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3D sensing applications

@ Non-rigid deformations

@ Limited view points

LIDAR Velodyne HDL-64E (as in the Google Car); Intel RealSense R200 3D camera;
FaceShift Inc. ; Me ; A cute baby



Shape correspondence problem
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Point-wise maps

Point-wise maps t: X — Y
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Functional maps

Functional maps T: F(X) — F(Y)

Ovsjanikov et al. 2012
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Functional correspondence
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U/ g=Cd,f
where @5, = (¢q,...,¢,), ¥ = (¢¥q,...,1,) are Laplace-Beltrami
eigenbases

Ovsjanikov et al. 2012

5/30



Fourier analysis (non-Euclidean spaces)

The Laplacian is invariant to isometries

1 b2
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Functional correspondence in Laplacian eigenbases

C=9/T®, = c;; = (i, Tp;)

For isometric simple spectrum shapes, C is diagonal since ¢, = £T ¢,

/30



Part-to-full correspondence

Full model Partial query
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Partial Laplacian eigenvectors
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Laplacian eigenvectors of a shape with missing parts
(Neumann boundary conditions)

Rodola, Cosmo, Bronstein, Torsello, Cremers 2016



Partial Laplacian eigenvectors
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Laplacian eigenvectors of a shape with missing parts
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Partial Laplacian eigenvectors

Functional correspondence matrix C
Slope = ratio of the two surface areas

Rodola, Cosmo, Bronstein, Torsello, Cremers 2016
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Going fully spectral
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Going fully spectral

PFM has two major drawbacks:

o Explicit spatial indicator — runtime is O(n)

@ The partiality prior requires heavy engineering

poor(0) = i (area(x) = [ n(v)dw>2+u2 [ €wlvvatlas

n(v) = %(tanh(Qv -1)+1)

Peorr(C) = p3]|C o WH%‘ + pa Z(CTC)?j + 15 Z((CTC)ii - di)2
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Going fully spectral

PFM has two major drawbacks:

e Explicit spatial indicator — runtime is O(n)

@ The partiality prior requires heavy engineering

Our idea: "reorder” and spatially localize the eigenfunctions

e No indicator — Runtime is O(k?)

@ One-to-one correspondence yields a simple prior



Localized basis functions

"¢
v

®10




Localization

@ Energy minimized in PFM

win [|[CA = B(0)[| + peorr(C) + ppart (v)

v: N —=[0,1]
A = ((¢i, f5)m)
B(v) = ((¢i,v- gj)n)



Localization

@ Energy minimized in PFM

min [CA = B(0)]| + peorr(C) + ppare(0)

@ Satisfying the data-term induces a localizing map C
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Localization




Localization
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Localized basis functions
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Fully spectral partial correspondence

Our problem

i TF(QTA W,A-Q'B
QB o (Q'ANQ) + 1 Q B2

Compute new basis functions as linear combinations of
Laplace-Beltrami eigenfunctions

Non-smooth optimization on the Stiefel manifold with k x r variables
Rank r controls amount of partiality

Descriptors control location of partiality

Two-sided partiality

i F(PTAP) +off (QTA P'A-Q'B
(p,Q?élrsnz(k,r>°( MP) +off (Q"AnQ) + 1l Q B2,



Importance of descriptors and rank




Importance of descriptors and rank
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Geometric interpretation

Full shape N/ ¢é"‘,¢é"1 and ¢é\f7¢gv Laplacian eigenbasis

Part M ¢é\’1, qﬁé\/‘ and ¢3j2\/, (5/5\/ New basis



Animation




Convergence example

Initialization 75 150 700 4000



Increasing partiality
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Robustness
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Runtime

Mean time per iteration (sec)
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SHREC'16 Partiality
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SHREC'16 Topology
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Correspondence examples: topological noise

data: Bogo et al. 2014 (FAUST)
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Correspondence examples: topological noise
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Partiality
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data: Cosmo et al. 2016 (SHREC)
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Failure cases
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Summary

Simpler: localization is attained in the spectral domain

o Faster: constant complexity (does not depend on shape size)
@ Better: state of the art results on challenging benchmarks

@ Potentially: a nifty end-to-end architecture for Deep Learning of
descriptors

Thank you!
Code available at https://github.com /orlitany



