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Divergence-Free Shape Correspondence by Deformation
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Figure 1: Given two input shapes we propose to morph the source shape along a divergence-free deformation field in order align it with the
target. (Left) Example of a deformation field in 3D. (Right) Example of the results of our framework. We alternate between optimizing for the
deformation field and calculating correspondences and therefore generate highly accurate correspondences (color coded) as well a sequence
of natural intermediate shapes as a by-product (white). The translation is only added for visibility.

Abstract
We present a novel approach for solving the correspondence problem between a given pair of input shapes with non-rigid,
nearly isometric pose difference. Our method alternates between calculating a deformation field and a sparse correspondence.
The deformation field is constructed with a low rank Fourier basis which allows for a compact representation. Furthermore, we
restrict the deformation fields to be divergence-free which makes our morphings volume preserving. This can be used to extract
a correspondence between the inputs by deforming one of them along the deformation field using a second order Runge-Kutta
method and resulting in an alignment of the inputs. The advantages of using our basis are that there is no need to discretize the
embedding space and the deformation is volume preserving. The optimization of the deformation field is done efficiently using
only a subsampling of the orginal shapes but the correspondence can be extracted for any mesh resolution with close to linear
increase in runtime. We show 3D correspondence results on several known data sets and examples of natural intermediate
shape sequences that appear as a by-product of our method.

1. Introduction

Handling non-rigid, nearly isometric deformations of 3D shapes
is at the heart of numerous problems in computer vision and
graphics. Applications range from shape comparison, information
and style transfer to the automatic generation of new, meaningful
shapes. In comparison to rigid shape registration, the complexity
increases significantly in the presence of non-rigid deformations.
Many methods rely on purely intrinsic or very local measures be-
cause these are robust under extreme extrinsic changes [OBS*12;
ADK16]. While this helps to reduce the complexity of the corre-
spondence problem, it also often leads to artifacts in the matching

coming from intrinsic symmetries, which are indistinguishable in
the intrinsic view, or areas with indiscriminative features.

A different line of work aims at deforming shapes by directly
manipulating their geometry in the embedding space [vFTS06;
MS10; MZT*14]. Having an explicit notion of extrinsic deforma-
tions yields more regular, continuous matchings which is relevant
in many applications. In particular, this approach allows for the cre-
ation of new, intermediate versions of the input shapes. On the other
hand, these methods are in general more prone to get stuck in local
minima and therefore dependent on a good initial alignment of the
inputs. Unfortunately, many extrinsic matching methods use linear
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mappings to model surface deformations [MS10; MZT*14]. While
this is feasible for small changes, it is often not compatible with
how objects deform in the real world. On the other hand, finding a
physically correct morphing between two shapes is highly complex
and computationally intense, even when the perfect correspondence
or prior knowledge about the input is given [WBRS11; GCLX17].
In this paper, we propose a more plausible morphing model that
takes into account volume-preservation during the entire deforma-
tion. This is possible by modeling volume-preservation through
zero divergence in a deformation field. This property makes our
intermediate shapes more natural and our results are less likely
to end up in a local minimum than with a linear mapping. In our
method, the deformation field is represented in a spatially continu-
ous, coarse-to-fine basis which allows for an efficient optimization.
Moreover, we can apply the final deformation to shapes of arbitrary
resolution with a minimal increase in complexity.

2. Related Work

2.1. Shape Registration and Matching

Much work has been done in the direction of shape registration
and matching and we would like to point the interested reader
to in-depth surveys of these topics for an overview [vKZHC11;
SMFF07; TCL*13]. Here we will focus on work that is directly
related to our approach.

One recent line of work in shape matching is based on spectral
decomposition of the surface Laplace-Beltrami operator [DK10].
This is popular because it reduces the dimensionality of the prob-
lem from the number of vertices to the number of basis func-
tions chosen [OBS*12]. Nevertheless, extracting the correspon-
dence from the low dimensional representation is still a complex
problem and often retrieved solutions are noisy or hard to compute
[RMC15]. One major problem with purely spectral approaches is
that intrinsic symmetries can not be distinguished, [RPWO18] be-
ing one of few exceptions. We also use a spectral approach but,
instead of a basis for functions on the surface, we represent defor-
mation fields in the embedding space using the eigenfunctions of
the standard Laplacian. Among other things the embedding space
allows us to distinguish between intrinsincally symmetric but op-
posite points.

Methods based on Multi-Dimensional Scaling find correspon-
dences by reembedding and then aligning shapes in a (possi-
bly smaller) embedding space where the complexity is reduced
[BBK06; ADK16]. [CK15] calculate a robust non-rigid registration
based on Markov random fields but cannot retrieve a continuous
deformation which we do. In [MS10] and [MZT*14] the authors
address the non-rigid registration problem by modeling one point
cloud as a Gaussian mixture model, similar to our method. More-
over, they also determine the correspondences and point mappings
in an alternating manner using a expectation maximization algo-
rithm. This work is strongly related to our framework but no in-
termediate deformation is modeled. There also exist extensions of
this method which additionally include descriptor values [MZY16;
MJLL17]. [HAWG08] achieve accurate non-rigid alignments but
rely on good initial correspondence and expensive geodesic dis-
tance computation to find these.

2.2. Deformation Fields

Deformation fields have a long history in image registration. One
of the first approaches in that direction is the LDDMM frame-
work [BMTY05]. Ashburner and colleagues made use of defor-
mation fields for autonomous shape morphing [Ash07]. They con-
sider temporally constant deformation fields offering limited flex-
ibility to capture more complex deformations. Solving for a space
and time dependent deformation field is a highly underdetermined
problem. A remedy for this issue is provided by the geodesic shoot-
ing approach advocated by [MTY06] which only estimates the ini-
tial velocity field for each pixel and then how the velocity has to
propagate in the image domain in order to preserve the kinetic en-
ergy and the momentum of the whole system. Further improve-
ments of this framework were proposed in subsequent work, in-
cluding a Gauss-Newton approach [AF11] and a particularly effi-
cient adjoint calculation [VRRC12].

Closely related to our work is [vFTS06] in which the authors also
model volume preserving shape deformations using divergence-
free vector fields. Here, deformation fields are constructed from
hand crafted templates which are meant to be used as interactive
shape transformation tools whereas our method is fully automated.
As in our work, in [AOW*08] the deformations are based on a sub-
sampling of the input shapes and can be efficiently applied to the
full resolution but the correspondence is assumed to be given.

Probabilistic interpretations of deformation fields are a popular
formulation. Such a model for image registration and 2D shape
registration with a Gaussian process modeling of the correspon-
dence mapping is proposed in [ALV08]. Further work [LJGV16;
DGL*17] specified how one can extend this approach to Gaus-
sian processes on the surface of a three dimensional shape. The
authors in [BHB00], [THB08], [ALV08] and [PDS*09] also model
non-rigid transformations using a PCA type representation of per-
mitted motions. Analogously, [MS10] and [MZT*14] pursue a re-
producing kernel Hilbert space approach to model the vector field
interpolation. However, for all these references the respective vec-
tor fields are not defined on the whole embedding space surround-
ing the shapes but rather only at the elements of the considered
point clouds and they do not admit an interpretation as a deforma-
tion field which makes is harder to impose global properties, e.g.
volume-preservation.

Another classical approach to shape deformation is based on a
rotation invariant representation of triangle meshes [LSLC05]. In
[ZSC*08] this deformation model is used to compute a sparse set
of correspondences but this method is hard to scale to high resolu-
tions.

3. Contribution

We introduce a mathematical framework which solves the corre-
spondence problem on two shapes with approximately the same
volume. For this purpose, we propose to alternatingly estimate the
correspondences and a smooth 3D deformation field aligning the
two input shapes. Our shape morphing model solves an initial value
problem to shift the first shape along this deformation field. Nu-
merically, this differential equation is integrated using a second or-
der Runge-Kutta scheme. Our framework allows us to incorporate
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Figure 2: Overview over our complete pipeline.

physical assumptions about the deformations by directly building
them into our model. We suggest to impose volume preservation
by enforcing the deformation fields to have zero divergence. More
specifically, we define a coarse-to-fine basis representation of these
vector fields where each basis function is divergence-free. This al-
lows us to reduce the complexity by optimizing only over the most
significant coefficients. We use an expectation-maximization ap-
proach to simultaneously compute a subset of the unknown point-
to-point correspondences and the optimal deformation field coeffi-
cients. A schematic diagram of the complete pipeline can be found
in Figure 2. We demonstrate that the proposed framework can be
used to solve for correspondences which are on par with state-of-
the-art methods. Moreover, our method can produce a sequence of
reasonable intermediate shapes between the inputs as a by-product.
Both can be scaled up to arbitrary resolution without a significant
increase in complexity which we demonstrate on on a datset of real
scans with over 100k vertices.

4. Problem Formulation

In the following, we define the problem we want to solve and
the mathematical background we use in later sections. In gen-
eral we consider two point clouds X = {x1, . . . ,xN} ⊂ Ω and
Y = {y1, . . . ,yM} ⊂ Ω contained in a compact domain Ω ⊂ RD.
In practice we choose Ω = [0,1]D. These points xn and ym are sam-
ples from the surface of two similar (D−1)-dimensional Rieman-
nian manifolds embedded in RD. Our method aims at aligning the
point clouds X and Y in a meaningful manner. In particular, we are
looking for a mapping f : X → Ω which provides the coordinates
for a new embedding of each point on X . In the end, f (X ) should
be well aligned with Y .

4.1. Deformation field shape morphing

We propose to model the shape morphing f : X → Ω using the
following initial value problem:{

ẋ(t) = v(x(t)).
x(0) = xinit.

(1)

In this context, v : Ω→RD is some fixed deformation field shift-
ing any point xinit ∈Ω over time. If we solve this differential equa-
tion until some fixed time teval, we get the flow ϕ : [0, teval]×Ω→Ω

of Equation (1). The flow ϕ morphs the space Ω over time, it maps
any input point xinit to its destination ϕ(t,xinit) at time t ∈ [0,1]. Ap-
plying Equation (1) to all points xinit := xn ∈ X yields a morphing
model for the source shape X :

f (xn) := fn := ϕ(teval,xn). (2)

In order to make those shape deformations more plausible, we re-
quire them to be smooth in space and in time. For this purpose, we
assume that the deformation fields v ∈C∞(Ω,RD) which, accord-
ing to the Picard-Lindelöf Theorem, yields smooth point trajecto-
ries x(·) := ϕ(·,xinit) ∈C∞([0,1],Ω), see [Tes12, Lemma 2.3,The-
orem 2.5]. For convenience we choose teval = 1 in our experiments.

Our morphing model computes natural shape deformations
which can be transformed into correspondences through nearest
neighbor search (See Section 5.3). Due to the time dependency of
the flow, we additionally get intermediate poses of the input shape
at times t ∈ (0,1) which constitute the underlying transformation.
Those are typically more meaningful than naive approaches like
linear interpolation between the points. We believe that having a
continuous correspondence and a natural deformation are inher-
ently connected and solving for both simultaneously improves the
results considerably.

4.2. Divergence-free deformations

One advantage of our morphing model (1) is that it allows us to
incorporate assumptions about the deformation fields v into our
model. In our framework we restrict these velocity fields to be
divergence-free, an assumption that is commonly used in mathe-
matical modeling of incompressible fluids [CM93]:

∇· v = 0. (3)

A well known consequence of this local property is that it yields
volume preservation over time for any subpart U ⊂ Ω of the em-
bedding space. In particular, we can consider the set of solutions of
Equation (1):

U(t) :=
{

ϕ(t,xinit) ∈Ω
∣∣xinit ∈U

}
. (4)

Then the assumption in Equation (3) yields that each morphed
set U(t) has the same volume as U [Tes12, Lemma 8.8]. Therefore,
each subvolume of the input shape X , as well as of the embedding
space, is preserved at any given time. Notice that this property is
stronger than global volume preservation of the interior of X only.
In general, two very differently shaped objects can have the same
volume. However, for our method the volume of all, potentially
very small, subparts is preserved. In our experiments, we found that
this is a reasonable assumption for real world deformations and it
provides a good regularization of our morphing model (1).

4.3. Helmholtz decomposition

Helmholtz’s theorem [Ari62] implies that any sufficiently smooth
vector field on the compact domain Ω can be decomposed into
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the sum of a curl-free, a divergence-free and a harmonic compo-
nent. It furthermore provides us with an explicit construction of the
divergence-free component that we are interested in:

v :=∇×Φ. (5)

In this context, Φ : Ω→ RD is a potential function and ∇×· is
the curl operator. Indeed,[CNT15, Lemma 2.2] shows that such a
Φ exists for any divergence-free, C∞ vector field v : Ω→ RD with
no outflow at the boundary:

〈v,n〉= 0 on ∂Ω. (6)

Furthermore, for a given Φ we always get a divergence-free vec-
tor field v as a basic property of the curl operator:

∇· (∇×Φ) = 0. (7)

To further restrict the space of admissible deformation fields,
we additionally require the potential functions to admit Dirichlet
boundary conditions Φ|∂Ω = 0. This guarantees that the potential
functions are tangential to the outer normals at ∂Ω which is a neces-
sary condition in the existence proof [CNT15, Lemma 2.2]. More-
over, we are only interested in a high expressibility in the interior
of Ω and choosing Dirchlet boundary conditions makes the repre-
sentation of our deformation fields even more compact. Intuitively,
it guarantees that for the resulting deformation fields v there is no
flow in and out of the domain Ω (see Equation (6)). In the case of
D = 3 spatial dimensions the construction of v in (5) admits the
following form:

v =

∂2Φ3−∂3Φ2
∂3Φ1−∂1Φ3
∂1Φ2−∂2Φ1

=

 0
∂3Φ1
−∂2Φ1

+

−∂3Φ2
0

∂1Φ2

+

 ∂2Φ3
−∂1Φ3

0

 .

(8)

Remark. The harmonic component in the Helmholtz decomposi-
tion corresponds to global translations of the input shape X but we
refrain from including them in our framework. For once, we would
like the flow ϕ : [0,1]×Ω→ Ω to map all points xn ∈ Ω back to
the same domain. Furthermore, modeling global translations is not
necessary because we shift the input shapes a priori such that their
empirical mean corresponds to the center of Ω.

5. Method

In the following, we outline the core components of our method.
First, we construct a coarse-to-fine deformation field basis with
certain built-in properties like volume preservation (Section 5.1).
Then, we show how to integrate the initial value problem of Equa-
tion (1) (Section 5.2). Finally, we provide details about our ex-
pectation maximization algorithm (Section 5.3) where we simul-
taneously optimize for the unknown correspondences and an ap-
propriate deformation field. We refer the reader to the supplemen-
tary material for full details. Regarding relevant applications, we
will mainly restrict ourselves to the case of 2D shapes embedded in
R3. However, extensions to higher dimensions D > 3 or D = 2 are
straightforward.

5.1. Spatial representation

Standard discretizations of vector fields v using voxel grids have
cubic complexity which makes them too costly for any reasonable
resolution. To get a more compact representation, we introduce a
low rank basis {v1, ...,vK} of spatially dense, divergence-free de-
formation fields. The number of basis functions can be adjusted for
either speed or expressiveness. Without loss of generality we set the
domain to a D-dimensional cube Ω := [0,1]D. In practice, we then
translate and scale any shape to generously fit inside. We begin with
defining a basis for the potential fields Φ. For this purpose, consider
the eigenfunctions {φ1,φ2, ...} and eigenvalues {λ1,λ2, ...} of the
scalar Laplacian ∆ on Ω:

∆φk = λ
∆
k φk. (9)

This basis of eigenfunctions {φ1,φ2, ...} is ordered with de-
scending eigenvalues 0 ≥ λ

∆
1 ≥ λ

∆
2 ≥ .... Furthermore, we require

the potential fields to admit Dirichlet boundary conditions Φ|∂Ω =
0. These φk can be computed analytically, they are exactly the sine
elements of the Fourier basis:

Bφ =

{
φ : [0,1]D→ R, x 7→

D

∏
d=1

1
2

sin(xdπ jd)
∣∣∣∣ j ∈ ND

}
. (10)

The set Bφ = {φ1,φ2, ...} is ordered by ascending Dirichlet
energy of the φk. These φk form an orthonormal basis wrt. the
〈·, ·〉L2(Ω) inner product for scalar functions on Ω. We can now use
Bφ to construct a basis for the deformation fields Bv according to
Equation (5). Note that the basis Bφ consists of scalar functions
while the potential functions Φ : Ω→ RD are vector valued. How-
ever, due to the linearity of the curl∇×·we obtain a basis by using
(5) one entry at a time. For D = 3 this can be done as follows:

Bv =
∞⋃

k=1

{
∇×

φk
0
0

 ,∇×

 0
φk
0

 ,∇×

 0
0
φk

}=

∞⋃
k=1

{ 0
∂3φk
−∂2φk

 ,

−∂3φk
0

∂1φk

 ,

 ∂2φk
−∂1φk

0

}. (11)

We get three deformation basis functions for each φk in (10).
Analogously to the potential fields, the basis elements Bv =
{v1,v2, ...} are again sorted according to the eigenvalues λ

∆
k of the

corresponding φk in descending order. Note that there are in gen-
eral multiple basis functions vk for each eigenvalue λ

∆
k . Overall, we

obtain arbitrary deformation fields v as the linear combination of
the first K basis elements vk with some coefficients ak:

v(x) =
K

∑
k=1

vk(x)ak. (12)

Remark One aspect we would like to discuss in this context is our
choice of domain Ω= [0,1]D. The first basis function v1 in Figure 3
is equivalent up to first order to a rotation around the x3 axis. This
especially holds near the center of the domain Ω and deteriorates at
its boundary ∂Ω. Those considerations raise the question whether a
cubic domain Ω is the best choice for our purposes. Following the
work in [ZB07; ZB08] we could pursue our approach in a spherical
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Figure 3: Cross section of some deformation field basis functions
vk : Ω→ R3 at x3 = 0.5. Notice the low frequency structures for
low k and increasing frequencies with higher indices. Furthermore,
one can see that our deformation fields have no flow in and out of
the domain Ω at the boundary.

domain. This would lead to more complex basis functions vk but the
first three eigenfunctions would span the space of rotations without
undesirable artifacts at the boundaries of the domain. Although this
would be a nice theoretical property, we refrain from using these
basis functions here due their complex structure.

5.2. Temporal discretization

In order to evaluate the correspondence mapping f in (2) we have
to solve the initial value problem (1) with a numerical integration
scheme. The simplest choice in this context is the explicit Euler
method. However, we decided to use a second order Runge-Kutta
method [GH10, Ch. 9] because it has a significantly higher accu-
racy and therefore allows for a coarser time discretization. We sub-
divide the time domain in an equidistant grid with T ∈ N intervals
and set the step size h = 1

T . This yields an explicit iteration scheme:


x(0)n := xn.

x(t+1)
n := x(t)n +hv

(
x(t)n + h

2 v
(
x(t)n
))

.

fn := x(T )n .

(13)

We typically choose T ∈ {1, ...,100} in our experiments. In gen-
eral, we have to make a trade off between runtime and accuracy

0 20 40 60 80 100
10−6

10−3

100

T

R
el

at
iv

e
A

re
a

E
xp

an
si

on

Figure 4: Area expansion with different step sizes using the Runge-
Kutta integration. Left: Rotation around 90 degrees on a bat shape
of the MPEG-7 dataset [Ral] (black). If executed in one step (T = 1)
the shape expands (red) whereas for ten steps T = 10 the area of
the interior stays nearly the same (green). Right: Relative area ex-
pansion when performing the same deformation with an increasing
number of steps T .

when selecting an appropriate number of steps T . If we choose T
too small, we lose some key properties of our framework like the
volume preservation. This effect is illustrated in Figure 4 for the
2D shape of a bat transformed by a 90 degree rotation around the
center. Note that the deformation field corresponding to this trans-
formation is only approximately contained in our framework due
to our choice of domain and boundary conditions, see discussion
in the previous subsection. If we choose too few time steps T , the
shape shifts outward and the area expands. On the other hand, this
effect becomes insignificantly small if we choose T ≥ 10.

5.3. Optimization

In the previous sections we derived a coherent description of shape
morphing using volume preserving deformation fields. We can now
use this framework to construct an algorithm that matches two
given point clouds X and Y by calculating a volume preserving
deformation field between them. In order to do that we simulta-
neously optimize for the deformation field coefficients a and the
unknown correspondences.

Similar to [MS10] and [MZT*14] we approach shape registra-
tion in a probabilistic manner. We interpret the point cloud X as
a Gaussian mixture model with the means located at the shifted
points fn = x(T )n and the covariance σ

2ID ∈ RD×D for some σ > 0.
This enables us to simultaneously determine the deformation field
coefficients a ∈RK and the correspondences W ∈ [0,1]N×M by ap-
plying an expectation maximization approach. Expecation maxi-
mization alternates between optimizing the deformation field co-
efficients and the correspondence while assuming the other to be
fixed. The full derivation of each step, as well as additional imple-
mentation details, can be found in the supplementary material.

Expectation step The expectation step calculates correspondences
for a fixed deformation. We represent the correspondences between
the morphed f (X ) = { f1, . . . , fN} and the reference pointcloud
Y = {y1, . . . ,yM} as soft correspondence matrices W ∈ [0,1]N×M

which arise naturally from the Gaussian mixture model assumption.
High values of Wnm ≈ 1 indicate a high correspondence probability
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Figure 5: Quantitative evaluation using the Princeton benchmark protocol on the TOSCA data set [BBK08] (left), the SCAPE data set
[ASK*05] (middle), and the high-resolution TOPKIDS [LRB*16] (right). On TOSCA and SCAPE we compare against Spectral General-
ized Multi-Dimensional Scaling (SGMDS) [ADK16], Functional Maps [OBS*12], Blended Intrinsic Maps (BIM) [KLF11], Möbius Voting
[LF09], Coherent Point Drift (CPD) [MS10] and Kernel Matching [VLB*17]. On TOPKIDS we compare against the competitors of the orig-
inal paper (Isometric Embedding via Expectation-Maximization (IE-EM) [SY12], Green’s Function Embedding Alignment (GFE) [BDK17],
Random Forests (RF) [RRW*14]), Fully Spectral Partial Matching (FSPM) [LRBB17], Partial Functional Maps (PFM) [RCB*17] and Ker-
nel Matching (KM) [VLB*17]. Both the TOSCA as well as the TOPKIDS dataset contain cases which are critical for our method but our
results are still on a par with state-of-the-art. See Section 6.1 for details. On the TOSCA data set we additionally evaluate our method without
using features. The drop in performance shows that these are crucial to avoid unwanted optima.

for the point pair (xn,ym) while values close to zero indicate low
probability. The expectation maximization framework then yields
an explicit update rule for W given the deformation coefficients a:

Wnm :=
exp
(
− 1

2σ2 d2
nm

)
(2πσ2)

D
2 +∑

N
ñ=1 exp

(
− 1

2σ2 d2
ñm

) . (14)

For a derivation of this formula, see the supplementary material.
Intuitively, Wnm describes the value of a Gaussian with center fn
and variance σ at point ym.Similar to [MS10], the normalization
factor in the denominator comes from the mixture model assump-
tion combined with an explicit modeling of outliers. In order to
prevent our method from getting stuck in incorrect local optima, we
include SHOT descriptor [TSS10] with standard parameters from
the authors’ implementation. We combine them with Euclidean dis-
tances to define a metric for pairs of points xn and ym:

d2
nm :=

∥∥ym− fn
∥∥2

2 +d
∥∥SHOT(xn)−SHOT(ym)

∥∥2
2. (15)

We introduce the factor d ≥ 0 to ensure that both metrics have
a comparable scaling, in particular we require both summands to
have the same mean value for all point pairs X and Y . Note that we
use descriptor values SHOT(xn) on the original shape X instead of
the morphed shape f (X ) in order to not recompute them at every
iteration.

Maximization step The maximization step updates the deforma-
tion field for given soft correspondences W . Intuitively, we are
looking for the deformation field coefficients a that best align points
with high correspondence probability Wnm. For this purpose, we in-
terpret the coefficients a = (a1, ..,aK)

> as random variables with

a normal distribution a ∼ N (0,L), where L := diag(λ1, ...,λK). If
we compute the pushforward of this Gaussian according to Equa-
tion (12), we get a prior distribution of deformation fields v. The
weights λk are constructed from the eigenvalues λ

∆
k as follows:

λk :=
(
−λ

∆
k
)− D

2 =

(
π

2
D

∑
d=1

j2d

)− D
2

. (16)

The mathematical background of this choice for the weights λk is
provided by the Karhunen-Loève expansion [Sul15, Ch. 11] which
is an extension of the principal component analysis (PCA) for func-
tion spaces, see the supplementary material for more details. In-
tuitively, this kind of weighting promotes a damping of the high
frequency components and smoothness of the deformation field v.
The maximization step optimizes the coefficients a for their poste-
rior distribution given the current correspondences which describes
how well the deformation field of a explains W . This results in the
following energy for a:

E(a) :=
σ

2

2
a>L−1a+

M

∑
m=1

N

∑
n=1

Wnmρ(‖ym− fn‖2). (17)

This energy E is the sum of the negative log prior including the
weights λk (left term) and the negative log likelihood (right term)
of a. The function ρ : R→ [0,∞) is the Huber loss [Hub64] which
helps to account for outliers and makes the deformation field esti-
mation more robust:

ρ(r) =

{
1
2 r2 |r| ≤ r0.

r0|r|− 1
2 r2

0 otherwise.
(18)

In our experiments, we choose the outer slope as r0 := 0.01. Fur-
thermore, we apply a Gauss-Newton type approach to minimize

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



M. Eisenberger, Z. Lähner & D. Cremers / Divergence-Free Shape Correspondence by Deformation

Figure 6: Examples of texture transfer done with our method. For each object the first image shows the source shape and texture, the second
image the texture transferred with the ground-truth map and the third image the texture transferred with our correspondences. Our results are
nearly identical to the ground-truth except for the dog which shows some artifacts on tail and chest.

the energy in (17). This results in an iterative method similar to
the Levenberg-Marquardt algorithm [Lev44]. For this purpose, the
residual term ‖ym − fn‖2 is linearized in each iteration. This re-
quires a differentiation of the Runge-Kutta scheme (13) wrt. the
weights a, see the supplementary for an explicit formulation of the
derivative d

da fn and the Gauss-Newton update step for the energy
in Equation (17).

To summarize, our method alternates between computing the
weights W (i) according to (14) and performing one Gauss-Newton
update step for (17) to obtain a(i). To initialize the algorithm we set
the deformation field to zero a(0) := 0.

6. Experiments

We evaluate our method for several applications to show that it is
general and flexible. Although we handle shapes with up to 200k
and more vertices, the computation of the deformation field is al-
ways done on a downsampled version of the inputs with 3000 ver-
tices and then applied to the full resolution. We use Euclidean
farthest point sampling. The downsampled shape should include
points of all relevant large and fine scale structures in order for the
deformation field to move these correctly but we found 3000 suf-
ficient for our applications. As a preprocessing step we shift both
inputs such that the mean of their vertex positions is in the center
of the domain and align them using PCA. To avoid wrong align-
ments along the principle component axes we choose the orienta-
tion that minimizes Eq. (15). When averaging over all experiments
presented here, our algorithm takes about 370 seconds to compute
the deformation and correspondences for one pair of shapes. Due
to our a priori downsampling the runtime is only linearly depen-
dent on the number of vertices, see Section 6.4 for a discussion of
this property. All experiments were performed with MATLAB on
a system with an Intel Core i7-3770 CPU clocked at 3.40GHz, 32
GB RAM and a GeForce GTX TITAN X graphics card running a
recent Linux distribution. In all our experiments we only use the

raw shape data and in particular do not need any ground truth in-
formation or user input.

6.1. Matching

We verify our method using the TOSCA [BBK08], SCAPE
[ASK*05] and high-resolution TOPKIDS [LRB*16] data sets. All
these shapes are synthetic and therefore the exact intraclass corre-
spondences are known. TOSCA contains 76 triangular meshes with
8 classes of humans and animals, SCAPE consists of 72 poses of
the same person and TOPKIDS contains 26 poses of the same per-
son in which topological merging, as it might appear in real scan-
ning, is imitated.

We set the hyperparameters σ
2 := 0.01, T := 20 and choose

K = 3000 basis functions for the deformation field. Because W (i)

only contains 3000 correspondences we perform a nearest-neighbor
search with respect to the metric in Eq. (15) to obtain a dense map-
ping. The evaluation is done with the Princeton benchmark protocol
[KLF11]. Given the ground-truth match (x,y∗) ∈ X ×Y , the error
of the calculated match (x,y) is given by the geodesic distance be-
tween y and y∗ normalized by the diameter of Y:

ε(x) =
dGeo
Y (y,y∗)√

area(Y)

We plot cumulative curves showing the percentages of matches
that are below an increasing threshold. As zero is the value for
ground-truth matches, the ideal curve would be constant at 100. See
Figure 5 for our results and Figure 6 for example matching results
showing texture transfer. On SCAPE we are able to reach state-
of-the-art results whereas on TOSCA the intrinsic Kernel Match-
ing methods is slightly better. Our extrinsic approach makes self-
touching poses more challenging and these cases occur fairly often
in TOSCA. Although TOPKIDS is still synthetic the self-touching
poses are actually merged in the geometry which makes it more
challenging. On this dataset we are slightly better than Kernel
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Figure 7: Example registrations from the FAUST scan data set. The surface color corresponds to the Euclidean surface distance between scan
and registration. The scale of the scans is in real cm values and the same on all plots. We report the average and maximum error under each
image. Many errors occur due to the SHOT descriptors being corrupted at holes and in noisy areas (e.g. the hands). Furthermore, in some
case the assumption of exact volume preservation is too restrictive for real scans with noise and topological changes (see especially second
to the right).

Matching (see Figure 5). See the supplementary material for an
example.

To show the influence of features on the results we do an evalu-
ation of our method without using features at any point during the
optimization. Instead the distance of Equation (15) is replaced with
the pure Euclidean distance between the coordinates. The result can
be seen in Figure 5. The performance without features decreases
substancially because the Euclidean distance is a weak indicator
when large deformations take place. Therefore, our method gets
stuck in local optima more often.

6.2. Registration

We apply our framework to the FAUST Scan dataset [BRLB14]
which contains data from scans of real humans in different poses.
Each of these shapes has approximately 200k vertices, they are
sampled inconsistently and some of them are severely affected by
scanning noise, holes and topological changes. We match the null
shape of every person to its other poses. In Figure 7 we display the
surface distance of the morphed shapes to the goal shape for some
examples. We reach very tight alignments except in very challeng-
ing cases like topological changes. Furthermore, the scanned vol-
ume varies slightly even between different poses of the same hu-
mans which induces small errors in our method.

6.3. Effect of the basis size

In our evaluations we consistently use K = 3000 deformation field
basis functions. To justify this choice empirically, we compute the
mean geodesic errors of each TOSCA pair for several basis sizes
K ∈ {1, . . . ,3000}, see Figure 9. We observe that while the accu-
racy increases significantly for small K ≤ 1000, after some point
it starts plateauing. In our evaluations, we choose K = 3000 be-
cause we aim for a high accuracy. However, for some applications

where runtime is more important than accuracy a smaller basis size
K < 3000 might be sufficient.

6.4. Runtime for high resolution

One major advantage of our method is that it is scalable to high
resolution input shapes like those from FAUST because we opti-
mize for the deformation field on downsampled shapes (3000 ver-
tices). One point that we want to stress in this context is that this
is not the same as computing matchings only on low resolution
shapes. For many matching methods this scaling to the full resolu-
tion is challenging, most methods need to come up with a custom
coarse-to-fine strategy. In general, it is not straightforward to ex-
tend a shape matching or deformation from a downsampled shape
to the rest of the vertices. However, for our method this upscaling
is trivial because the deformation field basis functions (11) are de-
fined densely on the whole embedding space, therefore they can be
evaluated anywhere in Ω. This upsampling scales linearly in N be-
cause the Runge-Kutta method (13) is computed independently for
all vertices xn. See Figure 10 for an empirical verification of this
property. Here, the runtime for the shape deformation is computed
for various downsampled versions of one high resolution shape. To
sum it up, the runtime for computing shape morphings is relatively
low and increases only linearly in the number of vertices N which
makes our method scalable for high resolution input shapes.

6.5. Shape Interpolation

Interpolation Our method morphs the input shape X by solving
the ODE (1) up to time teval = 1. If we now instead evaluate it
at an intermediate time t ∈ (0,1), we get interpolated shapes as a
byproduct of our matching pipeline. Just like the morphed shapes
f (X ) those intermediate shape morphings are smooth and volume
preserving which makes them look natural. Three examples with
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(a) Centaur. (b) Human.

(c) Armadillo.

Figure 8: Three examples of shapes that are morphed into one another according to the initial value problem of Eq. (1). The centaur (a) and
the human (b) are from the TOSCA [BBK08] and FAUST [BRLB14] dataset respectively. The armadillo (c) is from the AIM@SHAPE shape
repository [AIM]. (b) is a scan of a real person and very high resolution (214k vertices). The source and target shape are shown in white and
the interpolations at times t = 0.25,0.5,0.75 in blue. The translation is not part of our deformation and was only introduced for clarity in the
figures.
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Figure 9: Dependency of the mean geodesic errors on TOSCA on-
different basis sizes K ∈ {1, . . . ,3000}. In particular, we show the
elements at the 0%,25%,50%,75% and 100% quantile.

interpolated shapes are displayed in Figure 8 and videos can be
found in the supplementary material.

Extrapolation Similarly to the idea of interpolating shapes as a
byproduct of our method we can also use the computed defor-
mation field v to solve the initial value problem (1) up to times
t > 1. This results in extrapolated shapes, see Figure 11. In con-
trast to shape interpolation, extrapolation is a severely underdeter-
mined task and it is hard to evaluate quantitatively. Nevertheless,
we observed that for moderate time spans t ∈ [1,1.5] our method
produces reasonable results. In general, the morphing speed slows
down at some point, especially when the shape is moving in pre-
viously unoccupied space. Intuitively, for the optimization there no
incentive to impose any particular movement on these parts of the
domain Ω, if it is not relevant for the surface alignment. Still, our
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Figure 10: Runtime of our method for the full resolution shape de-
formation for different number of vertices N ∈{3000, . . . ,100000}.
The full pipeline has two steps: (1) a fixed size optimization over
3000 vertices which takes around 360 seconds on average (blue
dashed line), (2) applying the deformation field to the full reso-
lution shape and extracting the correspondence for the full shape.
The plot shows that our method scales linearly in the number of
vertices and is therefore still feasible for very detailed shapes with
over 100k vertices.

extrapolated shapes are visually appealing and not too severely af-
fected by distortions.

7. Conclusion

We presented a novel extrinsic approach to shape matching. Be-
sides computing dense surface correspondences, we also determine
a smooth, volume preserving deformation field between the input
shapes. Our morphing model shifts the source shape X along this
deformation field using a second order Runge-Kutta integration
scheme in order to align it with the reference shape Y . Addition-
ally to aligning the inputs, this model can also be used to efficiently
calculate plausible interpolated shapes.

Our method addresses the coupled problem of finding an un-
known deformation and correspondence with an expectation maxi-
mization approach. Furthermore, we represent our morphing model
with a low rank deformation field basis which reduces the de-
grees of freedom and makes the optimization problem well con-
strained. This then allows for a subsampling of the inputs which
makes it computationally feasible, even for high resolution meshes,
with only a linear increase in runtime. Quantitative evaluations for
shape correspondence partly prove state-of-the-art performance of
our method. Moreover, we show convincing examples of shape in-
terpolation and extrapolation that arise naturally from our pipeline.

7.1. Limitations

Due to our choice of basis the deformation field is forced to be vol-
ume preserving. This makes sense in applications with the same
object but prevents inter-class matchings - for example between
two humans with different body shapes. The volume preservation
property applies to every subregion of the domain Ω, including the
intermediate space between parts of the shape. Therefore, separat-
ing two touching parts (for example two hands) is in theory possi-

Figure 11: Example of an extrapolated shape from the KIDS dataset
[RBW*14]. It can be determined using the temporally fixed defor-
mation field v for simulating the initial value problem (1) up to
the time t = 1.3. Source and target shape are white, one interpo-
lated shape is shown in blue and the extrapolation is pink. The de-
formation field is usually magnified in the area between the input
shapes and fans out in several directions further away from the in-
put shapes. Therefore, choosing a really high time does not lead to
broken shapes but the movement slows down more and more until
it basically stops.

ble but requires many high frequency deformation basis elements
which would make the optimization costly.

The assumption of (1) being autonomous can be problematic if
different parts of the shape move through the same region of the
embedding space in a contradictory manner. One example for this is
a hand closing to a fist. At first the index and middle finger occupy
parts of the embedding space before the thumb moves in the same
area but in a different direction. See Figure 12. A possible remedy
for this problem is making the deformation fields time dependent.

Furthermore, since there is not one unique, volume preserving
deformation between two shapes, our interpolation is not guaran-
teed to be as-rigid-as-possible which is a plausible assumption in
many applications. If the displacement is spatially far, we might
end up with squeezed intermediate states that are volume preserv-
ing but are affected by undesirable distortions. This is also visible
in Figure 12 where the tip of the thumb becomes flat.

7.2. Future Work

Right now, our method will always find a solution that is globally
volume preserving. This allows to find good deformations fields in
the case of severe non-rigid deformations but is not applicable to
partial data. In the future, we want to extend this method to work
on real scans, for example from the Kinect, which naturally only
show partial shapes. A promising approach for this is making the
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deformation divergence-free in certain parts of the domain while
still allowing volume changes in some places and imposing an as-
Killing-as-possible constraint in the optimization. Additionally, we
want to construct an adaptive basis for this depending on the input
shapes. This might also help with the separation of close parts and
handling non volume preserving deformations like style or class
changes. Furthermore, we only calculate one time independent field
for the entire deformation which means mass at one spatial point
always needs to move in the same direction at a later time step.
This restricts the complexity of the deformations that our method
can handle, especially for large-scale motions over a longer period
of time. Future versions should allow more flexible types of defor-
mation fields to extend it to a broader range of applications. We
could for example associate different parts of the shape with differ-
ent deformations fields or let them vary over time to address more
difficult tasks.
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