
Medial Features for Superpixel Segmentation

David Engel∗ Luciano Spinello† Rudolph Triebel† Roland Siegwart†
Heinrich H. Bülthoff∗ Cristóbal Curio∗
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Abstract

Image segmentation plays an important role in computer
vision and human scene perception. Image oversegmen-
tation is a common technique to overcome the problem
of managing the high number of pixels and the reasoning
among them. Specifically, a local and coherent cluster that
contains a statistically homogeneous region is denoted as
a superpixel. In this paper we propose a novel algorithm
that segments an image into superpixels employing a new
kind of shape centered feature which serve as a seed points
for image segmentation, based on Gradient Vector Flow
fields (GVF) [14]. The features are located at image lo-
cations with salient symmetry. We compare our algorithm
to state-of-the-art superpixel algorithms and demonstrate a
performance increase on the standard Berkeley Segmenta-
tion Dataset.

1 Introduction

Image segmentation plays an important role in computer
vision and human perception. This procedure associates a
coherent and meaningful label to each pixel of an image.
An image segmentation technique that overcomes two well
known issues in the literature is needed: pixels are not nat-
ural entities but are a consequence of the quantized repre-
sentation of images and the number of pixels grows quickly
with respect to the resolution. Superpixel techniques are
oversegmentation methods that address this problem. A su-
perpixel is a local and coherent cluster that contains a statis-
tically homogeneous image region. Such a method was in-
troduced by Ren and Malik [10] who employ a Normalized
Cut criterion [12] to recursively partition an image using
contour and texture cues. Another method has been pro-
posed by Felzenszwalb and Huttenlocher [4] using an ef-
ficient graph based representation of local neighborhoods.
Several applications that use superpixels exist. Recent note-
worthy works include depth from single images [11], hu-
man pose estimation [8] and general scene understanding
[5].

In this paper we present a novel superpixel segmentation
methodology that makes use of a new kind of medial feature
transform [3]. The transform has maximum responses at
image locations of high symmetry and carries the notion of
shape-centered medial features (cf. [1]). The novelty of our
proposed algorithm is that it exploits the properties of the
well known Gradient Vector Flow (GVF) field proposed by
Xu and Prince [14]. GVF basically yields long ranging im-
age force vector fields that has been useful in many applica-
tions by attracting contours even into areas of strong bound-
ary concavities and in the presence of noise in the original

image. We exploit the robustly derived long ranging image
forces represented by a vector field, by detecting singular-
ities in them as seeds for image segmentation. The medial
features that are retrieved in our context with the help of the
GVF field’s singularities can be used to compress regional
shape information to a few informative image points from
which the image even could be reconstructed [13].

To evaluate the performance of the proposed algorithm,
we employ the Berkeley Segmentation Dataset [6] and com-
pare the performance of our algorithm to the approaches of
Felzenszwalb and Huttenlocher [4] and Ren and Malik [10].

The paper is structured as follows. In Section 2.1 we de-
scribe the applied Medial Feature transform and introduce
an extension to oversegmentation in Section 2.2. In Section
3 we report on our evaluation and we conclude this work in
Section 4.

2 Methods

To give a better intuition on the features used in our seg-
mentation algorithm we first outline the computation of the
GVF field that we operate on. The overall pipeline for su-
perpixel segmentation is visualized in Figure 1.

2.1 Medial Features

The GVF [14] is the vector field V (p) = [u(p), v(p)]T
that minimizes the cost function E , where p = (x, y) is a
point in the image I:

E =
∫ ∫

g (|∇f |) |V −∇f |2︸ ︷︷ ︸
data term

+h (|∇f |)∇2V︸ ︷︷ ︸
smoothing term

dxdy

This cost function is subject to the iterative optimiza-
tion of V until convergence and is obtained with variational
calculus. The data term guarantees stability of the vector
field V (p) near an edge map f whereas the second term
is responsible for the suppression of spurious edges and
the propagation of orientation information across the im-
age. The optimization aims to accomplish the two goals of
preserving the orientation information at the gradients and
creating a smooth flow field across the image. The func-
tions g and h determine the trade off between these two
conflicting goals. They are designed to be complementary,
enforcing stricter adherence to the underlying edge map at
locations of high gradient magnitude and smoothness where
the magnitude is low. For our purposes we followed the im-
plementation of [14] using a constant for h = 0.12 and for
data function g = |∇f |2.



Figure 1: Overview of the processing pipeline for medial feature oversegmentation. The GVF field V is computed on the
edge map. After normalization of V and the computation of the flux flow F the seeds are obtained by thresholding with θ.
Starting from the seeds the watershed is computed using F as a height map.

Figure 2: a) Original image b) Flux flow field F c) Influence of the thresholding parameter θ for the seeding on the resulting
superpixel segmentations. From left to right parameter is set to (0.2, 0.5, 0.8, 1.1, 1.4). Top: F > θ, Bottom: Resulting
oversegmentation.

We normalize the solution to V (p) at each image lo-
cation resulting in VN (p). Our assumption is that VN (p)
closely approximates the gradient of the L2-norm dis-
tance function, ∇D(p), with ∇D(p) ≈ VN (p) =
V (p)/‖V (p)‖ ∀p. Given that, we can locate shock loci in
VN (p), which we use as seeds for segmentation as follows.
Pizer et al [9] suggest a singularity detection framework
based the divergence of VN yielding the flux flow

div VN = F (VN (p)) =
∮
〈VN ,N〉 ds

Area
, (1)

where N denote the normals on a ring with diameter of
7 pixels through which the flux flow F is computed. The
computation of this ring integral at each point in the im-
age can be implemented for the two components of VN as
two convolutions with two precomputed kernels containing
the two normal vector components of that ring, respectively.
This flux is further used as seeds for oversegmentation de-
scribed as follows.

2.2 Oversegmentation using Medial Features

The idea behind oversegmentation algorithms is to find
and group together regions which are uniform in their ap-
pearance. The medial features described above provide a
means to this end by being formed at the centers of regions
of uniform appearance. We take advantage of the points of
high symmetry denoted by the medial features as seeds for
the oversegmentation. To obtain these seeds we threshold

the flux flow field F with θ and assign unique labels to the
connected areas. The GVF field is the first step of calcu-
lating the medial features and operates on an edge image
f . Choosing the right edge detector to create f is task de-
pendent. Evaluations showed the thresholded Sobel edge
operator performs best in the context of oversegmentation.
More intricate edge detectors such as Canny [2] suppress
fine edge details which is not desirable for our application,
since creating too many segments is more desirable than
prematurely merging segments belonging to two different
regions. Furthermore, the GVF will eliminate spurious edge
pixels that are potentially created by the less complex edge
detector, allowing a stable formation of the seeds for the
oversegmentation. An example of the seed structure after
thresholding the medial features is shown in Figure 3 (mid-
dle). To avoid problems in large uniform areas the GVF
should have fully converged over the image.

To complete the oversegmentation we need to assign the
remaining pixels to coherent regions. To this end we apply
the watershed algorithm proposed by [7] for which efficient
implementations are available. This operates on a height
map and simulates successive flooding of the relief, start-
ing from the minima of the image. Borders or ’watersheds’
are formed where the rising water of two different basins
meet. As a height map we use the flux flow image F de-
scribed above (cf. Figure 2b). As an outcome of the GVF
optimization process, F preserves the salient edge informa-
tion (local minima, negative) complementary to the formed
symmetries (local maxima, positive). Thus, this approach



Figure 3: Seeds and segmentation. From left to right: original images, GVF based seeds obtained by thresholding the flux
flow F with θ and the watershed segmentation. The color values denote different labels of the seeds and segments.

preserves the edge structure of the original image which is
critical for an oversegmentation algorithm. This preserva-
tion of the underlying edge structure is also an advantage
over a simple creation of a Voronoi diagram extended from
the seeds. A resulting segmentation can be seen in Figure 3
(right).

3 Evaluation

We compare our oversegmentation method with two
state-of-the-art approaches. The first one is an extension
of the superpixel algorithm proposed by Felzenszwalb and
Huttenlocher [4] and the second one is the method proposed
by Ren and Malik [10], which is based on normalized graph
cuts. As a baseline method we show the performance of a
standard watershed method computed on Canny edge maps
without initialization. We measure the performance of the
oversegmentation algorithms on the Berkeley Segmentation
Dataset [6], which contains 300 images (200 in the training
data set and 100 in the test set) with several human drawn
segmentations for each image. Accordingly, the segmenta-
tions are very different among subjects with the number of
segments per image reaching from 5 to more than 30. Fur-
thermore, human observers use their vast experience with
natural images and their knowledge of the image semantics
for segmentation both of which are not available to bottom-
up segmentation algorithms. Thus, reconstructing a seg-
mentation by humans is a very difficult challenge.

Superpixel algorithms do not aim at fully explaining hu-
man segmentations but provide a starting point for higher
level segmentation algorithms. However, should the super-
pixel segmentation already cross borders between human-
made segments an algorithm operating on the oversegmen-
tation would have to fail. Thus, we have to use a perfor-
mance measure which tells us how well a higher-level al-
gorithm could be able to reconstruct the human segmen-
tation. Consequently, our performance measure penalizes
segments of the oversegmentation that cross the borders of
the target shape. On the other hand, it is desirable to end up
with a small number of segments to reduce the complexity
of the merging problem. Based on these observations we
formulated the following performance measure

Medial Feature Superpixel 0.88
Ren et al. [10] 0.86
Felzenszwalb et al. [4] 0.83
Watershed on Distance Transform 0.79

Table 1: Performance of the algorithms.

P =

N∑
i=1

Mi∑
j=1

Ŝi,j

N∑
i=1

MiSi

. (2)

This is computed over N images where Mi denotes the
number of human segmentations of image i in the dataset.
Si is the number of segments the algorithm produced on im-
age i while Ŝi,j is the number of segments produced by the
superpixel algorithm that lie inside only one segment, j, of
the human created segmentation of image i. To compensate
for some noise and uncertainty in the human segmentations
the criterion for Ŝi,j was relaxed so that only 95% of a su-
perpixel had to be consistent with the human segmentation.

This performance measure indicates the percentage of
segments that do not cross a border of the segmentations
drawn by the human normalized against the number of seg-
ments produced by the oversegmentation algorithm. Taking
the mean of these values across all test images and all hu-
man segmentations for each of the images gives the result-
ing performance measures reported in Table 1.

All three algorithms possess free parameters that influ-
ence the properties and number of created superpixels (e.g.
parameter k from [10] or the threshold θ for the seeding in
our algorithm). These parameters were optimized by a grid
search for the maximum of the performance measure using
the images from the training set of the Berkeley Segmenta-
tion Dataset. As a baseline method we employed a standard
watershed algorithm applied to the distance transformation
of a Canny edge image.

The results of this performance measure indicate that the
proposed medial feature segmentation yields better results



Figure 4: Influence of the thresholding parameter θ on the
number of generated superpixels (averaged over all images
in the Berkeley Segmentation Dataset).

than the other algorithms and is substantially better than
a baseline method. Other performance measures (such as
conservation of human segmentation boundaries) are pos-
sible and might yield different results. However, we feel
that the measure chosen here is appropriate since it pro-
vides an indicator for how useful the created superpixels
will be for algorithms operating on them. The algorithm by
Felzenszwalb and Huttenlocher creates non-smooth borders
which can be suboptimal for this performance measure. The
superpixel algorithm based on normalized graph cuts pro-
duces smooth segment boundaries but as it produces a fixed
number of segments (the number of superpixels k was opti-
mized using the training data set) it can not be optimal for a
heterogeneous image set.

The average number of superpixels generated by our al-
gorithm depends strongly on the threshold parameter θ as
can be seen in Figure 4. For large values of θ only few dis-
tinct symmetry points are above the threshold and remain
as seeds resulting in a small number of large segments. As
the threshold becomes smaller more seeds are generated re-
sulting in higher number of starting areas for the watershed
algorithm and consequently in a finer superpixel segmen-
tation. However, the seed regions begin to merge for very
small values of θ as can be seen in the leftmost image of Fig-
ure 2c, resulting in a decreased number of segments. The
location of the maximum depends on the properties of the
underlying image.

The average runtime of the medial feature oversegmen-
tation per image is 2.6 seconds in the current Matlab/C-Mex
implementation, which is about as fast as the segmentation
algorithm proposed by Felzenszwalb and Huttenlocher and
much faster than the oversegmentation based on graph cuts.
However, the largest portion of this time is taken by the
iterative computation of the GVF field. The iterative op-
timization of the GVF is well parallelizable and there are
now GPU implementations available which will further re-
duce the computation time.

4 Conclusion and Outlook

In this paper we presented a novel way of image over-
segmentation based on medial features. The medial features
are computed by applying a divergence operator to the GVF
field and are formed at points of high symmetry and are
therefore well suited as seeds for a segmentation approach

based on the watershed algorithm. Using such medial fea-
tures allows our algorithm to be very efficient and offers
many desirable properties such as stability against noise.
We compared our algorithm to two state-of-the-art algo-
rithms on the Berkeley Segmentation dataset. We showed
that our method can provide a basis for higher level algo-
rithms by producing a high percentage of segments that are
consistent with segments found by human observers.

We plan to employ a GPU implementation of the GVF
to obtain substantial speedups for the oversegmentation. As
any other superpixel algorithm our algorithm offers the op-
portunity for computer vision frameworks to merge the cre-
ated segments to arrive at final figure-ground segmentation
of objects. Using medial features in large uniform areas
can slow the superpixel segmentation down since it takes
the GVF many iterations to converge in such regions. To
address this problem we plan to integrate medial features
extracted along a pyramid of scales to create the seeds for
the segmentation.
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Figure 5: Example image from the Berkeley Segmentation Dataset (left) and two human segmentation results (middle, right).

Figure 6: Experimental result on the example image from Figure 5. From left to right: segmentation obtained by superpixel
algorithm after [4], segmentation obtained by superpixel algorithm after [10] and the oversegmentation result of our medial
feature based approach.


