Hölder inequality
for both ‖ · ‖~b and ‖ · ‖a norms yields

〈A,B〉 =

N∑
i=1

M∑
j=1

C∑
k=1

Ai,j,kBi,j,k ≤
N∑
i=1

‖Ai,:,:‖~b‖Bi,:,:‖~b∗ = 〈v~b, v~b
∗
〉

≤ ‖v~b‖a‖v
~b∗‖a∗ = ‖A‖~b,a‖B‖~b∗,a∗ ≤ ‖A‖~b,a.

The proof reduces now to show that there exists some B ∈ RN×M×C satisfying ‖B‖~b∗,a∗ ≤ 1 for
which the equality holds.

Since ‖ · ‖a∗ is the dual norm to ‖ · ‖a, there exists some z ∈ RN , ‖z‖a∗ ≤ 1, such that 〈v~b, z〉 =

‖v~b‖a. We can additionally assume that zi ≥ 0 for all i ∈ {1, . . . , N}. Indeed, suppose that zj < 0
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for some j ∈ {1, . . . , N} and define z̃ with z̃i = zi for i 6= j and z̃j = −zj . Since ‖z‖a∗ only depends

on the absolute values of the zi’s, it follows that z̃ meets ‖z̃‖a∗ ≤ 1. If v
~b
j > 0, then one deduces that

〈v~b, z〉 < 〈v~b, z̃〉, which contradicts the definition of ‖v~b‖a. If v
~b
j = 0, then ‖v~b‖a = 〈v~b, z〉 = 〈v~b, z̃〉

so that we need only to take z̃ instead of z.
On the other hand, since ‖ · ‖~b∗ is the dual norm to ‖ · ‖~b, there exists yi ∈ RM×C , ‖yi‖~b∗ ≤ 1,

such that 〈Ai,:,:, yi〉 = ‖Ai,:,:‖~b for all i ∈ {1, . . . , N}.
Now, it follows from the definitions of z ∈ RN and each yi ∈ RM×C that

‖A‖~b,a = ‖v~b‖a = 〈v~b, z〉 =

N∑
i=1

zi‖Ai,:,:‖~b =

N∑
i=1

zi〈Ai,:,:, yi〉 =

N∑
i=1

M∑
j=1

C∑
k=1

ziAi,j,ky
i
j,k,

from where ‖A‖~b,a = 〈A,B〉 by choosing Bi,j,k = ziy
i
j,k. Furthermore,

v
~b∗

i = ‖Bi,:,:‖~b∗ = ‖ziyi‖~b∗ = |zi| · ‖yi‖~b∗ ≤ |zi| = zi, ∀i ∈ {1, . . . , N}.

Let v ∈ RN , ‖v‖a ≤ 1, be fixed but arbitrary, then

〈v~b
∗
, v〉 =

N∑
i=1

v
~b∗

i vi ≤
N∑
i=1

zivi ≤ ‖z‖a∗‖vi‖a ≤ 1,

which implies ‖B‖~b∗,a∗ = ‖v~b∗‖a∗ = sup{〈v~b∗ , v〉 : v ∈ RN , ‖v‖a ≤ 1} ≤ 1. This means that we

found B ∈ RN×M×C , ‖B‖~b∗,a∗ ≤ 1, such that 〈A,B〉 = ‖A‖~b,a, which concludes the proof.

Theorem 1 states that the `p
∗,q∗,r∗ norm is dual to `p,q,r, where p∗, q∗, and r∗ denote the Hölder

conjugate exponents of p, q, and r, respectively. Similarly, the dual norm of the Schatten (Sp, `q)
norm is (Sp

∗
, `q
∗
). Furthermore, we have implicitly proved a Hölder’s inequality for collaborative

norms.

Lemma 1. Under conditions of Theorem 1, we have

|〈A,B〉| ≤ ‖A‖~b,a · ‖B‖~b∗,a∗ ,

for any A,B ∈ RN×M×C .

We also furnish ourselves with the subdifferential of the proposed collaborative norms that will
be useful for computing their proximal mappings.

Theorem 2. Consider A ∈ RN×M×C and define v ∈ RN such that vi := ‖Ai,:,:‖~b for each i ∈
{1, . . . , N}. If ‖v‖a∗ only depends on the absolute values of vi’s, then the subdifferential of ‖ · ‖~b,a is
given by

∂
(
‖A‖~b,a

)
=
{
B ∈ RN×M×C : ‖B‖~b∗,a∗ ≤ 1 and 〈B,A〉 = ‖A‖~b,a

}
. (8)

Proof. Since ‖ · ‖~b,a is positively one-homogeneous, it is well-known that its subdifferential is given
by

∂
(
‖A‖~b,a

)
=
{
B ∈ RN×M×C : 〈B,A〉 = ‖A‖~b,a and 〈B,M〉 ≤ ‖M‖~b,a ∀M

}
.

Recall now that the Legendre-Fenchel transform of a proper convex function is defined as f∗(y) :=
supx {〈y, x〉 − f(x)}. Furthermore, the Legendre-Fenchel transform of a norm f(x) := ‖x‖ turns to
be the indicator function on the unit ball of the dual norm:

f∗(y) =

{
0 if ‖y‖∗ ≤ 1,
+∞ otherwise.
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We refer the reader to [28, 43] for more details. Therefore, taking the supremum over all M ∈
RN×M×C in 〈B,M〉 ≤ ‖M‖~b,a yields f∗(B) ≤ 0. Due to Theorem 1, we necessarily have that

‖B‖~b∗,a∗ ≤ 1, which ends the proof.

3 Vectorial TV Revisited

The collaborative norms defined in the previous section support most of pre-existing definitions of
TV for vector-valued images, the most relevant of which are displayed in Table 1. For nonlocal TV
based models, we refer the reader to our conference paper [14].

Literature Continuous Formulation Collaborative TV

[1]
C∑

k=1

∫
Ω

√
(∂xuk(x))2 + (∂yuk(x))2 dx `2,1,1(der, pix, col)

Anisotropic
variant

C∑
k=1

∫
Ω

(
|∂xuk(x)|+ |∂yuk(x)|

)
dx `1,1,1(der, pix, col)

[4]

√√√√ C∑
k=1

(∫
Ω

√
(∂xuk(x))2 + (∂yuk(x))2 dx

)2

`2,1,2(der, pix, col)

Anisotropic
variant

√√√√ C∑
k=1

(∫
Ω

(
|∂xuk(x)|+ |∂yuk(x)|

)
dx

)2

`1,1,2(der, pix, col)

[6, 47]

∫
Ω

√√√√ C∑
k=1

((
∂xuk(x)

)2
+
(
∂yuk(x)

)2)
dx `2,2,1(der, col, pix)

Anisotropic
variants

∫
Ω


√√√√ C∑

k=1

(∂xuk(x))2 +

√√√√ C∑
k=1

(∂yuk(x))2

 dx `2,1,1(col, der, pix)

∫
Ω

√√√√ C∑
k=1

(
|∂xuk(x)|+ |∂yuk(x)|

)2
dx `1,2,1(der, col, pix)

Strong
coupling

∫
Ω

(
max

1≤k≤C
|∂xuk(x)|+ max

1≤k≤C
|∂yuk(x)|

)
dx `∞,1,1(col, der, pix)∫

Ω
max

1≤k≤C

(
|∂xuk(x)|+ |∂yuk(x)|

)
dx `1,∞,1(der, col, pix)

Isotropic
variants

∫
Ω

√(
max

1≤k≤C
|∂xuk(x)|

)2

+

(
max

1≤k≤C
|∂yuk(x)|

)2

dx `∞,2,1(col, der, pix)∫
Ω

max
1≤k≤C

√
(∂xu(x))2 + (∂yu(x))2 dx `2,∞1(der, col, pix)

Supremum
variant

∫
Ω

(
max

{
max

1≤k≤C
|∂xuk(x)|, max

1≤k≤C
|∂yuk(x)|

})
dx `∞,∞,1(col, der, pix)

[34, 47]

∫
Ω

r∑
i=1

|σi (∇u(x))| dx (S1(col, der), `1(pix))

Frobenius
norm

∫
Ω

√√√√ r∑
i=1

(σi (∇u(x)))2 dx (S2(col, der), `1(pix))

[23, 47]

∫
Ω

max
1≤i≤r

σi (∇u(x)) dx (S∞(col, der), `1(pix))

Table 1: Overview of local vectorial TV approaches and the way they fit in our framework.

Approaches to defining vectorial TV regularizations can roughly be divided into two classes.
The first class of methods extend the definition of the scalar case (1) to vector-valued images by
introducing a suitable channel coupling. The second class of approaches emerges when considering
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the Riemann geometry of the image manifold. All of them are analyzed below as special cases of
CTV. We formally use continuous notations even though our framework is given in the discrete
setting.

3.1 Vectorial TV Models from Channel Coupling

The first known extension of the total variation to vector-valued images is due to Blomgren and
Chan [4]. They applied the Euclidean norm to the vector obtained from the TV contributions across
channels, that is,

VTV(u) :=

√√√√ C∑
k=1

(TV(uk))
2
. (9)

From the Euler-Lagrange equation associated to (9), one easily observes that there is a global weak
channel coupling so that the same per-channel weight is used for all pixels. Consequently, this
model favours the restoration of images for which similar noise is measured in each channel. In our
framework, the vectorial TV proposed in [4] can be written as an `2,1,2(der, pix, col) penalty.

Probably, the most simple way to introduce multichannel TV is to sum up the contributions of
each channel separately [1], which leads to

VTV(u) :=

C∑
k=1

TV(uk). (10)

Depending on the coupling used along the derivative dimension, one obtains the isotropic ver-
sion, `2,1,1(der, pix, col), which was the one originally proposed in [1], or the anisotropic version,
`1,1,1(der, pix, col). As pointed out by Goldluecke et al. [23], the drawbacks underlying this ap-
proach are color smearing and edge distortion because of the missing channel coupling. We can
expect (10) to be a good choice if there is no particular relation between channels.

In [6], the isotropic vectorial TV with a local `2 channel coupling is proposed:

VTV(u) :=

∫
Ω

√√√√ C∑
k=1

(
(∂xuk(x))

2
+ (∂yuk(x))

2
)
dx, (11)

which is equivalent to the collaborative norm `2,2,1(der, col, pix). Blomgren and Chan [4] noted that
this method actually favours gray-value images over colored ones, which leads to color smearing in
denoising applications.

The inclusion of additional color transforms has been proposed to improve the performance of
vectorial TV methods. It is well known that RGB channels of natural images are highly correlated. In
view of this, some researchers incorporated different color transforms into the definition of vectorial
TV and penalized the gradient of each component in the new basis separately [8, 12]:

VTV(u) :=

C∑
k=1

TV(uk ◦ ψ), (12)

where ψ : RC → RC̃ is an orthonormal transform between color spaces. The key idea is to choose
ψ such that it provides effective reduction of the correlation among channels. Note that (12) is
equivalent to penalize the collaborative norm `1,1,1(der, pix, ψ(col)) for the anisotropic variant and
`2,1,1(der, pix, ψ(col)) for the isotropic variant.
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3.2 Vectorial TV Models from Riemann Geometry

A color image can be considered as a parametric two-dimensional manifold embedded in a C−dimensional
space [13]. In this framework, the metric tensor of the manifold is analogous to the structure tensor

of the image, that is, (∇u)
>∇u. Therefore, the eigenvectors of (∇u)

>∇u determine the directions
of maximal and minimal change and the eigenvalues, which will be respectively denoted by λ+ and
λ−, give their rate of change.

In this setting, Sapiro [47] introduced the following general vectorial TV model:

VTV(u) :=

∫
Σ

f(λ+, λ−) dx, (13)

where Σ denotes the image manifold and f is a suitable scalar-valued function. In general, (13) is
defined for differentiable functions, but only for special cases one has dual formulations that extend
it to locally integrable functions. This is the case of the Frobenius norm of the gradient given by

VTV(u) :=

∫
Ω

‖∇u(x)‖F dx, (14)

which follows from (13) by considering f(λ+, λ−) =
√
λ+ + λ−. Note that (14) is equal to the defi-

nition of the vectorial TV given in (11) and, thus, either `2,2,1(der, col, pix) or (S2(col, der), `1(pix))
can be used in our framework.

Based on the class of methods presented by Sapiro, Goldluecke et al. [23] showed that the natural
choice for vectorial TV arising from geometric measure theory is to penalize the largest singular value
of the Jacobian:

VTV(u) =

∫
Ω

σ1(∇u) dx, (15)

where σ1 is the largest singular value of ∇u or, equivalently, the largest eigenvalue of the structure
tensor (∇u)

>∇u. The regularization introduced in [23] is known as the spectral or Schatten−∞
norm and fits in our framework as (S∞(col, der), `1(pix)).

Recently, Holt [29] interpreted (15) as a special case of spatially-local coupling models. The
author proposed to smoothen a differentiable function u by penalizing its Jacobian matrix:

VTV(u) :=

∫
Ω

φ (Ju(x)) dx, (16)

where Ju : Ω → RM×C denotes the Jacobian matrix of u, so [Ju(x)]j,k = ∂
∂xj

uk(x). This Jacobian

framework is closely related to (13), since the structure tensor is given by Ju(x)J>u (x) at each point
in the image. Note that (10) and (11) are special cases of (16), however, any method using spatially-
global coupling such as (9) is not covered by Holt’s approach. In [29], the author considered only
functions that are written in terms of the singular values of Ju. Therefore, the Frobenius norm (14)
follows from φ :=

√
λ+ + λ−, the spectral norm (15) follows from φ :=

√
λ+, and the nuclear norm

[34] follows from φ :=
√
λ+ +

√
λ−. In our framework, the regularizations arising from (16) are given

by (Sp(col, der), `1(pix)).
Another relevant approach based on Riemann geometry was pioneered in the framework by

Kimmel, Malladi, and Sochen [30, 48], who considered the graph of an image embedded in a (C +
2)−dimensional space and proposed an area minimizing flow. This class of regularizations lead
to diffusion equations with the direction given by the Beltrami flow. Roussos and Maragos [45]
generalized the Beltrami flow by using higher dimensional mappings which depend on image patches:

VTV(u) :=

∫
Ω

ψ
(
λ+
r , λ

−
r

)
dx, (17)
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where ψ is increasing with respect to both arguments, and λ+
r and λ−r are the larger and smaller

eigenvalues of the structure tensor Kr ∗ (∇u)
>∇u, with Kr being a non-negative, rotationally

symmetric convolution kernel. In posterior works [33, 34], a deeper analysis for the particular choice

ψ(λ+
r , λ

−
r ) =

∥∥(√λ+
r ,
√
λ−r
)∥∥
p

was developed. There, the tensor TV that arises when p = 1 is

renamed as the nuclear norm, which can be written as (S1(col, der), `1(pix)) in our case. In order
to incorporate information from the vicinity of every point in the image domain as in (17), we
only have to incorporate the nonlocal gradient operator (see [14] for more details) and penalize the
resulting structure with the help of the (Sp(col, der), `1(pix)) norm. Contrary to our approach,
neither spatially-global coupling norms like (9) nor TV with `∞ channel coupling are covered by
(17).

3.3 Other Vectorial TV Models

For the sake of completeness, we should also mention that there exist several further TV variants,
such as nonconvex regularizations based on `p norms with p < 1 [32], and nonconvex extensions for
minimizing the rank of submatrices in a TGV framework [37]. Additional work has been done on
improving TV with the help of Bregman iteration [36, 38]. The study of the previously mentioned
classes of methods, however, goes beyond the scope of this paper.

4 Which Channel Coupling Disfavours Color Artifacts?

For discussing the question which CTV methods work better, we have to understand what kind of
properties they try to impose on the reconstructed image. In this section, we analyze the differences
between a color coupling in the `1, `2 and `∞ fashion with the help of the generalized concept
of singular vectors [3]. The question whether a strong or a weak coupling leads to better results
depends on the type of correlation in the data. Our investigation explains why the `∞ norm leads
to the strongest relation, makes the most prior assumptions and has the greatest potential to reduce
color artifacts.

Benning and Burger developed in [3] a generalization of the concept of singular vectors and
singular values for arbitrary convex regularizations, and showed that a signal can be restored partic-
ularly well if it is a singular vector to the regularization for which is used. The authors also showed
that, even in the case of noisy data, an exact reconstruction (up to a loss of contrast) is possible
under certain conditions. In this sense, they provided a theoretical basis for explaining that TV
regularization works particularly well for piecewise constant images.

In order to analyze the behaviour of collaborative norms for vectorial TV, we restrict our-
selves to the case of image denoising modelled by anisotropic vectorial TV, namely comparing
`1,1,1(col, der, pix), `2,1,1(col, der, pix) and `∞,1,1(col, der, pix) norms. Let D denote the usual local
discrete gradient operator such that Du ∈ Y , and consider only the energy due to the regularization,
that is, J(u) := F (Du) = ‖Du‖~b,a. We fix M = 2 since only x− and y−derivatives are considered.

Furthermore, let (x, y) denote any pixel of the image, with x being the row and y the column in
the rectangular domain. We provide below the definitions of singular value and singular vector for
image denoising problems.

Definition 2. Let J be a convex functional with ∂J(u) 6= ∅ at every u ∈ dom J . Then, every
function uλ ∈ X satisfying ‖uλ‖ = 1 and λuλ ∈ ∂J(uλ) is called a singular vector of J with
corresponding singular value λ.

In the case of J being one-homogeneous we even have that λuλ ∈ ∂J(uλ) is equivalent to
λ = J(uλ), which easily follows from Euler’s identity [50]: 〈v,u〉 = J(u) for any v ∈ ∂J(u).
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Note that, for any u ∈ ∂J(u), one can define λ :=
√
J(u) = ‖u‖ and uλ := 1

λu such that uλ
is a singular vector. We will therefore omit λ and focus on the construction of u ∈ X satisfying
u ∈ ∂J(u). Since J(u) = ‖Du‖~b,a, the latter condition is met if u can be written as u = DT z for

some z ∈ ∂Du

(
‖Du‖~b,a

)
which, by applying Theorem 2, is equivalent to

〈z, Du〉 = ‖Du‖~b,a and ‖z‖~b∗,a∗ ≤ 1. (18)

In what follows, all mathematical proofs have been moved to Appendix A. We aim at finding
some z ∈ Y satisfying (18) to determine u = DT z ∈ ∂J(u). Motivated by [3], it makes sense to
consider piecewise linear funtions whose changes happen only at {−1,+1}. More specifically, we
choose

z1
k(x, y) = c1kl

1
k(x) and z2

k(x, y) = c2kl
2
k(y), ∀k ∈ {1, . . . , C}, (19)

for some crk ∈ R, and lrk having the following properties: |lrk(x)| ≤ 1 for all x, lrk piecewise linear, and
the linearity changing at x only if |lrk(x)| = 1. The details for why these functions have to look like
this are left for the proof in Appendix A. We simply illustrate examples for z1

k and z2
k in Figure 2.

It is remarkable that singular vectors to the CTV methods under consideration can all be written
in the form of (19) and only differ in two aspects. First, the `1 case allows different lrk for different
color channels, while the `2 and `∞ norms do not. Second, the coefficients crk are different for each
regularization.

Illustration of z1
k Illustration of z2

k

Figure 2: Examples for functions z1
k and z2

k. As we can see, they are constant in one direction,
piecewise linear in the other, and the points where the piecewise linearity changes are at {−1,+1}.

Table 2 shows the precise construction of singular vectors. The results displayed there meet
what we would expect based on the regularization behavior of the different methods. For the `1

case, each channel can have its own lrk such that jumps can be at different positions in the different
channels. Since no relation on the positions of the jumps in different channels is imposed, we can
expect the `1,1,1 norm to not suppress color artifacts and not change the position of the edges. This
is a theoretical explanation for what we saw in Figure 1. Both `2 and `∞ couplings require the lrk
to be independent of k, that is, jumps in different color channels are encouraged to be at the same
position. The difference between them is that the size of the jumps, corresponding to the coefficients
crk, are allowed to be arbitrary in the `2 case, while they have to be either zero or of equal magnitude
in the `∞ norm. Equal magnitude of the jumps in all three color channels leads to a grayscale image.
This tells us that the regularization based on `∞,1,1, opposed to `2,1,1, encourages jumps that occur
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in all three channels to only change the intensity but not the color of the image. Looking at the
results in Figure 1, we can see again that the singular vector analysis confirms exactly what we
observed in practice.

Regularization Singular Vectors Properties

‖Du‖1,1,1 uk(x, y) = −c1k Dxl1k(x)− c2k Dyl2k(y) crk ∈ {0,±1}

‖Du‖2,1,1 uk(x, y) = −c1k Dxl1(x)− c2k Dyl2(y) The piecewise linear functions lr

do not depend on k, ‖cr‖2 = 1

‖Du‖∞,1,1 uk(x, y) = −c1k Dxl1(x)− c2k Dyl2(y) The piecewise linear functions lr

do not depend on k, crk ∈ {0,±1}

Table 2: Comparison of singular vectors for coupling the color channels in an `1, `2 and `∞ fashion. In
this setting, Dx and Dy denote the differences in the horizontal and vertical directions, respectively.

For illustration purposes, Figure 3 shows some examples of singular vectors. Depending on
the type of jumps in the data, that is, jumps in different color channels being independent of one
another, jumps being at the same position but changing the color, or jumps being at the same
position and likely not changing the color, the `1,1,1, the `2,1,1 or the `∞,1,1 norms will show a
superior performance. Interestingly, our numerical results in Section 6 indicate that a suppression of
color artifacts by using `∞,1,1 is more important than making weaker and more general assumptions
on the types of jumps in natural images.

5 Numerical Minimization

It is remarkable that all variants of different norms imposed on the three-dimensional structure can
be solved very efficiently by using splitting techniques. The only thing that changes when changing
the regularization is the proximity operator, which is discussed below.

Recall that the proximity operator of a proper, convex, and l.s.c. function f is

proxτf (x) = arg min
y

{
1

2
‖y − x‖2 + τf(y)

}
, (20)

where α > 0 is a scalar parameter. Furthermore, Moreau’s identity connects the proximity operator
and its Legendre-Fenchel transform in the following way:

x = proxτf (x) + τprox 1
τ f
∗

(x
τ

)
. (21)

5.1 Proximal Map of CTV Regularizers

Theorem 2 allows us to write the optimality condition to (20) as

Â = proxτ‖·‖~b,a(A) ⇔ ‖A− Â‖~b∗,a∗ ≤ τ and 〈A, Â〉 = τ‖Â‖~b,a + ‖Â‖22, (22)

for any A ∈ Y . In this setting, ‖ · ‖2 denotes the Euclidean norm applied to the vectorial structure
obtained by rearranging the original three-dimensional matrix into a vector. When it is not possible
to obtain an explicit solution from (22), one usually invokes duality through Moureau’s identity (21):

Â = A− proj 1
τ ‖·‖~b∗,a∗≤1(A), (23)



COLLABORATIVE TOTAL VARIATION 14

Image generated from zrk
which are different for all
k, resulting in an im-
age where all three color
channels have jumps at
different positions. Up to
a scaling, this is a singu-
lar vector to `1,1,1 but not
to `2,1,1 or `∞,1,1.

Image for which the
jumps are at the same
positions (all zrk are
equal), but at which
the coefficients crk are
[0.54, 0.2,−0.82]. Up to a
scaling, this is a singular
vector to `2,1,1 but not to
`1,1,1 or `∞,1,1.

Image with jumps at the
same positions and with
all coefficients being equal
to one. Up to a scaling,
this is a singular vector to
`1,1,1, `2,1,1, and `∞,1,1.

Image with four instead of
two jumps in each chan-
nel and in each direction.
Again, the edge sets of
the different color chan-
nels are different. Up to
a scaling, this is a singu-
lar vector to `1,1,1 but not
to `2,1,1 or `∞,1,1.

Image with four jumps in
each direction, jumps in
the different color chan-
nels being aligned, and
color channel coefficients
being [0.2,−0.59,−0.78].
Up to a scaling, this is
a singular vector to `2,1,1

but not to `1,1,1 or `∞,1,1.

Image with four jumps in
each direction, jumps in
the different color chan-
nels being aligned, and
color channel coefficients
being [1,−1,−1]. Up to
a scaling, this is a singu-
lar vector to `1,1,1, `2,1,1,
and `∞,1,1.

Figure 3: Illustrating singular vectors to vectorial TV regularization using collaborative norms.
While the true singular vectors have zero mean, the above images have been rescaled to lie between
zero and one for visualization purposes.
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where proj 1
τ ‖·‖~b∗,a∗≤1 denotes the projection operator onto the dual ball of radius τ .

Example 3. We now display the proximal mappings of the regularizations based on `p,q,r norms
which will be used in the experimental section.

• The proximity operator of the `1,1,1 norm decouples in all variables and each problem just
contains an absolute value penalty:(

proxτ‖·‖1,1,1(A)
)
i,j,k

= max (|Ai,j,k| − τ, 0) sign
(
Ai,j,k

)
.

• By a short computation, one obtains the proximal mapping of the `2,1,1 norm as the (general-
ized) shrinkage: (

proxτ‖·‖2,1,1(A)
)
i,j,k

= max (‖Ai,j,:‖2 − τ, 0)
Ai,j,k
‖Ai,j,:‖2

,

as well the proximal mapping of the `2,2,1 norm:(
proxτ‖·‖2,2,1(A)

)
i,j,k

= max (‖Ai,:,:‖2,2 − τ, 0)
Ai,j,k
‖Ai,:,:‖2,2

.

• Whenever the supremum norm is involved, it is more convenient to use (23) to express the
proximity operator by the proximity operator of its dual. For the `∞,1,1 norm, one has(

proxτ‖·‖∞,1,1(A)
)
i,j,k

= Ai,j,k − τsign
(
Ai,j,k

)(
proj‖·‖1≤1

(
1

τ
|Ai,j,:|

))
i,j,k

,

where |Ai,j,:| denotes the component-wise absolute value of vector Ai,j: and proj‖·‖1≤1, the

projection onto the unit `1 norm ball. Similarly, we obtain the proximity operator of the
`∞,∞,1 norm as(

proxτ‖·‖∞,∞,1(A)
)
i,j,k

= Ai,j,k − τsign (Ai,j,k)

(
proj‖·‖1,1≤1

(
1

τ
|Ai,:,:|

))
i,j,k

,

with proj‖·‖1,1≤1 denoting the projection operator onto the unit `1,1 ball. Finally, the proximity

operator of the `∞,2,1 norm is(
proxτ‖·‖∞,2,1(A)

)
i,j,k

= Ai,j,k − τsign
(
Ai,j,k

)(
proj‖·‖1,2≤1

(
1

τ
|Ai,:,:|

))
i,j,k

,

where proj‖·‖1,2≤1 denotes the projection operator onto the unit `1,2 ball.

Let us now discuss the proximity operator of the `2,∞,1 norm. For that purpose, we require a
previous result that states the chain rule for subdifferentials. The proof is outlined in Appendix B.

Theorem 3 (Chain Rule of Subdifferentials). Let f : Rn → Rm be a vector-valued function such
that fj : Rn → R is proper and convex for each j ∈ {1, . . . ,m}. Let g : Rm → R be convex, proper
and nondecreasing in each argument. Then,

∂(g ◦ f)(x0) ⊇

ξ ∈ Rn : ξ =

m∑
j=1

qjvj ,
q = (q1, . . . , qm) ∈ ∂g(f(x0)),

vj ∈ ∂fj(x0), ∀1 ≤ j ≤ m

 (24)

at any x0 ∈ dom (g ◦ f). If further x0 ∈ int dom (g ◦ f) and all fj are locally l.s.c., then the inclusion
in (24) becomes an equality.



COLLABORATIVE TOTAL VARIATION 16

Although it seems to be difficult to compute the proximal mapping of the `2,∞,1 norm at first
glance, Theorem 3 leads to a particularly interesting observation regarding functionals having an
`2 norm as an inner regularization. The following result will provide us the key for computing this
class of proximal operators.

Theorem 4. Let f : Rn×m → Rn be defined as

fi(u) := ‖ui,:‖2 =

√√√√ m∑
j=1

u2
i,j , ∀i ∈ {1, . . . , n}, ∀u ∈ Rn×m,

and let g : Rn → R be any proper, convex function that is nondecreasing in each argument. Then,
the proximity operator of g ◦ f is(

proxτ(g◦f)(u)
)
i,j

=
ui,j
‖ui,:‖2

max(‖ui,:‖2 − τvi, 0), ∀i, j,

where vi, i ∈ {1, . . . , n}, are the components of the vector v ∈ Rn given by

v = arg min
w∈Rn

1

2

∥∥∥∥w − 1

τ
f(u)

∥∥∥∥2

2

+
1

τ
g∗(w). (25)

Proof. The optimality condition arising from (20) yields

proxτ(g◦f)(u) = u− τξ, for some ξ ∈ ∂(g ◦ f)(û). (26)

Let us define û as
ûi,j =

ui,j
‖ui,:‖2

max(‖ui,:‖2 − τvi, 0), ∀i, j, (27)

where vi, i ∈ {1, . . . , n}, are the components of the vector v ∈ Rn solving (25). We aim at proving
that û satisfies (26). For that purpose, note that û in (27) can be stated as the solution of a weighted
`1,2 regularized problem:

ûi,: = ui,: − τvizi, for some zi ∈ ∂ (‖ûi,:‖2) , ∀i ∈ {1, . . . , n}. (28)

In view of (26) and (28), we only need to prove that the matrix with columns vizi is in ∂(g ◦ f)(û).
Due to the chain rule stated in Theorem 3, this follows whenever zi ∈ ∂fi(û), which is true by
definition of zi, and v ∈ ∂g(f(û)). In order to prove the latter, note that (25) yields the optimality
condition

t = f(u)− τv, (29)

for some t ∈ ∂g∗(v) or, equivalently, v ∈ ∂g(t). It is thus sufficient to show that ti = ‖ûi,:‖2 ≡ fi(û).
From (29), we see that ti = ‖ui,:‖2 − τvi for each i ∈ {1, . . . , n}. Since g is nondecreasing in each
argument, then its proximity operator is nonnegativity preserving and so ti ≥ 0. Consequently, if
‖ûi,:‖2 = 0, then (27) implies ‖ui,:‖2 ≤ τvi and, thus, ti = 0. Otherwise, it follows that

‖ûi,:‖2 =

∥∥∥∥ ui,:
‖ui,:‖2

(‖ui,:‖2 − τvi)
∥∥∥∥

2

=
∣∣‖ui,:‖2 − τvi∣∣ = ti,

which completes the proof.
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Example 4. By Theorem 4, the proximity operator of the `2,∞,1 norm is(
proxτ‖·‖2,∞,1(A)

)
i,j,k

=
Ai,j,k
‖Ai,j,:‖2

max (‖Ai,j,:‖2 − τvi,j , 0) ,

where

vi,j =

(
proj‖·‖1≤1

(
1

τ

(
‖Ai,j,:‖2

)
j

))
i,j

.

In the above formula, (‖Ai,j,:‖2)j denotes the vector we obtain by stacking ‖Ai,j,:‖2 for all j ∈
{1, . . . ,M}. Note that the proximal mappings associated to `2,1,1 and `2,2,1 can also be computed by
means of Theorem 4.

Finally, the proximal mapping associated to the (Sp, `q) norm is a simple combination of a
singular value decomposition followed by the proximity operator of the corresponding `p norm.
Since the regularizations considered in this paper, which base on (S1, `1) and (S∞, `1) norms, have
an outer `1 norm, then the computation of their proximity operators decouples at each pixel. By
denoting B := A>i,:,:, we are thus left with a problem of the form

min
D∈RC×M

1

2
‖D −B‖22 + τ‖D‖Sp , (30)

the solution of which is given in the following proposition.

Proposition 1. Let UΣ0V
T be the singular value decomposition of a matrix B ∈ RC×M . Then,

the proximity operator of the Sp−norm is given by

proxτSp(B) = BV Σ̂Σ†0V
>,

where Σ†0 denotes the pseudo-inverse matrix of Σ0 and Σ̂ = proxτ‖·‖p(diag(Σ0)).

In the following example, we show the proximal mappings of the CTV regularizations using the
Schatten norms we are interested in.

Example 5. For A ∈ RN×M×C , the proximity operator of the (Sp, `1) norm is(
proxτ(Sp,`1)(A)

)
i

= A>i,:,:Vi
(
proxτ‖·‖p(diag(Σi))

)
Σ†iV

>
i , ∀i ∈ {1, . . . , N},

where A>i,:,: = UiΣiV
>
i is the singular value decomposition of A>i,:,: ∈ RC×M .

5.2 Solving the Minimization Problem

For solving the optimization problem (3) that arises from the proposed collaborative TV, we use
the primal-dual hybrid gradient (PDHG) method [7, 19, 24, 53], a powerful optimization algorithm
that breaks complex problems into simple sub-steps and can handle non-smoothness of the energy
functional.

By introducing an auxiliary variable g ∈ Y and the constraint Ku = g in (3), then we obtain
the following formulation of the original problem:

min
u∈X, g∈Y

G(u) + ‖g‖~b,a subject to Ku = g.

Now, consider the Lagrangian L (u,g,q) = G(u) + ‖g‖~b,a + 〈q,Ku − g〉Y , then the associated
primal-dual problem is

max
q∈Y

min
u∈X, g∈Y

G(u) + ‖g‖~b,a + 〈q,Ku− g〉Y . (31)
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The PDHG algorithm for solving (3) iteratively computes the solution of the associated saddle-point
problem (31) by means of

un+1 = proxτnG(un − τnK>qn),

ūn+1 = un+1 +
(
un+1 − un

)
,

gn+1 = prox 1
σn
‖·‖~b,a

(
Kūn+1 +

qn

σn

)
,

qn+1 = qn + σn(Kūn+1 − gn+1),

where n ≥ 0 is the iteration number, and τn, σn > 0 are the step-size parameters. The algorithm
basically consists of alternating a gradient descent in the primal variables u and g, and a gradient
ascent in the dual variable q.

6 Applications to Image Processing

We present an extensive performance evaluation of different CTV based methods on several inverse
problems in color imaging such as denoising, deblurring, and inpainting. In these cases, one typically
introduces a positive weighting constant λ ≥ 0 that controls the trade-off between G, which forces
the solution of the optimization problem to be close to some given data, and the regularization term:

min
u∈X

λ

2
G(u) + ‖Ku‖~b,a.

For the sake of consistency among comparisons, we solved each problem with a range of different
values of λ and only reported the best result for each regularization and each degradation condition
in terms of the highest peak signal-to-noise ratio (PSNR). Furthermore, we chose the linear operator
K to be the discrete local gradient computed via forward differences. In all tests, we used images
from the Kodak collection (http://r0k.us/graphics/kodak/), and all results were saved in integer
values relative to the intensity range [0, 255].

In view of the optimality conditions of (31), one defines the following sequences of primal and
dual residuals:

Pn+1 :=
1

τn

(
un − un+1

)
−K>

(
qn − qn+1

)
,

Dn+1 :=
1

σn

(
qn − qn+1

)
−K

(
un − un+1

)
.

As stopping criterion we used a tolerance value of 10−5 for the average of the above residuals per
pixel. In any case, we stopped the algorithm after 1000 iterations even if the tolerance was not
reached.

6.1 Image Denoising: CTV− `2 Model

We propose to extend the widely mentioned ROF model to color images by using CTV regularization.
The primal problem is therefore given by

min
u∈X

λ

2
‖u− f‖22 + ‖Ku‖~b,a. (32)

The `2 norm is the most suitable choice for suppressing Gaussian noise, since the energy (32)
corresponds to the maximum a posteriori estimate. The proximity operator of the fidelity term
G(u) := λ

2 ‖u− f‖22 is

û = proxτG(u) ⇔ û =
u + τλf

1 + τλ
.

http://r0k.us/graphics/kodak/


COLLABORATIVE TOTAL VARIATION 19

To determine the general behaviour of several CTV regularizations with respect to changing the
balancing parameter, Figure 4 shows the plots of the PSNR each method achieved for certain values
of λ. For these tests, we artificially added zero-mean Gaussian noise of standard deviation 25 to a
noise-free color image. One observes that the peaks of the PSNR curves of the regularizations using
`∞,1,1, (S1, `1), `2,1,1, and `∞,2,1 norms achieve the highest values. Interestingly, although `1,1,1

shows one of the lowest performances in terms of the maximal PSNR, its corresponding curve seems
to drop slower as one overestimates λ. As it is well known, the optimal value of λ does not always
lead to a complete noise removal. However, a huge reduction of the balancing parameter provides
an over-smoothed result and, thus, significant information is lost. In the end, the optimal value
in terms of the PSNR is obtained as a compromise between removing noise and preserving signal
content.

Figure 4: Comparison of CTV methods using different values of λ. The peaks of the curves of
`∞,1,1, (S1, `1), `2,1,1 and `∞,2,1 achieve the highest values. Although `1,1,1 shows one of the lowest
performances in terms of the maximal PSNR, its curve drops slower as one overestimates λ.

As an example of our experiments on CTV − `2 denoising, we artificially added Gaussian noise
with standard deviation 30 to the twenty-third Kodak image and computed the PSNR value for
each reconstruction by comparing to the noise-free image. Picking the optimal value of λ in terms
of the PSNR for each method, we obtained the results shown in Figure 5. We clearly observe that
the CTV regularization based on the `∞,1,1 norm provides the best PSNR value, and its denoised
image is superior to the others in visual quality. Indeed, see the strong color artifacts on the parrot’s
cheek for all results except for the `∞,1,1 norm. Although the (S1, `1) norm shows nice denoising
properties, a derivative matrix which has two derivative vectors being equal to zero also has rank one
such that colored edges are not actively suppressed. The large inter-channel correlation of images in
the Kodak dataset explains why the `∞,1,1 norm, which encourages jumps that occur in all channels
in the sense given in Section 4, performs visually the best. On the other hand, `1,1,1 shows one of the
worst performances since it neither couples the colors nor the derivatives. Furthermore,

(
S∞, `1

)
does not work very well. It seems that imposing jumps of different color channels to point into the
same direction can more effectively be enforced by the convex relaxation (S1, `1) than having a single
direction in the dual variable as in the

(
S∞, `1

)
approach. Finally, the isotropic `2,2,1 is beaten by

the anisotropic `2,1,1, and the new-proposed `2,∞,1(der, col, pix) outperforms `∞,2,1(col, der, pix) in
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terms of both PSNR and visual quality assessment.
A more detailed comparison analysis on color image denoising by the CTV−`2 model, supporting

software and an online demo will be made available soon.

6.2 Image Denoising: CTV− `1 Model

If we replace the `2 norm in the data-penalty term of (32) by the more robust `1 norm, the CTV−`1
model arises:

min
u∈X

λ‖u− f‖1 + ‖Ku‖~b,a. (33)

Some well-known advantages of (33) over the classical ROF model are contrast invariance and more
effectiveness in removing noise containing strong outliers such as the salt-and-pepper type noise. In
this case, the proximity operator of the fidelity term G(u) := λ‖u− f‖1 is

û = proxτG(u) ⇔ ûi,k =

 ui,k − τλ if ui,k − fi,k > τλ,
ui,k + τλ if ui,k − fi,k < −τλ,
fi,k if |ui,k − fi,k| ≤ τλ.

Note that the CTV− `1 model poses a nonsmooth optimization problem, which is also treatable by
the PDHG algorithm.

Given the probability α ∈ [0, 1] that a pixel is corrupted, we introduced salt-and-pepper noise
by setting a fraction of α

2 randomly selected pixels to black, and another fraction of α
2 randomly

selected pixels to white. We display in Figure 6 the optimal result each method provided on parts
of the fifth Kodak image for α = 0.15. At first glance, the regularization using the newly-proposed
`∞,1,1 norm is the most successful in suppressing color spots. The numerical results confirm the
previous visual inspection, since the PSNR value associated to the denoised image given by `∞,1,1

is clearly superior to all others. In fact, this is the unique method that actively suppresses the
input noise and preserves sharp edges. For instance, observe that the edges separating saturated
regions, such as the contours of the green and yellow front mudguards, are specially damaged with
all regularizations except `∞,1,1. Finally, it is worth stressing that `2,∞,1 clearly outperforms `∞,2,1.

6.3 Image Deblurring

The extension of the variational ROF model for image deblurring involves the minimization of the
primal energy

min
u∈X

λ

2
‖Au− f‖22 + ‖Ku‖~b,a,

where A is a linear operator modeling the degradation of u caused by blur and possibly noise. For
the following experiments, we focus on image deconvolution, which refers to the case where the blur
to be removed is linear and shift-invariant so that it may be expressed as a convolution of the image
with a point spread function. Accordingly, the linear operator is given by Au = ϕ ∗ u, where ϕ is a
Gaussian convolution kernel.

The proximal mapping of the fidelity term G(u) := λ
2 ‖Au− f‖22 is given by

û = proxτG(u) ⇔ (I + τλA∗A)û = u + τλA∗f . (34)

Note that the above formula requires to compute (I + τλA∗A)−1, which is huge time consuming
in the spatial domain for large values of the standard deviation of the kernel. This drawback is
solved by working in the Fourier domain where the convolution becomes a mere multiplication.
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Clean Noisy

`1,1,1(col, der, pix)
PSNR = 30.14

`2,1,1(col, der, pix)
PSNR = 31.00

`2,2,1(col, der, pix)
PSNR = 30.92

`∞,1,1(col, der, pix)
PSNR = 31.13

`∞,2,1(col, der, pix)
PSNR = 30.91

`∞,∞,1(col, der, pix)
PSNR = 30.71

`2,∞,1(der, col, pix)
PSNR = 30.97

(
S1(col, der), `1(pix)

)
PSNR = 31.05

(
S∞(col, der), `1(pix)

)
PSNR = 30.46

Figure 5: Close-ups of the ground truth, the input noisy data (additive Gaussian noise of s.d. 30),
and the denoised images obtained from the minimization of (32) on the twenty-third Kodak image.
For each method, the value of λ which gave the best PSNR value was determined experimentally.
The PSNR value for each result is noted below the image. We observe that strong color artifacts
remain on the parrot’s cheek in all results except for the `∞,1,1 norm. In fact, this method gives
rise to significantly better visual quality and provides the best PSNR value. Although (S1, `1) most
closely approaches `∞,1,1 in terms of the numerical assessment, it is still far from suppressing spots
and color artifacts as `∞,1,1 does.
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Clean Noisy

`1,1,1(col, der, pix)
PSNR = 26.40

`2,1,1(col, der, pix)
PSNR = 29.33

`2,2,1(col, der, pix)
PSNR = 28.77

`∞,1,1(col, der, pix)
PSNR = 31.67

`∞,2,1(col, der, pix)
PSNR = 28.62

`∞,∞,1(col, der, pix)
PSNR = 29.75

`2,∞,1(der, col, pix)
PSNR = 30.50

(
S1(col, der), `1(pix)

)
PSNR = 30.86

(
S∞(col, der), `1(pix)

)
PSNR = 27.15

Figure 6: Close-ups of the ground truth, the input noisy data (15% of pixels with salt-and-pepper
noise), and the denoised images obtained from the minimization of (33) on the fifth Kodak image.
For each method, the value of λ which gave the best PSNR value was determined experimentally.
The PSNR value for each result is noted below the image. We observe that the `∞,1,1 norm is
clearly superior in terms of the error as well from a visual inspection. Indeed, it is the most effective
regularization to remove spots and preserve colors. Note also that `∞,1,1 and (to a lesser extend)
`2,∞,1 produce denoised images with sharp contours, which does not happen in all other cases since
edges separating colored regions are damaged.
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Hence, using the convolution theorem of Fourier transforms, the solution of (34) can be efficiently
computed as

û = F−1

(
F(u) + τλF(A)∗F (f)

1 + τλF(A)2

)
, (35)

where F and F−1 denote the Fast Fourier Transform (FFT) and the inverse FFT, respectively. Note
that all operations in the above formula are componentwise.

We tested all CTV regularizations on the third Kodak image. The degraded data was simulated
by convolving the ground truth with a Gaussian kernel of standard deviation 2 and further adding
white Gaussian noise of standard deviation 0.5. The quality of the restored images with optimal
values of λ can be evaluated both visually and numerically in Figure 7. We observe that the blur
has been almost suppressed in all cases even though some geometry and texture cannot be recovered
from the corrupted data. As expected from any TV based model, the restored images tend to be
piecewise smooth. In general terms, it seems that isotropic regularization is more suitable for image
deblurring – at least with very little noise – than anisotropic filtering. Indeed, `2,2,1 and the new-
proposed `∞,2,1 provide the best PSNR values together with the nuclear norm (S1, `1). On the other
hand, one realizes that `∞,1,1 and (S1, `1) are superior in removing color artifacts at the text on the
cap. In the end, the nuclear norm compromises between removing blur and avoiding color spots.

6.4 Image Inpainting

Image inpainting is the process of filling-in lost data in a known region of an image. Although during
the last years a lot of effort has been put into the development of powerful image priors, we are
interested in the TV based image inpainting model [10], which is limited to inpainting the geometric
structure at unknown pixels.

Let I ⊂ RN be the inpainting domain, that is, the set of all pixels in the image where the
intensity value of all color channels is unknown. Therefore, the primal problem we focus on is given
by

min
u∈X

λ

2
‖u− f‖2RN\I + ‖Ku‖~b,a, (36)

where ‖ · ‖RN\I denotes the Euclidean norm at known pixels. We see that the proximity operator of

G(u) = λ
2 ‖u− f‖2RN\I is

û = proxτG(u) ⇔ ûi,k =


ui,k if i ∈ I,
ui,k + τλfi,k

1 + τλ
otherwise.

For the comparative quality assessment in image inpainting, we used a mask with random scrib-
bles. In Figure 8 we show the optimal result in terms of the highest PSNR provided by each CTV
regularization on parts of the twentieth Kodak image. Since the image domain which is to be filled in
is thin, pretty good numerical results are in general obtained. Indeed, all methods exhibit excellent
PSNR since an increase of about 20 dB is reached (the value of the input data is 20.58). Concerning
`p,q,r norms, one realizes that isotropic regularization performs significantly better than anisotropic
filtering. In this setting, observe that `1,1,1, `2,1,1, and `∞,1,1 provide the lowest PSNR values as well
the worst inpainted images from visual quality assessment. On the other hand, CTV methods based
on `2,2,1, (S∞, `1), (S1, `1), and `2,∞,1 norms are significantly superior to all other regularizations
both visually – compare the results at the edge separating the two gray regions with different color
scheme – and in terms of the metric. Accordingly, TV-based inpainting prefers straight contours as
they have minimal total variation, but it is less successful for recovering curved boundaries. In this
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Clean Blurred and noisy

`1,1,1(col, der, pix)
PSNR = 32.16

`2,1,1(col, der, pix)
PSNR = 32.56

`2,2,1(col, der, pix)
PSNR = 32.76

`∞,1,1(col, der, pix)
PSNR = 32.59

`∞,2,1(col, der, pix)
PSNR = 32.71

`∞,∞,1(col, der, pix)
PSNR = 32.45

`2,∞,1(der, col, pix)
PSNR = 32.67

(
S1(col, der), `1(pix)

)
PSNR = 32.77

(
S∞(col, der), `1(pix)

)
PSNR = 32.57

Figure 7: Close-ups of the ground truth, the input blurred and noisy data (Gaussian convolution of
s.d. 2 and further additive Gaussian noise of s.d. 0.5), and the restored images each method provided
on the third Kodak image. For each CTV regularization, the value of λ which gave the best PSNR
value was determined experimentally. The PSNR value for each result is noted below the image. We
observe that the blur has been almost suppressed in all cases although some spatial details cannot
be recovered from the corrupted data. As expected from TV based models, the restored images tend
to be piecewise smooth. Note also that the visual and numerical differences are not as great as in
the denoising case. However, it seems that isotropic diffusion is more suitable for deblurring images
with very little noise since `2,2,1 and the new-proposed `∞,2,1 provide the best results together with
the nuclear norm (S1, `1).
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Clean Masked

`1,1,1(col, der, pix)
PSNR = 37.97

`2,1,1(col, der, pix)
PSNR = 38.15

`2,2,1(col, der, pix)
PSNR = 39.15

`∞,1,1(col, der, pix)
PSNR = 37.84

`∞,2,1(col, der, pix)
PSNR = 38.23

`∞,∞,1(col, der, pix)
PSNR = 37.88

`2,∞,1(der, col, pix)
PSNR = 38.95

(
S1(col, der), `1(pix)

)
PSNR = 39.09

(
S∞(col, der), `1(pix)

)
PSNR = 39.10

Figure 8: Close-ups of the ground truth, the input masked image with random scribble, and the
inpainted images provided by the minimization of (32) on the twentieth Kodak image. For each
method, the value of λ which gave the best PSNR value was determined experimentally. The PSNR
value for each result is noted below the image. In this case, we realize that anisotropic diffusion
severely compromises the perfomance of `p,q,r norms. Indeed, `1,1,1, `2,1,1 and `∞,1,1 provide the
lowest PSNR values as well the worst inpainted images from visual quality assessment. On the
contrary, `2,2,1, (S∞, `1), (S1, `1) and `2,∞,1 give similar results and are able to better recover sharp
edges damaged by the mask.
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setting, one sees that all methods perfectly recover the color edge in the propeller of the plane, but
they fail at its yellow boundary.

CIE-L∗a∗b∗ space. All previous experiments were performed using the standard RGB color
space. The CIE-L∗a∗b∗ is a perceptually uniform color space, a property which the common RGB
model does not have, describing all the colors visible to the human eye. The three coordinates L∗,
a∗ and b∗ represent the lightness of the color, its position between red/magenta and green, and its
position between yellow and blue, respectively. Contrary to RGB color systems, in this space the
color differences which one perceives correspond to distances when measuring colorimetrically.

Figure 9 shows the results of minimizing (36) on both RGB and CIE-L∗a∗b∗ color spaces by
means of CTV − `2,∞,1 regularization, which benefits from the superiority of isotropic diffusion as
demonstrated in Figure 8. We observe that the choice of the uniform color space leads to a slight but
visually noticeable improvement. Indeed, the bleeding of red across edges in RGB space vanishes
when transforming the image into CIE-L∗a∗b∗ before inpainting. Accordingly, the PSNR gain is not
negligible.

Clean
`2,∞,1 in RGB space

PSNR = 38.95
`2,∞,1 in CIELab space

PSNR = 39.18

Figure 9: Close-ups of the ground truth and the inpainted images provided by the minimization of
(36) on the twentieth Kodak image. In each case, the value of λ which gave the best PSNR value
was determined experimentally. First, we note that the PSNR gain in the CIE-L∗a∗b∗ space is not
at all negligible. But, more importantly, the visual quality assessment demonstrates that a bleeding
of red across edges appears in the RGB space. This effect vanishes when the inpainting is carried
out in the perceptually uniform CIE-L∗a∗b∗ color space.

7 Conclusions

Considering the discrete setting, we have proposed to view the gradient of a multispectral image as
a three dimensional matrix or tensor with the dimensions corresponding to the spatial extend, the
directional derivatives considered as linear operators containing the differences to other pixels, and
the color channels. We have then introduced collaborative total variation as the regularization that
arises from taking different norms along each dimension. In particular, we have proposed to use col-
laborative norms such as `p,q,r and (Sp, `q), leading to very different properties of the regularization.
We have provided relevant mathematical characterizations of the dual norm, the subdifferential and
the proximal mapping of the proposed penalizations, which play a direct role in computing opti-
mality conditions of several regularized problems. We have further proved, using the generalized
concept of singular vectors, than an `∞ coupling leads to the strongest channel correlation, makes
the most prior assumptions, and has the greatest potential to reduce color artifacts.

In experiments, we have demonstrated the wide applicability of the collaborative total variation to
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general inverse problems like denoising, deblurring and inpainting. For the numerical computation
of the solution we have used the primal-dual hybrid gradient algorithm and stated all proximity
operators of the considered CTV regularizations. From the above standards, we have exhibited
the superiority of the `∞,1,1 norm for a stronger suppression of color artifacts, and of the isotropic
regularizations for filling in thin regions.
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A Singular Vector Analysis

We give here the mathematical details regarding the construction of singular vectors as discussed
in Section 4. Let us remark that the following analysis could be done in a continuous setting with
weak derivatives and distributions as long as there is a finite number of points at which the linearity
of the functions l changes. Since our whole discussion about collaborative norms has been dealing
with the discrete case, we limit the proofs in this section to the discrete setup, too.

Let l : {x1, ..., xN} → [−1, 1] be a discretization of a piecewise linear function such that the
piecewise linearity only changes at {−1, 1}. More precisely, define the slope as well as the discrete
derivative operator at each point as si := Dxl(xi) = l(xi) − l(xi−1). Let DT

x denote the adjoint
operator of Dx defined by analogy with the continuous setting: 〈DT

x l, f〉 = 〈l,Df〉. One checks
easily that DT

x l(xi) = l(xi) − l(xi+1). Then, we require either si+1 = si, which means that we
are in the piecewise linear part, or |l(xi)| = 1, which means that we are at a point where the type
of linearity changes. As a first step, let us state the following lemma which will be needed in all
following proofs.

Lemma 2. Using definitions and notations above, si−si+1 > 0 implies l(xi) = 1, and si−si+1 < 0
implies l(xi) = −1. In particular, l(xi)DxD

T
x l(xi) = |si−si+1| and l(xi) = sign (si−si+1) whenever

si 6= si+1.

Proof. If si− si+1 > 0, then |l(xi)| = 1 due to definition of l. Let us suppose that l(xi) = −1. From
|l(xj)| ≤ 1 for all j ∈ {1, . . . , N}, it follows that l(xi−1) ≥ −1 and, as a consequence, si ≤ 0. This
means that si+1 = l(xi+1) − l(xi) < 0, that is, l(xi+1) < −1, which contradicts |l(xi+1)| ≤ 1. We
thus deduce that l(xi) = 1. The proof for the case si − si+1 < 0 can be done in a similar fashion.

The additional statement is a simple consequence of the first part along with DxD
T
x l(xi) =

si − si+1 by definition of the operators.

For each CTV regularization, the following results show that if z1
k and z2

k have some specific
expressions, then the associated image u = DT z is a singular vector of the energy J(u) = ‖Du‖~b,a.
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Theorem 5. For each k ∈ {1, . . . , C}, let l1k and l2k be discretizations of arbitrary piecewise linear
functions in [−1, 1], with the properties described previously. Let us consider z1

k(xi, yj) = c1kl
1
k(xi)

and z2
k(xi, yj) = c2kl

2
k(yj) such that c1k, c

2
k ∈ {0,±1}, as well as uk(xi, yj) = (DT

x z
1
k)(xi, yj) +

(DT
y z

2
k)(xi, yj). Then, u ∈ ∂J(u) for J(u) = ‖Du‖1,1,1.

Proof. We aim at proving u ∈ ∂J(u) with J(u) = ‖Du‖1,1,1. Based on the characterization of the
subdifferential of J given in (18), we have to show that ‖z‖∞,∞,∞ ≤ 1, which is obvious due to
its construction, together with sign (Dxuk(xi, yj)) = z1

k(xi, yj) and sign (Dyuk(xi, yj)) = z2
k(xi, yj)

for all (xi, yj) at which Duk(xi, yj) 6= 0. First, we can assume that c1k 6= 0 since, otherwise, the
statement is trivially satisfied. Now, observe that

Dxuk(xi, yj) = DxD
T
x z

1
k(xi, yj) +DxD

T
y z

2
k(xi, yj) = c1kDxD

T
x l

1
k(xi) + c2kDxD

T
y l

2
k(yj)

= c1kDxD
T
x l

1
k(xi) = c1k(si − si+1),

where DxD
T
y l

2
k(yj) = 0 since DT

y l
2
k(yj) does not depend on x. Hence, Duk(xi, yj) 6= 0 implies that

si 6= si+1 and, thus, l1k(xi) = sign (si − si+1) by Lemma 2. It follows that

sign (Dxuk(xi, yj)) = sign
(
c1k(si − si+1)

)
= c1kl

1
k(xi) = z1

k(xi, yj),

where in the second transition from last we have used c1k = sign (c1k) derived from c1k ∈ {−1,+1}. The
proof of sign (Dyuk(xi, yj)) = z2

k(xi, yj) is similar and yields the assertion 〈z, Du〉 = ‖Du‖1,1,1.

Theorem 6. Let l1 and l2 be discretizations of arbitrary piecewise linear functions in [−1, 1], with
the properties described previously. For each k ∈ {1, . . . , C}, let us define z1

k(xi, yj) = c1kl
1(xi) and

z2
k(xi, yj) = c2kl

2(yj) such that c1k, c
2
k ∈ R with ‖c1‖2 = ‖c2‖2 = 1, and uk(xi, yj) = (DT

x z
1
k)(xi, yj) +

(DT
y z

2
k)(xi, yj). Then, u ∈ ∂J(u) for J(u) = ‖Du‖2,1,1.

Proof. Similar to Theorem 5, we have to check that ‖z‖2,∞,∞ ≤ 1, which follows easily from ‖cr‖2 =
1 and |lr(x)| ≤ 1, as well as 〈z, Du〉 = ‖Du‖2,1,1. Using Lemma 2, we see that√√√√ C∑

k=1

(Dxuk(xi, yj))2 =

√√√√ C∑
k=1

(DxDT
x zk(xi, yj))2 =

√√√√ C∑
k=1

(c1k(si − si+1))
2

= |si − si+1| · ‖c1‖2 = |si − si+1|.

On the other hand, it follows that

C∑
k=1

z1
k(xi, yj)Dxuk(xi, yj) =

C∑
k=1

(c1k)2l1(xi)DxD
T
x l

1(xi)

= |si − si+1| · ‖c1‖22 = |si − si+1|.

Therefore, we have obtained
√∑

k(Dxuk(xi, yj))2 =
∑
k z

1
k(xi, yj)Dxuk(xi, yj) and, similarly,

√∑
k(Dyuk(xi, yj))2 =∑

k z
2
k(xi, yj)Dyuk(xi, yj). These equalities prove that 〈z, Du〉 = ‖Du‖2,1,1, which yields the re-

sult.

Theorem 7. Let l1 and l2 be discretizations of arbitrary piecewise linear functions in [−1, 1], with
the properties described previously. For each k ∈ {1, . . . , C}, consider c1k, c

2
k ∈ {0,±1} and define

z1
k(xi, yj) =


c1k
‖c1‖0

l1(xi) if ‖c1‖0 6= 0,

0 otherwise,
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and

z2
k(xi, yj) =


c2k
‖c2‖0

l2(yj) if ‖c2‖0 6= 0,

0 otherwise.

Let us also define uk(xi, yj) = (DT
x z

1
k)(xi, yj) + (DT

y z
2
k)(xi, yj). Then, u ∈ ∂J(u) for J(u) =

‖Du‖∞,1,1.

Proof. Once more, we need to show that ‖z‖1,∞,∞ ≤ 1, which follows from |lr(x)| ≤ 1 and
∑
k |crk| =

‖cr‖0 due to crk ∈ {0,±1}, and 〈z, Du〉 = ‖Du‖∞,1,1. The latter is achieved if maxk |Dxuk(xi, yj)| =∑
k z

1
k(x, y)Dxuk(xi, yj). In the nontrivial case, ‖c1‖0 6= 0, we obtain

max
1≤k≤C

|Dxuk(xi, yj)| = max
1≤k≤C

∣∣DxD
T
x z

1
k(xi, yj)

∣∣ = max
1≤k≤C

∣∣∣∣ c1k
‖c1‖0

DxD
T
x l

1(xj)

∣∣∣∣
= max

1≤k≤C

∣∣∣∣ c1k
‖c1‖0

(si − si+1)

∣∣∣∣ =
|si − si+1|
‖c1‖0

,

as well as

C∑
k=1

z1
k(x, y)Dxuk(xi, yj) =

C∑
k=1

(
c1k
)2

‖c1‖20
l1(xi)DxD

T
x l

1(xi) =
|si − si+1|
‖c1‖20

C∑
k=1

(
c1k
)2

=
|si − si+1|
‖c1‖20

‖c1‖0 =
|si − si+1|
‖c1‖0

,

where we used
∑
k(c1k)2 = ‖c1‖0 because of crk ∈ {0,±1}. Similarly, one shows that maxk |Dyuk(xi, yj)| =∑

k z
2
k(x, y)Dyuk(xi, yj), which ends the proof.

B Proof of Theorem 3

We first prove (24). Let ξ =
∑
j qjvj be, with q = (q1, . . . qm) ∈ ∂g(f(x0)) and vj ∈ ∂fj(x0). From

q ∈ ∂g(f(x0)) one has that

g(f(x)) ≥ g(f(x0)) + 〈q, f(x)− f(x0)〉, ∀x ∈ Rn,

and each condition vj ∈ ∂fj(x0) yields

fj(x) ≥ fj(x0) + 〈vj , x− x0〉, ∀x ∈ Rn.

By using the above inequalities, we finally obtain

(g ◦ f)(x) ≥ g(f(x0)) +

m∑
j=1

qj〈vj , x− x0〉 = (g ◦ f)(x0) + 〈ξ, x− x0〉, ∀x ∈ Rn.

Assume now that x0 ∈ int dom (g◦f) and fj is locally l.s.c for all j ∈ {1, . . . ,m}. Let ∂, ∂̂ and ∂∞

denote the regular, general and horizon subdifferentials [44], respectively. For q ∈ Rm, we introduce
the notation (qf)(x) :=

∑
j qjfj(x). Since f and g are proper and convex functions, [44, Proposition

8.12] implies ∂̂(qf)(x0) = ∂(qf)(x0), ∂̂g(f(x0)) = ∂g(f(x0)), and ∂̂(g ◦ f)(x0) = ∂(g ◦ f)(x0).
Furthermore, the properties of fj allow applying the same proposition to see

∂∞fj(x) = {ξ ∈ Rn : 〈ξ, y − x〉 ≤ 0, ∀y ∈ dom fj} = {0}, ∀x ∈ Rn,
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which is equivalent to f being strictly continuous by [44, Theorem 9.13]. Note that [44, Proposition
8.12] also yields

∂∞g(f(x0)) = {ξ ∈ Rm : 〈ξ, y − f(x0)〉 ≤ 0, ∀y ∈ dom g} ,

from where one deduces ∂∞g(f(x0)) = {0} due to x0 ∈ int dom (g ◦ f). Putting it all together, [44,
Theorem 10.49] applies and so

∂̂ (g ◦ f) (x0) ⊂
⋃{

∂̂(qf)(x0) : q ∈ ∂̂g (f(x0))
}
,

∂∞ (g ◦ f) (x0) ⊂
⋃{

∂̂(qf)(x0) : q ∈ ∂∞g (f(x0))
}
.

Finally, the previous two inclusions along with the equivalence of regular and general subdifferentials
lead to the equality in (24).
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