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Abstract. A numerical solution to shape-from-shading under natural
illumination is presented. It builds upon a generic PDE-based formu-
lation which handles directional or spherical harmonics lighting, ortho-
graphic or perspective projection, and greylevel or multi-channel images.
An augmented Lagrangian solver is proposed, which separates the global,
nonlinear optimization problem into a sequence of simpler (either local
or linear) ones. Real-world applications to shading-aware depth map de-
noising, refinement and completion are presented.

1 Introduction

Standard 3D-reconstruction pipelines are based on sparse 3D-reconstruction by
structure-from-motion (SfM), densified by multi-view stereo (MVS). Both these
techniques require unambiguous correspondences based on local color variations.
Assumptions behind this requirement are that the surface of interest is Lamber-
tian and well textured. This has proved to be suitable for sparse reconstruction,
but problematic for dense reconstruction: dense matching is impossible in tex-
tureless areas. In contrast, shape-from-shading (SfS) techniques explicitly model
the reflectance of the object surface. The brightness variations observed in a
single image provide dense geometric clues, even in textureless areas. SfS may
thus eventually push back the limits of MVS.

However, most shape-from-shading methods require a highly controlled il-
lumination and thus they may fail when deployed outside the lab. Numerical
methods for SFS under natural illumination are still lacking. Besides,
SFS remains a classic ill-posed problem with well-known ambiguities such as the
concave/convex ambiguity. Solving such ambiguities for real-world applications
requires handling priors on the surface. There exist two main numerical
strategies for solving and disambiguating shape-from-shading [I]. Variational
methods [2] ensure smoothness through regularization. Handle priors is easy,
but tuning the regularization may be tedious. Alternatively, methods based on
the exact resolution of a nonlinear PDE [3] implicitly enforce differentiability
(almost everywhere). These methods do not require any tuning, but they lack
robustness and they require a boundary condition. To combine the advantages of
each approach, a variational solution based on PDEs would be worthwile
for SF'S under natural illumination.
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Contributions — This work proposes a generic numerical framework for SFS
under natural illumination (see Figure . After reviewing existing solutions in
Section[2] we introduce in Section [3]a new PDE-based model for SFS, which han-
dles various illumination and camera models. Whatever these models, the same
ADMM-based solution, described in Section[d can be employed. It reformulates
SF'S as a sequence of easier subproblems: local estimation of the surface normals
(possibly, with a smoothness prior), and then integration of surface normals into
a depth map (possibly, with a shape prior). Experiments on synthetic datasets
are presented in Section[5] as well as real-world applications to depth refinement
and completion for RGB-D cameras or stereovision systems. Our achievements
are eventually summarized in Section [G]

Input real image
with illumination [4]

SFS-based denoising and completion

Fig.1: We propose the generic variational framework for shape-from-shading
(SFS) under natural illumination (top row: (A, u,v) = (1,0,0)). It is able to estimate
a smooth surface (out of infinitely many), which almost exactly solves the generic
SFS model . To disambiguate SF'S and improve robustness, prior surface knowledge
(middle row, left: (A, p,v) = (0,1,0)) and minimal surface regularization (middle row,
right: (A, 1, ) = (0,1,5.1075)) can be further included in the variational framework.
These building blocks can be put together for shading-aware joint depth denoising,
refinement and completion (bottom row: (A, i, v) = (1,1,5.107%)).
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2 Image Formation Model and Related Works

In the following, a 3D-frame (Oxzyz) is attached to the camera, O being the
optical center and the axis Oz being parallel to the optical axis, such that z is
oriented towards the scene. We denote I : 2 C R? — RY, (z,9) — I(2,y) =
[Il(gc,y),...,Ic(gc,y)]—r a greylevel (C = 1) or multi-channel (C' > 1) image
of a surface, where {2 represents a “mask” of the object being pictured. We
assume that the surface is Lambertian, so its reflectance is characterized by
the albedo p. We further consider a second-order spherical harmonics model
for the lighting vector 1. To deal with the spectral dependencies of reflectance
and lighting, we assume both p and 1 are channel-dependent. The albedo is
thus a function p : 2 — RY, (z,y) — p(z,y) = [pl(:r,y),...,pc(z,y)]T,
and the lighting in each channel ¢ € {1,...,C} is represented as a vector
16 = [19,15, 15,15, 1€, 15, 12,15, 15] T € RY. Eventually, let n : 2 — S2 C R3, (z,y)
n(z,y) = [nl(x,y),ng(x,y),ng(az,y)]T be the field of unit-length outward nor-
mals to the surface. The image formation model is then written [5]:

Yy)na
I(z,y) = p°(a,y)1°- | na(z,y)ns s (ry) €02, ce{l,...,C}H (1)

y)ns

2

The goal of SFS is to recover the object shape, given its image, its albedo and
the lighting. Each unit-length normal vector n(z,y) has two degrees of freedom,
thus each Equation (1)), (z,y) € £, c € {1,...,C}, is a nonlinear equation with
two unknowns. If C' = 1, it is impossible to solve such an equation locally: all
these equations must be solved together, by coupling the surface normals in
order to ensure surface smoothness. When C' > 1 and the lighting vectors are
non-coplanar, ambiguities theoretically disappear [6]. However, under natural
lighting these vectors are close to being collinear, and thus locally solving is
numerically challenging (bad conditioning). Again, a global solution should be
preferred but this time, for robustness reasons.

There is a large amount of literature on numerical SFS, in the specific case
where C' = 1 and lighting is directional (I§ = --- = 1§ = 0), see for instance [I].
However, few SFS methods deal with more general spherical harmonics light-
ing. First-order harmonics have been considered in [7)8], but they only capture
up to 90% of natural lighting, while this rate is over 99% using second-order
harmonics [J]. The latter have been used in [I0], where the challenging prob-
lem of shape, illumination and reflectance from shading (SIRFS) is tackled (this
method is also applicable to SFS if albedo and lighting are fixed). However, all
these works heavily rely on regularization mechanisms, and not only for disam-
biguation. For instance, SIRFS “fails badly” [10] without a multi-scale strategy,
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and the method of [8] becomes unstable without depth regularization (see Fig-
ure . Although regularization mechanisms somewhat circumvent these issues
in practice, an ideal numerical solver would rely on regularization only for disam-
biguation and for handling noise, not for enforcing numerical stability. In order
to design such a solver, a variational approach based on PDEs may be worthwile.
Let us thus first rewrite as a nonlinear PDE.

P

D|®

Input synthetic image Fixed point [§] Single-scale Proposed
and illumination  without regularization SIRFS [10] (without regularization)

Fig. 2: Greylevel shape-from-shading using first-order spherical harmonics. Lineariza-
tion strategies such as the fixed point one used in [§] fail if regularization is not em-
ployed. Similar issues arise in SIRFS [I0] when the multi-scale approach is not used.
Our SFS method can use regularization for disambiguation and improving robustness,
but it remains stable even without. In these three experiments, the same initial shape
was used (the “Realistic initialization” of Figure [3)).

3 A Generic PDE-based Model for Shape-from-shading

We assume hereafter that lighting and albedo are known (in practice, it is
enough to assume that the albedo is uniform, and to estimate lighting from
a gross surface approximation). These assumptions are usual in the SFS liter-
ature. They could be relaxed by simultaneously estimating shape, illumination
and reflectance [I0], but we leave this as future work and focus only on shape
estimation. This is the most challenging part anyways, since is linear in the
lighting and the albedo, but it is generally nonlinear in the normal.

In order to comply with the discussion above, Equation should be solved
globally over the entire domain (2. To this end, we do not estimate the nor-
mals but rather the underlying depth map, through a PDE-based approach [3].
This has the advantage of implicitly enforcing smoothness (almost everywhere)
without requiring any regularization term (regularization will be introduced in
Section but only for the sake of disambiguation and robustness against noise).
We show in this section the following result:

Proposition 1. Under both orthographic and perspective projection, the image
formation model can be rewritten as the following nonlinear PDE in z:

aly,) - Vz+big,y =1° over 2, ce{l,...,C} (2)

with z : 2 — R a map characterizing the shape, Vz : 2 — R? its gradient, and
where ava) : 2 = R? and bva) : 2 — R depend in a nonlinear way on Vz.
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Proof. The 3D-shape can be represented as a patch over the image domain:

x: 2 —R3

[z, y, 2z, y)] " under orthographic projection, (3)
(z,y) = _ I . o
Z(z,y) [%, %, 1] under perspective projection,

with Z the depth map, f > 0 the focal length, and (xg,y0) € §2 the coordinates
of the principal point in the image plane.

Using this parameterization, the normal to the surface in a surface point
x(z,y) is the unit-length, outgoing vector proportional to the cross product
Xz (2, y) X Xy(x,y), where x, (resp. x,) is the partial derivative of x along the z
(resp. y)-direction. After a bit of algebra, the following formula is obtained:

n: N2 —S2cR3

fVz(z,y) (4)
T,Y) > ———— . ;
@0 T -1~ 50T Vatey)
where
_o (2,1,0,0) under orthographic projection,
(2, f,2,9) = . : - (5)
(logz, f,x — xo,y — yo) under perspective projection,

and where the map d(v.) ensures the unit-length constraint:
d(Vz) 2 >R
(5,9) = PRIV )2 + (1 + (35) - Ve, 0).

Note that ||d(v.)lle (o) is the total area of the surface, which will be used in
Section [ for designing a regularization term.
By plugging into , we obtain the nonlinear PDE , if we denote:

(6)

a?vZ) N o R2?
(2.) p°(z,y) [f 1§ - 9}’15} (7)
’ d(vZ)(x,y) flg - ylg ’
b,y : 2 —R
Ao (@)
. 1
I (fl(vz)(-”MJ))2
¢ fzz(wé(—l—(az,y)jgz(x,y)) @®
c el . d(v2)(z,y) .
(@) = p% |1 feu(ep)(C1-(E5) Vel p)
Z (d<v2)(1‘7y))
§ 12 (20 (0,9) =2, (2,9)%)
L*9 ] (d<vZ)($7y))2
1) Ve ) _
L (d(v2>($7y)) i
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When C' = 1, camera is orthographic and lighting is directional and frontal
(i.e., I3 is the only non-zero lighting component), then becomes the eikonal
pelis|

14+(Vz|2
ear PDE have been suggested, using for instance semi-Lagrangian schemes [I1].
Such techniques can also handle perspective camera projection and/or nearby
point light source illumination [12]. Still, existing PDE-based methods require
a boundary condition, or at least a state constraint, which is rarely available
in practice. In addition, the more general PDE-based model 7 which handles
both orthographic or perspective camera, directional or second-order spherical
harmonics lighting, and greylevel or color images, has not been tackled so far. A
variational solution to this generic SF'S problem is now presented.

equation = I¢. Efficient numerical methods for solving this nonlin-

4 Variational Formulation and Optimization

The C' PDEs in are in general incompatible due to noise. Thus, an approxi-
mate solution must be sought. If we assume that the image formation model
is satisfied up to an additive, zero-mean and homoskedastic, Gaussian noise,
then the maximum likelihood solution is attained by estimating the depth map
z which minimizes the following least-squares cost function:

c 2
EVz1) = ||afe) - V2 + big, — I° 9)
c=1

@)

In recent works on shading-based refinement [§], it is suggested to minimize a
cost function similar to @ iteratively, by freezing the nonlinear fields a® and b°
at each iteration. This strategy must be avoided. For instance, it cannot handle
the simplest case of orthographic projection and directional, frontal lighting: this
yields a¢ = 0 according to , and thus @[) does not even depend on the unknown
depth z if b° is freezed. Even in less trivial cases, Figure[2]shows that this strategy
is unstable, which explains why regularization is employed in [§]. We also resort
to regularization, but only for the sake of disambiguating SFS and handling
noise: our proposal yields a stable solution even in the absence of regularization
(see Figure . In this work, we consider two types of regularization: one which
represents prior knowledge of the surface, and one which ensures its smoothness.

4.1 Regularized Variational Model

In some applications such as RGB-D sensing, or MVS, a depth map 2° is avail-
able. This depth map is usually noisy and incomplete, but it may represent a
useful “guide” for SF'S. We may thus consider the following prior term:

Pz 2°) = ||z = 2|20y (10)

where 2° C 2 C R? is the image region for which prior information is available.
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In order not to interpret noise in the image as geometric artifacts, one may
want to improve robustness by explicitly including a smoothness term. How-
ever, standard total variation regularization, which is often considered in image
processing, may tend to favor piecewise fronto-parallel surfaces and thus induce
staircasing. We rather penalize the total area of the surface, which has recently
been shown in [I3] to be better suited for depth map regularization. To this end,
let us remark that in differential geometry terms, the map d(v.) defined in @
is the square root of the determinant of the first fundamental form of function z
(metric tensor). Its integral over (2 is exactly the area of the surface, and thus
the following smoothness term may be considered:

S(Vz) = Hd(Vz)Hzl(Q) : (11)

Putting altogether the pieces @, and , we obtain the following
variational problem:

min AE(Vz; I) + puP(z2°) + v S(Vz2), (12)
z: 2—=R

where (A, u,v) > (0,0,0) are user-defined parameters controlling the respective
influence of each term.

Let us remark that our variational model yields a pure SFS model if
p = v =0, a depth denoising model similar to that in [I3] if A = 0 and £2° = (2,
and a shading-aware joint depth refinement and completion if A > 0, p > 0 and
2° C 0.

4.2 Numerical Solution

The variational problem is difficult to solve, because the shading term
E(Vz;I) and the regularization term S(Vz) are not only nonlinear, but they
also depend on the depth gradient. We propose to separate the difficulty in-
duced by the nonlinearity from that induced by the dependency on the gradient.
To this end, we introduce an auxiliary variable 6 : 2 — R?, and rewrite (12)) as
a constrained optimization problem:

ngn R/\S(G;I) +uP(z;2") +vS(0)
6. IR (13)
s.t. Vz =40.

We solve using an ADMM algorithm. The augmented Lagrangian func-
tional associated to is defined as

Ls(2,0,0) =XEWB; I) +puP(2;2°) + v S(0) + (W, Vz—0) + g V2 —HHg, (14)

with & : 2 — R? the field of Lagrange multipliers, (- ) the scalar product induced
by || ||2 over £2, and 8 > 0.
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ADMM iterations [14] are then written:

glk+1) _ argmin L) (Z(k)797!p(k))7 (15)
0

2+ — argmin ﬁﬁ(k)(zjg(k+1)7gp(k))7 (16)

g (k+D) :W(k)z_‘_ Bk) (Vz(k+1) _ 9(k+1)) ] (17)

where (%) can be determined automatically [T4].

Problem is a pixelwise nonlinear least-squares problem which is solved
using a Newton method with a L-BFGS stepsize. As for , it is discretized by
first-order, forward finite differences. This yields a linear least-squares problem
whose normal equations provide symmetric, positive definite (semi-definite if
= 0) linear system. It is sparse, but too large to be solved directly: conjugate
gradient iterations should be preferred. In our experiments, the algorithm stops
when the relative variation of the energy in falls below 1073.

This ADMM algorithm can be interpreted as follows. During the #-update ,
local estimation of the gradient (i.e., of the surface normals) is carried out based
on SFS, while ensuring that the gradient map is smooth and close to the gradient
of the current depth map. Unlike in the fixed point approach [g], local surface
orientation is inferred from the whole model , and not only from its linear
part. In practice, we observed that this yields a much more stable algorithm (see
Figure . In the z step , these surface normals are integrated into a new
depth map, which should stay close to both the previous one and the prior.

Given the non-convexity of the shading term £ and of the smoothness term S,
convergence of the ADMM algorithm is not guaranteed. However, in practice we
did not observe any particular convergence-related issue, so we conjecture that a
convergence proof could eventually be provided. However, we leave this as future
work and focus in this proof of concept work on sketching the approach and
providing preliminary empirical results. The next section shows quantitatively
the effectiveness of the proposed ADMM algorithm for solving SF'S under natural
illumination, and introduces qualitative results on real-world datasets.

5 Experiments

5.1 Quantitative Evaluation of the Proposed SFS Framework

We first validate in Figure [3]the ability of the proposed variational framework to
solve SF'S under natural illumination i.e., to solve . Our approach is compared
against SIRF'S [10], which is the only method for SFS under natural illumination
whose code is freely available. For fair comparison, albedo and lighting estima-
tions are disabled in SIRFS, and its multi-scale strategy is used, in order to avoid
the artifacts shown in Figure [2]

Since we only want to compare here the ability of both methods to explain
a shaded image, our regularization terms are disabled (u = v = 0), as well as
those from SIRFS. To quantify this ability, we measure the RMSE between the
input images and the reprojected ones.
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Ground truth Greylevel, Greylevel, Colored,
first-order second-order second-order
lighting 1! lighting 12 lighting 13

RMSE = 0.

Non-realistic
initializationf

—
n

Realistic
initializationp,
=
)

RMSE = 0.06 RMSE = 0.07 RMSE = 0.07

Fig. 3: Evaluation of our SFS approach against the multi-scale one from SIRFS [I0], in
three different lighting situations and using two different initial estimates (the first one
is Matlab’s “peaks” function, the second one is a smoothed version of the ground truth).
For each experiment, we show the estimated depth map and the reprojected image, and
provide the root mean square error (RMSE) between the input synthetic image and the
reprojection (the input images are scaled between 0 and 1). Our variational framework
solves SF'S under natural illumination more accurately than state-of-the-art.
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To create these datasets, we use the public domain “Joyful Yell” 3D-shape,
considering orthographic projection for fair comparison (SIRFS cannot handle
perspective projection). Noise-free images are simulated under three lighting
scenarios. We first consider greylevel images, with a single-order and then a
second-order lighting vector. Eventually, we consider a colored, second-order
lighting vector. These lighting vectors are defined, respectively, by:

1! =[0.1,-0.25,-0.7,0.2,0,0,0,0,0] ", (18)

12 =[0.2,0.3,-0.7,0.5,-0.2, —0.2,0.3,0.3,0.2] ", (19)
~02-0.2-104 0.1 —0.1-0.1-0.10.05]"

P=|0 02 -103 0 02 01 0 01] . (20)

02 -02-102-01 O 0 01 O

To illustrate the underlying ambiguities, we consider two different initial
estimates: one very different from the ground truth (Matlab’s “peaks” function),
and one close to it (obtained by applying a Gaussian filter to the ground truth).
Interestingly, although p = 0 for the tests in Figure [3] our method does not
drift too much from the latter: the shape is qualitatively satisfactory in all the
experiments when a good initialization is available.

In all the experiments, the images are better explained using our frame-
work, which shows that the proposed numerical framework solves the challenging,
highly nonlinear SFS model in a more accurate manner than state-of-the-
art. Besides, the runtimes of both methods are comparable: a few minutes in
all cases (on a standard laptop using Matlab codes), for images having around
150.000 pixels inside (2. Unsurprisingly, initialization matters a lot, because of
the inherent ambiguities of SFS.

Disambiguation can be carried out through regularization. This is illustrated
in Figure 4, where we consider the same dataset as in the second experiment
of Figure 3] but with additive, zero-mean, homoskedastic Gaussian noise on the
image and on the depth forming the shape prior (we use the “Realistic initial-
ization” as prior). If A = 1 and (u,v) = (0,0), then pure SFS is carried out:
high-frequency details are perfectly recovered, but the surface may drift from
the initial estimate and interpret image noise as unwanted geometric artifacts.
If 4 — o0, the initial estimate (which exhibits reasonable low-frequency com-
ponents, but no geometric detail) is not modified. If ¥ — 400, then only the
minimal surface term matters, hence the result is over-smoothed. In this experi-
ment, we also evaluate the accuracy of the 3D-reconstruction through the mean
angular error (MAE) on the normals: it is minimal when the parameters are
tuned appropriately, not when the image error (RMSE) is minimal.

The appropriate tuning of u and v depends on how trustworthy the image
and the shape prior are. Typically, in RGB-D sensing, the depth may be noisier
than in this synthetic experiment so one may want to use a lower value of
. On the other hand, natural lighting is generally colored, so the three image
channels provide redundant information: regularization is less important and the
smoothness parameter v can be reduced. We found that (\, u, v) = (1,1,5.1075)
prodives qualitatively nice results in all our real-world experiments.
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RMSE = 0.06
MAE = 14.77

RMSE =0.13
MAE =18.34

RMSE = 0.17
MAE = 2191

RMSE = 0.12
MAE = 18.56

RMSE = 0.08

MAE = 13.46

RMSE = 0.17
MAE = 2191

v=1

RMSE = 0.29
MAE =41.91

™

RMSE = 0.20
MAE = 24.43

RMSE = 0.16
MAE = 21.02

11

w=10°

Fig. 4: Left: input noisy image (o7 = 0.02) and noisy prior shape (o. = 0.2%]|2]|o0),
represented by a normal map to emphasize details. Right: estimated shape with A = 1
and various values of p and v. The RMSE between the image and the reprojection is
minimal when regularization is minimal, but the mean angular error (MAE, in degrees)
between the estimated shape and the ground truth one is not.
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5.2 Qualitative Evaluation on Real-world Datasets

The importance of initialization is further confirmed in the top rows of Fig-
ures [1] and [5} In these experiments, our SFS method (¢ = v = 0) is evaluated,
under perspective projection, on real-world datasets obtained using an RGB-D
sensor [4], considering a fronto-parallel surface as initialization. Although fine
details are revealed, the results present an obvious low-frequency bias and arti-
facts due to the image noise occur. This illustrates the inherent ambiguities of
SE'S, and the need for regularization.

In order to illustrate the practical disambiguation of SFS using regulariza-
tion, we next consider as initialization and prior z° the depth provided by the
RGB-D sensor. It is either noisy and incomplete, but with our framework it can
be denoised, refined and completed in a shading-aware manner, by tuning the
parameters p (prior) and v (smoothness). Second and third rows of Figures
and [5] illustrate the interest of SFS for depth refinement, in comparison with
“plind” methods based solely on depth regularization [I3].

Eventually, Figure [] demonstrates an application to stereovision, using a
real-world dataset from [I5]. This time, the initial depth map is obtained by a
multi-view stereo algorithm [16]. We estimated lighting from this initial depth
map, assuming uniform albedo. Then, we let our algorithm recover the thin
geometric structures, which are missed by multi-view stereo. The initial depth
map contains a lot of missing data and discontinuities, which is challenging for
our algorithm: ambiguities arise inside the large holes, and our model favors
smooth surfaces. Indeed, the concavity is not very nicely recovered, and the
discontinuities are partly smoothed. Still, nice details are recovered, and the
overall surface is reasonable.

6 Conclusion and Perspective

We have introduced a generic variational framework for SFS under natural il-
lumination, which can be applied in a broad range of scenarios. It relies on a
tailored PDE-based SF'S formulation which handles a variety of scenarios for the
camera and the lighting. To solve the resulting system of PDEs, we introduce an
ADMM algorithm which separates the difficulty due to nonlinearity from that
due to the dependency upon the gradient. Shape prior and nonlinear smoothing
terms are easily included in this variational framework, allowing practical dis-
ambiguation of SFS as well as natural applications to depth map refinement and
completion for RGB-D sensors or stereovision systems.

As future work, we plan to investigate the convergence of the proposed
ADMM algorithm for our non-convex problem, and to include reflectance and
lighting estimation. With these extensions, we have good hope that the proposed
variational framework may be useful in other computer vision applications, such
as shading-aware dense multi-view stereo.
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Input image with illumination SFS result ((A, u,v) = (1,0,0))

Prior shape 2° Minimal surface refinement [I3] (A, p, v) = (0,1,5.107°))

Shading-based refinement ((\, u,v) = (1,1,5.107%))

Fig. 5: Result obtained using our variational framework for three computer vision
problems: pure SFS, “blind” (not shading-based) depth refinement, and shading-based
depth refinement. The shape estimated by SFS is distorted (due to the ambiguities
of SFS), and artifacts occur (due to noise and the absence of regularization), but
it contains the fine-scale details. The depth map provided by the RGB-D sensor is
nicely denoised without considering shading, but thin structures are missed. With the
proposed method, noise is removed and fine details are revealed.
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.
2 Prior depth map 23 [16] Refined depth map 22

Fig. 6: Left: two (out of N = 30) images I' and I? of the “Figure” object [I5]. Middle:
depth map 2°? (same viewpoint as image I*) obtained by the CMPMVS method [I6]
(before meshing). Right: refined and completed depth map z2.
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