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Abstract

We present a complete solution for the visual navigation of a small-scale, low-cost quadrocopter in unknown environ-
ments. Our approach relies solely on a monocular camera as the main sensor, and therefore does not need external
tracking aids such as GPS or visual markers. Costly computations are carried out on an external laptop that commu-
nicates over wireless LAN with the quadrocopter. Our approach consists of three components: a monocular SLAM
system, an extended Kalman filter for data fusion, and a PID controller. In this paper, we (1) propose a simple, yet
effective method to compensate for large delays in the control loop using an accurate model of the quadrocopter’s flight
dynamics, and (2) present a novel, closed-form method to estimate the scale of a monocular SLAM system from addi-
tional metric sensors. We extensively evaluated our system in terms of pose estimation accuracy, flight accuracy, and
flight agility using an external motion capture system. Furthermore, we compared the convergence and accuracy of our
scale estimation method for an ultrasound altimeter and an air pressure sensor with filtering-based approaches. The
complete system is available as open-source in ROS. This software can be used directly with a low-cost, off-the-shelf
Parrot AR.Drone quadrocopter, and hence serves as an ideal basis for follow-up research projects.
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1. Introduction

Research interest in autonomous micro-aerial vehicles
(MAVs) has grown rapidly in the past years. Significant
progress has been made, and recent examples include ag-
gressive flight manoeuvres [1], collaborative construction
tasks [2], ball throwing and catching [3] or the coordi-
nation of large fleets of quadrocopters [4]. However, all
of these systems require external motion capture systems.
Flying in unknown, GPS-denied environments is still an
open research problem. The key challenges here are to
localize the robot purely from its own sensor data and to
robustly navigate it even under temporary sensor outage.
This requires both a solution to the so-called simultane-
ous localization and mapping (SLAM) problem as well
as robust state estimation and control methods. These
challenges are even more expressed on low-cost hardware
with inaccurate actuators, noisy sensors, significant de-
lays, and limited on-board computation resources.

For solving the SLAM problem on MAVs, different
types of sensors such as laser range scanners [5], monoc-
ular cameras [6], stereo cameras [7], and RGB-D sen-
sors [8, 9] have been explored in the past. In our point
of view, monocular cameras have two major advantages

Figure 1: A low-cost quadrocopter navigates in unstructured environ-
ments using the front camera as its main sensor. The quadrocopter
is able to hold a position, fly figures with absolute scale, and recover
from temporary tracking loss. Picture taken at the TUM open day.

over other modalities: (1) they provide rich information at
a low weight, power consumption, size, and cost and (2)
in contrast to depth sensors, a monocular SLAM system
is not intrinsically limited in its visual range, and there-
fore can operate both in small, confined and large, open
spaces. The drawback however is, that the scale of the en-
vironment cannot be determined from monocular vision
alone, such that additional sensors, such as an IMU or air
pressure sensor, are required.

In this paper we follow up on our previous work in
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[10, 11] where we presented our approach to use a monoc-
ular camera to navigate a low-cost quadrocopter in an un-
known, unstructured environment. Computations are per-
formed off-board on a ground-based laptop. For our ex-
periments we used both the low-cost Parrot AR.Drone 1.0
and 2.0 which are available for $300 and, with a weight of
only 420 g and a protective hull, safe to be used in public
places (as illustrated in Fig. 1).

We extend upon our previous work in several ways:
First, we provide a more in-depth explanation of the pro-
posed scale estimation method, and show that it can ac-
curately estimate the scale of a monocular SLAM sys-
tem even from very noisy sensor data such as an air pres-
sure sensor. We provide an extensive evaluation both on
synthetic and on real-world data sequences, and perform
a direct comparison with current state-of-the-art filtering
based methods. Second, we provide additional experi-
mental results, in particular we evaluate the flight and
pose estimation accuracy using an external motion cap-
ture system as ground truth. Third, we provide the com-
plete system as an open-source ROS package. Our soft-
ware can be used directly with a low-cost, off-the-shelf
Parrot AR.Drone 1.0 or 2.0, and no modifications to hard-
ware or onboard software are required. It therefore serves
as an ideal base for follow-up projects.

A video demonstrating the practical performance of our
system, its ability to accurately fly to a given position and
its robustness to loss of visual tracking is available online:

http://youtu.be/eznMokFQmpc

Further, we provide an open-source ROS implementation
of the complete system:

http://ros.org/wiki/tum_ardrone

2. Related Work

Previous work on autonomous flight with quadro-
copters can be categorized into two main research areas.
Several results have been published where the focus is on
accurate and agile quadrocopter control [1, 12]. These
works however rely on advanced external tracking sys-
tems, restricting their use to a lab environment. A sim-
ilar approach is to distribute artificial markers in the en-
vironment, simplifying pose estimation [13]. Other ap-
proaches learn a map offline from a previously recorded,
manual flight and thereby enable a quadrocopter to repro-
duce the same trajectory [14]. For outdoor flights where
accurate GPS-based pose estimation is possible, complete
solutions are available as commercial products [15].

We are interested in autonomous flight without previ-
ous knowledge about the environment or GPS signals,
while using only on-board sensors. Previous work on
autonomous quadrocopter flight has explored lightweight
laser scanners [5], RGB-D sensors [8, 9] or stereo rigs
[16] mounted on a quadrocopter as primary sensors.
While these sensors provide absolute scale of the environ-
ment, their drawback is a limited range and large weight,
size, and power consumption when compared to a monoc-
ular set-up.

In our work we therefore focus on a monocular camera
for pose estimation. Stabilizing controllers based on op-
tical flow from a monocular camera were presented e.g.
in [17, 18], and similar methods are integrated in com-
mercially available hardware [19]. These systems how-
ever make strong assumptions about the environment such
as a flat, horizontal ground plane. Additionally, they are
subject to drift over time, and are therefore not suited for
long-term autonomous navigation.

To eliminate drift, various monocular SLAM methods
have been investigated on quadrocopters, both with off-
board [5] and on-board processing [6, 20, 21]. A particu-
lar challenge for monocular SLAM is that the scale of the
map needs to be estimated from additional metric sensors
such as an air pressure sensor as it cannot be recovered
from vision alone. This problem has been addressed in
recent publications such as [22], where the scale is added
to the extended Kalman filter as an additional state vari-
able. In contrast to this, we propose in this paper a novel
approach which directly computes the unknown scale fac-
tor from a set of observations: using a statistical formula-
tion, we derive a closed-form, consistent estimator for the
scale of the visual map. Our method yields accurate and
robust results both in simulation and practice. As metric
sensors we evaluated both an air pressure sensor as well
as an ultrasound altimeter. The proposed method can be
used with any monocular SLAM algorithm and sensors
providing metric position or velocity measurements.

In contrast to previous work [6], we deliberately re-
frain from using expensive, customized hardware: the
only hardware required is the AR.Drone, which comes at
a costs of merely $300 – a fraction of the cost of quadro-
copters used in previous work. Released in 2010 and mar-
keted as a high-tech toy, it has been used and discussed in
several research projects [23, 24, 25].

The remainder of this article is organized as follows:
in Sec. 3, we briefly introduce the Parrot AR.Drone and
its sensors. In Sec. 4 we derive the proposed maximum-
likelihood estimator for the scale of a monocular SLAM
system. We also describe in detail all necessary prepro-
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cessing steps as well as how the variances can be esti-
mated from the data. In Sec. 5 we describe our approach
as a whole, in particular we describe the EKF, how we
estimate the required model parameters and how we com-
pensate for time delays. In Sec. 6 we present an extensive
evaluation of our scale estimation method and compare it
to a state-of-the-art filtering based method. We also pro-
vide extensive experimental results on the flight agility,
accuracy and robustness of our system using an external
motion capture system. Finally, we conclude the paper in
Sec. 7 with a summary and outlook to future work.

3. Hardware Platform

For the experiments we use the Parrot AR.Drone 2.0, a
commercially available quadrocopter as platform. Com-
pared to other modern MAVs such as Ascending Tech-
nology’s Pelican or Hummingbird quadrocopters, its main
advantages are the low price, its robustness to crashes,
and the fact that it can safely be used indoor and close
to people. This however comes at the price of flexibility:
Neither the hardware itself nor the software running on-
board can easily be modified, and communication with the
quadrocopter is only possible over wireless LAN. With
battery and hull, the AR.Drone measures 53cm× 52cm
and weights 420 g.

3.1. Sensors

The AR.Drone 2.0 is equipped with a 3-axis gyroscope
and accelerometer, an ultrasound altimeter and two cam-
eras. Furthermore it features an air pressure sensor and
a magnetic compass. The first camera is aimed forward,
covers a diagonal field of view of 92◦, has a resolution of
640×360, significant radial distortion and a rolling shut-
ter. The captured video is streamed to a laptop at 30 fps,
using lossy compression. The second camera aims down-
ward, covers a diagonal field of view of 64◦ and has a res-
olution of 320×240 at 60fps. Only one of the two video
streams can be streamed to to the laptop at the same time.
The on-board software uses the down-looking camera to
estimate the horizontal velocity, the accuracy of these ve-
locity estimates highly depends on the ground texture and
flight altitude. All sensor measurements as well as the
estimated horizontal velocities are sent to the laptop at a
frequency of up to 200Hz.

3.2. Control

The on-board software uses the available sensors to
control the roll Φ and pitch Θ, the yaw rotational speed

Ψ̇ and the vertical velocity ż of the quadrocopter accord-
ing to an external reference value. This reference is set by
sending control commands u = (Φ̄,Θ̄, ¯̇z, ¯̇

Ψ) ∈ [−1,1]4 to
the quadrocopter at a frequency of 100Hz.

4. Scale Estimation for Monocular SLAM

In this paper, we propose a closed-form solution to esti-
mate the scale λ ∈R+ of a monocular SLAM system. For
this, we assume that the robot makes noisy measurements
of absolute distances or velocities from one or more met-
ric sensors such as an ultrasound altimeter or an air pres-
sure sensor. In this chapter we first formulate the prob-
lem statistically in 4.1, and then discuss several straight-
forward estimation strategies and demonstrate why they
lead to a biased result in 4.2. In 4.3 we derive the maxi-
mum likelihood estimator for the scale λ . In 4.4 we de-
scribe the required data preprocessing steps and in 4.5
how the required parameters are estimated from the data.

4.1. Problem Formulation

As a first step, the quadrocopter measures in regular
intervals the d-dimensional distance travelled within a
certain timespan, according to the visual SLAM system
xi ∈ Rd and using the metric sensors available yi ∈ Rd .
Note that for an altimeter d = 1, as only vertical move-
ment can be measured – other sensor types however can
measure the full 3D translation (such as GPS). Each inter-
val gives a sample pair (xi,yi), where xi is scaled accord-
ing to the visual map and yi is in metric units. As both xi

and yi measure the motion of the quadrocopter, they are
related according to xi ≈ λyi.

More specifically, if we assume isotropic, Gaussian
white noise in the sensor measurements1, we obtain a set
of sample pairs {(x1,y1) . . .(xn,yn)} with

xi ∼ N (λµi,σ
2
x Id×d)

yi ∼ N (µi,σ
2
y Id×d)

(1)

where µ1 . . .µi ∈ Rd denote the true (unknown) distances
and σ2

x ,σ
2
y ∈R+ the variances of the measurement errors.

Note that the true distances µi are not constant but corre-
spond to the actual distance travelled by the quadrocopter
in the respective measurement interval. This preprocess-
ing step is further explained in 4.4.

1The noise in xi does not depend on λ as it is proportional to the av-
erage keypoint depth, which we normalize to be 1 in the first keyframe.
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Figure 2: Naı̈ve Estimators: The plot shows the estimated scale as
more samples are added for synthetic data. Observe how all Estimators
converge to a wrong value, even after adding 20.000 samples (note the
logarithmic y axis). For this plot we used λ = 2, σx = 0.3, σy = 0.3
and µi ∼N (0,1).

4.2. Naı̈ve Estimation Strategies

A direct, naı̈ve approach to estimating λ from such a
set of samples is to compute the arithmetic average, ge-
ometric average, or median of the set of quotients ‖xi‖

‖yi‖ .
This approach however fails, as illustrated by the follow-
ing example: Imagine λ = 1, no measurement noise on
the xi and only two sample pairs: (x1,y1) = (1,0.5) and
(x2,y2) = (1,1.5). Although y1 and y2 deviate symmet-
rically from the true value, neither the geometric nor the
arithmetic mean of the two quotients estimates the scale
correctly: 1

2(
1

1.5 +
1

0.5)≈ 1.3 and ( 1
1.5 ·

1
0.5)

0.5 ≈ 1.15.
Another approach is to minimize the sum of squared

differences (SSD) between the re-scaled measurements,
i.e., to compute one of the following:

λy
∗ := argmin

λ

n

∑
i=1
‖xi−λyi‖2 =

∑i xT
i yi

∑i yT
i yi

(2)

λx
∗ :=

(
argmin

λ

n

∑
i=1
‖λxi−yi‖2

)−1

=
∑i xT

i xi

∑i xT
i yi

. (3)

The difference between these two lines is whether one
aims at scaling the xi to the yi or vice versa. Both ap-
proaches however suffer from the same problem, that is
they do not converge to the true scale λ when adding more
samples. To study this effect in more detail, we applied
these naı̈ve approaches to artificially generated data ac-
cording to (1) and a wide range of parameter settings. An
example result is shown in Fig. 2: All of the above esti-
mation strategies are clearly inconsistent, i.e. they do not
converge to the correct value for n→ ∞.

4.3. Maximum Likelihood Solution

Maximum-likelihood estimation is a widely used
method to estimate unknown parameters of a statistical
model. The core idea is to choose the unknown param-
eter such that the probability of observing the data is
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Figure 3: Proposed ML Estimator: The plot shows the estimated
scale as more samples are added for synthetic data, using different
noise levels. The red line corresponds to the same parameter settings
as in Fig. 2. Again, we choose λ = 2 and µi ∼N (0,1).

maximised. Typically, one minimizes the negative log-
likelihood, i.e.,

L(µ1 . . .µn,λ ) ∝
1
2

n

∑
i=1

(
‖xi−λµi‖2

σ2
x

+
‖yi−µi‖2

σ2
y

)
(4)

By first minimizing over µ1 . . .µn and then over λ , it can
be shown analytically that (4) has a unique, global mini-
mum at

µ∗i =
λ
∗
σ2

y xi +σ2
x yi

λ
∗2

σ2
y +σ2

x

(5)

λ
∗ =

sxx− syy + sign(sxy)
√

(sxx− syy)2 +4s2
xy

2σ
−1
x σysxy

(6)

with sxx := σ2
y ∑

n
i=1 xT

i xi, syy := σ2
x ∑

n
i=1 yT

i yi, and sxy :=
σyσx ∑

n
i=1 xT

i yi
2. Together, these equations give a closed-

form solution for the ML estimator of λ , assuming the
variances σ2

x and σ2
y are known. It can easily be shown

that this solution has the following two important proper-
ties:

1. λ
∗ always lies in between λx

∗ and λy
∗, and

2. λ
∗ → λx

∗ for σ2
x → 0, and λ

∗ → λy
∗ for σ2

y → 0, i.e.,
these naı̈ve estimators correspond to the extreme
case when one of the measurement sources is noise-
free.

This leads to the observation that λ
∗ correctly interpolates

between the two extreme cases when one measurement
source is noise-free, based on the variances of the two
measurement sources. For the full minimization and a
derivation of these two properties we refer to [27]. Again

2assuming sxy > 0, which holds for a sufficiently large sample set
and λ > 0
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Figure 4: Computing the Set of Sample Pairs: For each visual pose
estimate, we generate one sample pair (xi,yi), consisting of the visual
and the metric vertical distance travelled within the last second.

we applied this estimator to artificially generated data ac-
cording to (1). Figure 3 shows the result for different pa-
rameter settings. As can be seen in the figure, the pro-
posed method always converges to the correct value, even
for high noise levels. A more extensive evaluation of the
accuracy of the proposed estimator, as well as a direct
comparison with a filtering-based approach on both syn-
thetic and real-world data using different sensor modali-
ties will be presented in Sec. 6.1.

4.4. Generating the sample set

We use the derived method to estimate the scale of a
visual SLAM system (operating at 30 Hz) using a met-
ric sensor such as an air pressure sensor (operating at
200 Hz). In order to compute the set of sample pairs
{(x1,y1) . . .(xn,yn)}, we do the following:

1. For each visual altitude measurement av(ti) ∈ R, we
compute a corresponding metric altitude measure-
ment ām(ti)∈R by averaging over a small window of
raw sensor measurements. The window size is cho-
sen such that each raw measurement is used at most
once, to preserve statistical independence while re-
ducing measurement noise.

2. For each av(ti), we compute the visual distance trav-
elled within a certain timespan of k frames xi :=
av(ti)− av(ti−k), as well as the metric distance trav-
elled within that timespan yi := ām(ti)− ām(ti−k).

Figure 4 illustrates this process. The result is one statis-
tically independent sample pair for each visual pose esti-
mate, i.e. 30 samples per second. The window size k can
be chosen freely: if the quadrocopter moves fast this value
can be small, if it moves slower it should be increased.
In practice we found that a value of k ∈ [30,60], corre-
sponding to one to two seconds, gives good results. To
increase robustness, k can also be chosen differently for
each frame, depending on the current speed of the quadro-
copter.

4.5. Estimation of the Measurement Variances

The computation of λ
∗ requires the variances of the

metric sensor σ2
m and the vision estimates σ2

v . These vari-
ances can be estimated from the data as follows: Under
the assumptions that (1) consecutive measurements are in-
dependent and identically distributed, (2) measurements
are taken at regular time intervals, and (3) the quadro-
copter’s velocity is approximately constant over three con-
secutive measurements, we obtain

av(ti−1)∼N (a−b,σ2
v ) (7)

av(ti)∼N (a,σ2
v ) (8)

av(ti+1)∼N (a+b,σ2
v ) (9)

where av(ti) is the observed altitude at time-step ti, and a
and b are the (unknown) true height and velocity respec-
tively. From the additivity of the normal distribution it
follows that

(av(ti−1)−2av(ti)+av(ti+1))∼N (0,σ2
v +4σ

2
v +σ

2
v ).
(10)

Hence, σ2
v can be estimated from a series of height mea-

surements av(t1), . . . ,av(tn) using

σ
2
v
∗
=

1
6

1
n−3

n−1

∑
i=2

(av(ti−1)−2av(ti)+av(ti+1))
2 (11)

The variance of xi is then given by σ2
x = 2σ2

v . The same
method is used to estimate σ2

y .
Note that we assume that the pose estimation variance

is constant: while for an air pressure sensor this is a rea-
sonable assumption, its validity in case of a visual SLAM
system is questionable, as the pose error depends on many
factors which might change throughout the flight – in par-
ticular on the number and depth of the observed keypoints.
In practice however, the accuracy of the visual SLAM sys-
tem varies only slightly, and the measurement error of an
altitude pressure sensor dominates by several orders of
magnitude.

5. Visual Navigation System

In this chapter we first give an overview over the de-
veloped system and its core components in 5.1. We then
detail the developed EKF, its observation and prediction
model and how we compensate for delays arising from
off-board computation in 5.2 and 5.3. We then show how
model parameters, which depend on the actual quadro-
copter used, can be estimated from test-flight data in 5.5.
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Figure 5: Approach Outline: Our navigation system consists of three
major components: a monocular SLAM implementation for visual
tracking, an EKF for data fusion and prediction, and PID control for
pose stabilization and navigation. All computations are performed off-
board, which leads to significant, varying delays which our approach
has to compensate.

5.1. System Overview

The system consists of three main components as
shown in Fig. 5:

1) Monocular SLAM: Our solution is based on Parallel
Tracking and Mapping (PTAM) [26]. After map initial-
ization, we rotate the visual map such that the xy-plane
corresponds to the horizontal plane according to the ac-
celerometer data, and scale it such that the average key-
point depth is 1. Throughout tracking, the scale of the
map λ ∈ R is estimated as described in Sec. 4. Further-
more, we use the pose estimates from the EKF to identify
and reject falsely tracked frames as well as to assist re-
localization after tracking loss.

2) Extended Kalman Filter: In order to fuse all avail-
able data, we employ an EKF, which includes a full mo-
tion model of the quadrocopter’s flight dynamics and reac-
tion to control commands. The EKF is also used to com-
pensate for time delays in the system.

3) PID Control: Based on the position and velocity
predictions from the EKF, we apply PID control to steer
the quadrocopter towards the desired goal location p =
(x̂, ŷ, ẑ,Ψ̂)T ∈ R4 in a global coordinate system. Accord-
ing to the current state estimate, we transform the gen-
erated controls into a robot-centric coordinate frame and
send them to the quadrocopter. For each of the four de-
grees of freedom, we employ a separate PID controller for
which we experimentally determined suitable controller
gains.

5.2. EKF Prediction and Observation
The state space consists of a total of ten state variables

xt := (xt ,yt ,zt , ẋt , ẏt , żt ,Φt ,Θt ,Ψt ,Ψ̇t)
T ∈ R10, (12)

where (xt ,yt ,zt) denotes the position of the quadrocopter
in meter and (ẋt , ẏt , żt) the velocity in meter per second,
both in world coordinates. Further, the state contains the
roll Φt , pitch Θt and yaw Ψt angle of the quadrocopter in
degree, as well as the yaw-rotational speed Ψ̇t in degree
per second. In the following, we define for each sensor an
observation function h(xt) and describe how the respec-
tive observation vector zt is derived from the sensor read-
ings.

5.2.1. Odometry Observation Model
The quadrocopter measures its horizontal speed v̂x,t and

v̂y,t in its local coordinate frame, which we transform into
the global frame ẋt and ẏt . The roll and pitch angles Φ̂t

and Θ̂t measured by the accelerometer are direct observa-
tions of Φt and Θt . To account for yaw-drift and uneven
ground, we differentiate the height measurements ĥt and
yaw measurements Ψ̂t and treat them as observations of
the respective velocities. The resulting observation func-
tion hI(xt) and measurement vector zI,t is hence given by

hI(xt) :=



ẋt cosΨt − ẏt sinΨt

ẋt sinΨt + ẏt cosΨt

żt

Φt

Θt

Ψ̇t

 (13)

zI,t := (v̂x,t , v̂y,t ,
ĥt − ĥt−1

δt−1
,Φ̂t ,Θ̂t ,

Ψ̂t − Ψ̂t−1

δt−1
)T (14)

where δt denotes the time passed from timestep t to t +1.

5.2.2. Visual Observation Model
When PTAM successfully tracks a video frame, we

first scale the pose estimate with the estimated scaling
factor λ

∗ and transform it to the coordinate system of
the quadrocopter, leading to a direct observation of the
quadrocopter’s pose given by

hP(xt) := (xt ,yt ,zt ,Φt ,Θt ,Ψt)
T (15)

zP,t := f (EDCEC,t) (16)

where EC,t ∈ SE(3) is the estimated camera pose (scaled
with λ ), EDC ∈ SE(3) the constant transformation from
the camera to the quadrocopter coordinate system, and f :
SE(3)→ R6 the conversion from SE(3) to the roll-pitch-
yaw representation.
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5.2.3. Prediction Model
The prediction model describes how the state vector

xt evolves from one time step to the next. In particu-
lar, we approximate the quadrocopter’s horizontal accel-
eration ẍ, ÿ based on its current state xt , and estimate its
vertical acceleration z̈, yaw-rotational acceleration Ψ̈ and
roll/pitch rotational speed Φ̇,Θ̇ based on the state xt and
the active control ut .

The horizontal acceleration is proportional to the hori-
zontal force acting upon the quadrocopter, given by(

ẍ
ÿ

)
∝ facc− fdrag (17)

where fdrag denotes the drag and facc denotes the acceler-
ating force. In general, the drag force has a linear and a
quadratic component, corresponding to laminar and turbu-
lent flow – given the comparatively low movement speed
of the quadrocopter however, we can safely approximate
it by a purely linear function of the current horizontal ve-
locity. The accelerating force facc is proportional to the
projection of the quadrocopter’s z-axis onto the horizontal
plane. This leads to

ẍ(xt) = c1 R(Φt ,Θt ,Ψt)1,3− c2 ẋt (18)

ẍ(yt) = c1 R(Φt ,Θt ,Ψt)2,3− c2 ẋt (19)

where R(·)i, j denotes the entries in the rotation matrix de-
fined by the roll, pitch and yaw angles.

Note that this model assumes that the overall thrust
generated by the four rotors is constant. Furthermore,
we approximate the influence of sent controls ut =
(Φ̄t ,Θ̄t , ¯̇zt ,

¯̇
Ψt) with a linear model:

Φ̇(xt ,ut) = c3 Φ̄t − c4 Φt (20)

Θ̇(xt ,ut) = c3 Θ̄t − c4 Θt (21)

Ψ̈(xt ,ut) = c5
¯̇
Ψt − c6 Ψ̇t (22)

z̈(xt ,ut) = c7 ¯̇zt − c8 żt (23)

The overall state transition function is now given by

xt+1
yt+1
zt+1
ẋt+1
ẏt+1
żt+1
Φt+1
Θt+1
Ψt+1
Ψ̇t+1


←



xt

yt

zt

ẋt

ẏt

żt

Φt

Θt

Ψt

Ψ̇t


+δt



ẋt

ẏt

żt

ẍ(xt)
ÿ(xt)

z̈(xt ,ut)
Φ̇(xt ,ut)
Θ̇(xt ,ut)

Ψ̇t

Ψ̈(xt ,ut)


(24)

prediction:

Φ,Θ,Ψ:
ẋ, ẏ,z:

vis. pose:
∼ 125ms∼ 25ms∼ 100ms

t−∆tvis t t +∆tcontrol

Figure 6: Pose Prediction: Measurements and control commands ar-
rive with significant delays. To compensate for these delays, we keep
a history of observations and sent control commands between t−∆tvis
and t +∆tcontrol and re-calculate the EKF state when required. Note
the large timespan with no or only partial sensor observations.

using the model specified in (18) to (23). Note that, due to
the many assumptions made, we do not claim the physical
correctness of this model. However, as we will show in
Sec. 6, it performs very well in practice: the behaviour of
all state parameters and the effect of all control commands
is approximated, allowing “blind” prediction, i.e., predic-
tion without observations, for a brief period of time. This
is an important prerequisite for effective delay compensa-
tion as described in the following section.

5.3. Delay Compensation
For controlling a quickly reacting system such as a

quadrocopter, not only an accurate but also a delay-free
state estimate is necessary, as delays quickly provoke os-
cillations and unstable behaviour. In the considered sys-
tem we observe time delays of up to 250ms between
the moment a video frame is captured and the moment
a control command based on this video frame reaches
the quadrocopter. Furthermore, different sensor modali-
ties have different delays which need to be synchronized
properly.

We found that height and horizontal velocity measure-
ments arrive with the same delay, which is slightly larger
than the delay of attitude measurements. The delay of
visual pose estimates ∆tvis is by far the largest. Further-
more we account for the time required for a new control
command to reach the quadrocopter ∆tcontrol. All timing
values given subsequently are typical values, the exact
values depend on the wireless connection quality and are
determined by a combination of regular ICMP echo re-
quests sent to the quadrocopter and offline calibration ex-
periments as further detailed in [27]. As we deliberately
refrain from modifying the on-board hardware or software
– which currently does not provide timing information –
we only use timestamps from the ground-station.

Our approach works as follows: first, we time-stamp all
incoming data and store it in an observation buffer. Con-
trol commands are then calculated using a prediction for
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the quadrocopter’s pose at t +∆tcontrol, where t is the cur-
rent time. For this prediction, we start with the saved state
of the EKF at t−∆tvis (i.e., after the last visual observa-
tion/unsuccessfully tracked frame). Subsequently, we pre-
dict ahead up to t +∆tcontrol, integrating previously issued
control commands and stored sensor measurements as ob-
servations. Figure 6 illustrates this process. Note the large
timespan of up to 125ms that needs to be bridged without
observations available: during this timespan the quadro-
copter’s state is propagated solely based on the described
prediction model, incorporating previously issued control
commands. In the long run on the other hand, the EKF
state is dominated by the pose estimates from the visual
SLAM system due to their superior accuracy.

With this approach, we are able synchronize differ-
ent sensor modalities and to compensate for delayed and
missing observations without loosing information, at the
expense of recalculating the last cycles of the EKF. As the
state only has ten dimensions, many of which are indepen-
dent, the computational cost of this is negligible compared
to the visual tracking.

5.4. Control

We employ a simple PID controller to generate the con-
trol signals, which are then sent to the quadrocopter at
100Hz. Each control signal defines the desired roll Φ̄ and
pitch Θ̄ angle, the yaw rotational speed ¯̇

Ψ and the vertical
velocity ¯̇z; each as a fraction of the respective maximal al-
lowed value3. This corresponds exactly to the information
provided by a human pilot remote-controlling the quadro-
copter via smartphone.

Given a target position p = (x̂, ŷ, ẑ,Ψ̂)T and the pre-
dicted quadrocopter state xt+∆tcontrol , we apply separate PID
control to all four controllable degrees of freedom, rotat-
ing the result to match the quadrocopter’s yaw orientation.
For readability, we omit the time indices and already in-
clude our experimentally found optimal control gains:


Φ̄

Θ̄

¯̇z
¯̇
Ψ

=

 R(Ψ)

[
0.5(x̂− x)+0.32 ẋ+0
0.5(ŷ− y)+0.32 ẏ+0

]
0.6(ẑ− z)+0.2 ż+0.01

∫
(ẑ− z)

0.02(Ψ̂−Ψ)+0+0

 (25)

Here, R(Ψ) denotes a planar rotation by Ψ. Observe that
only hight control contains an integral component, while
the yaw angle can well be controlled with pure propor-
tional control.
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Figure 7: Model Parameter Estimation: (a) ground truth velocity
(blue) and modelled velocity (red), which is estimated solely from the
quadrocopter’s attitude according to (26). The black line shows the
accelerating force from (17) in x direction. (b) value of Ec1,c2 (the
darker, the smaller the error) for different c1, c2: a clear minimum is
visible.

5.5. Model Parameter Estimation

To achieve accurate predictions, careful calibration of
the model is required. We exemplary show the estimation
of c1 and c2, which determine the effect of the quadro-
copter’s attitude on its horizontal velocity. The remaining
parameters c3 to c8 are estimated analogously. For this
we approximate the ground truth velocity from the mo-
tion capture system ẋ(t) with the predicted model velocity

ˆ̇xt+δt := ˆ̇xt +δt ẍ( ˆ̇xt ,Φt ,Θt ,Ψt), (26)

which recursively predicts the quadrocopter’s velocity
based solely on its ground truth attitude, according to the
model derived in (18). We then choose c1 and c2 as the
minimizer of

Ec1,c2(c1,c2) := ∑
t

(
ẋt − ˆ̇xt

)2
, (27)

using a generic, gradient-free minimization method. Fig-
ure 7 visualizes this error function and shows how well
this simple, calibrated model approximates the flight dy-
namics of the quadrocopter.

6. Experiments and Results

We conducted a series of real-world experiments to an-
alyze the properties of our approach. The experiments
were conducted in different environments, i.e., both in-
door in rooms of varying size and visual appearance as
well as outdoor under the influence of sunlight and wind.
A selection of these environments is depicted in Fig. 8.
The pose and scale estimation accuracy was evaluated by
attaching visual markers to the quadrocopter and tracking

318◦ for roll and pitch, 2m/s for vertical and 90 ◦/s for yaw speed
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small office kitchen large office large indoor area outdoor

Figure 8: Testing Environments: The top row shows an image of the quadrocopter flying, the bottom row the corresponding image from the
quadrocopter’s frontal camera. This shows that our system can operate robustly in different, real-world environments.

Figure 9: Motion Capture Setup: Left: AR.Drone with attached
visual markers; Right: The motion capture volume. The externally
tracked pose is solely used for evaluation purposes and at no point to
control the quadrocopter.

it with an external Qualisys motion capture system, con-
sisting of 11 cameras and covering a volume of roughly
4m× 4m× 2m (Fig. 9). It allows to track the quadro-
copters position and orientation at 50Hz, with a global
accuracy of less than a centimeter.

In this section, we first analyze the accuracy of the
proposed ML scale estimator both in simulation and on
real data, and compare it to an EKF-based approach in
Sec. 6.1. We then give an evaluation of the complete sys-
tem in terms of the pose estimation accuracy in Sec. 6.2
and the flight speed and stability of the quadrocopter in
Sec. 6.3. In Sec. 6.4 we qualitatively demonstrate the ro-
bustness of our system to temporary loss of visual track-
ing. Finally, we give a brief discussion of the overall per-
formance of the proposed system in Sec. 6.5.

6.1. Scale Estimation Accuracy

We evaluated the accuracy of the proposed scale ML
estimator by comparing it to an EKF based approach as
proposed in [20]: The state x consists of the current height
z and vertical speed and ż, a bias term for the metric sensor
b and the scale of the visual map λ . The observations are
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Figure 10: Data Examples: Left: synthetic data, Right: recorded
test-flight data. The top plots show the raw visual and metric altitude
measurements over time. The bottom plots show the corresponding
sample pairs (xi,yi).

given by the metric sensor readings as well as the visual
height estimates, leading to the two observation functions

hvision(x) = λ z hmetric(x) = z+b (28)

To facilitate convergence, in our experiments we assured
that the EKF is initialized with a scale that is at most 50%
off.

We used (a) synthetic data and (b) real data from both
an air pressure sensor and an ultrasound altimeter, which
was obtained as follows:

(a) Synthetic Data: We assume that the quadrocopter
flies a sinus-shaped trajectory, i.e. its true altitude in me-
ters is given by

ẑ(t) := sin(αt), (29)

where t is the time in seconds and α is chosen randomly
between 0.2 and 1. Visual altitude measurements zv(t)
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are taken every 40ms, while metric altitude measurements
zm(t) are taken every 5ms – both are subject to Gaussian
white noise. We simulate a drift on the metric altitude
measurements (corresponding to air pressure drift or un-
even ground) as a Gaussian random walk b̂(t). The syn-
thetic altitude and vision sensor data is hence generated
by the following model:

zv(t)∼N (λ̂ ẑ(t),σ2
v ) (30)

zm(t)∼N (ẑ(t)+ b̂(t),σ2
m) with (31)

b̂(t)∼N (b̂(t−1ms),σ2
b ) (32)

(b) Real Data: We instructed the quadrocopter to re-
peatedly fly a distance of 2m up and down, recording the
visual pose estimates as well as readings from an ultra-
sound altimeter and an air pressure sensor. The ground
truth scale λ̂ was obtained by a 7 DoF (rigid body plus
scale) alignment with the ground truth trajectory from the
motion capture system. We repeated this experiment 10
times in different scenes with different depths. As we ini-
tialise the visual map such that the average keypoint depth
is 1, the scale roughly corresponds to the inverse of the
average scene depth on initialization – which in our ex-
periments ranged from 3m to 11m.

Figure 10 shows a short extract of synthetic and real
data, as well as the corresponding distance sample pairs
which are computed as explained in Sec. 4.4.

The results of the experiments are visualized in Fig. 11:
For all data sets, the proposed ML estimator converges
quicker and to a more accurate value than the filtering ap-
proach. In particular for very large noise levels (second
row), the EKF hardly converges at all (considering it is
initialized with an error of at most 50%) and is slightly
biased – while the proposed method still provides an ac-
curate scale estimate after sufficient measurements have
been integrated. It is to mention that for this extreme case,
the noise standard deviations σm = 6m and σv = 0.3 is ex-
tremely large compared to the small height interval of only
2m (0.5 in vision units) used by the quadrocopter.

Failure Modes: In our experiments we found the EKF
to be sensitive to certain parameters, such as the prediction
uncertainty on z and ż (corresponding to the unmodeled
acceleration, i.e., the quadrocopter’s flight pattern), and
the prediction uncertainty on λ . In general there seems
to be a trade-off between very slow convergence on the
one hand, and significantly biased results, oscillating be-
haviour or even divergence on the other.

The proposed ML estimator fails if sxy ≈ 0, which may
happen in the beginning if the distance travelled within
the measured intervals is always significantly smaller than
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Figure 12: Pose Estimation Accuracy: Estimated trajectory (blue)
and ground truth trajectory (red) for three flights: a large figure (3m×
3m×1m), a small figure (1m×1m×1m), and holding a position.

the measurement noise – in fact, the magnitude of sxy is a
good indicator of the estimator’s accuracy. The resulting
unstable behaviour can be observed during the first 50s
of the last example in Fig. 11 – this simply means that
no reasonable scale estimate is feasible from the collected
data. This can be resolved by increasing the windows size
k as introduced in 4.4, or by introducing a prior λ0 as ad-
ditional sample pair (x0,y0) := (wλ0,w), where w is the
prior’s weight.

For real-world data using an ultrasound altimeter, the
average scale estimation error of the ML estimator is 5%
after 3s, and 1% after 20s Using an air pressure sensor, it
is 20% after 10s, and 6% after 30s, which is significantly
better to what can be achieved from inertial measurements
alone. On the other hand, it restricts the flight pattern to
include sufficient vertical motion in the first seconds after
map initialization, which in practice however can easily
be enforced. Further – when using the air pressure sensor
– a decent initial guess or prior is required as the estimated
scale can be very inaccurate during the first seconds.

6.2. Pose Estimation Accuracy
We analyzed the accuracy of the quadrocopter’s pose

estimate after all sensor information up to that point in
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Figure 11: Scale Estimation Comparison: The plots show the result of the different scale estimation methods over time. Each row corresponds
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Figure 13: Flight Stability: Path taken and RMSE of the quadro-
copter when instructed to hold a target position for 60 s, in three of
the environments depicted in Fig. 8. It can be seen that the quadro-
copter can hold a position very accurately, even when perturbed by
wind (right).

Table 1: Measured flight and convergence speed for position control

distance peak flight speed convergence time

(1,0,0)T m 0.9±0.1 m/s 2.4±0.4s
(3,0,0)T m 2.0±0.1 m/s 3.1±0.8s
(0,0,1)T m 0.5±0.2 m/s 3.7±0.1s
(1,1,1)T m 1.1±0.2 m/s 3.9±0.5s

time – including vision – has been integrated, which is
therefore only available with a delay of roughly 250ms.
At this point in time, the visual pose estimates dominate
the EKF state due to their comparatively high accuracy.

We measured the pose estimation accuracy for three
different scenarios: flying a large figure utilizing the full
motion capture volume, flying a small figure, and hold-
ing a given position, i.e. staying within a very small vol-
ume. We then performed a 6 DoF alignment between the
quadrocopter’s estimated trajectory and the ground truth
trajectory. Figure 12 shows an example flight for each
of the three scenarios, as well as the root mean square
(RMSE) error over five independent flights per scenario.

It can be observed that the pose estimation error re-
lates linearly to the size of the covered volume: while
locally the quadrocopter’s movement is estimated very ac-
curately, over large distances the estimation error becomes
larger. Note that – as PTAM always tracks against a global
map and not frame-to-frame – the pose estimation error
does not increase with the path length, but depends on the
size of the covered volume.

6.3. Positioning Accuracy and Flight Speed

We evaluated the performance of the complete sys-
tem in terms of position control. In particular, this re-
flects the effectiveness of the employed delay compen-
sation (Sec. 5.3): without these measures, delays in the
control loop quickly cause oscillations and unstable flight
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Figure 14: Control Behaviour: The plot shows the behaviour of
the quadrocopter when flying a large distance. As can be seen, the
quadrocopter accelerates with maximum roll for the first second and
decelerates before converging on the set-point. The dashed red and
blue lines show the proportional and differential control components
respectively.

performance, requiring low control gains (i.e., cause slow
flight). In particular, we measured the average time taken
to approach a given goal location and the average posi-
tioning error while holding this position. Considering the
large delay in our system, the pose stability of the quadro-
copter heavily depends on an accurate prediction from the
EKF: the more accurate the pose estimates and in partic-
ular the velocity estimates are, the higher the controller
gains can be set without leading to oscillations.

To determine the stability, we instructed the quadro-
copter to hold a target position over 60 s in different envi-
ronments and measured the root mean square error of the
estimated trajectory. Figure 13 shows the result for three
different environments: the measured RMSE lies between
4.9 cm (indoor) and 18.0 cm (outdoor).

To evaluate the flight speed, we repeatedly let the
quadrocopter fly a given distance and measured the con-
vergence time, that is the time required until the Euclidean
distance to the target position falls and stays below 10 cm.
An example of flying a long distance in x-direction is
shown in Fig. 14: the plot clearly shows that the quadro-
copter accelerates initially with maximum roll, and ac-
tively decelerates before reaching the target location at
t = 3.5s. Figure 15 shows position and speed of the
quadrocopter over time for the large figure displayed in
Fig.12, note how quickly and accurately the quadrocopter
flies from set-point to set-point. Table 1 shows the average
time required to move a given distance: reaching a target
location at a distance of 3 m for example takes 3.1 s on av-
erage, with the quadrocopter accelerating up to a speed of
2 m/s.

6.4. Robustness to Temporary Loss of Visual Tracking

The system as a whole is robust to temporary loss of
visual tracking, e.g., due to occlusions or large rotations,
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Figure 15: Example Flight: This plot shows the ground truth velocity
and position of the large figure flight shown in Fig. 12, illustrating the
typical behaviour of the quadrocopter when holding and approaching
way-points. Note how the quadrocopter accelerates up to a horizontal
speed of 2m/s when instructed to fly a distance of only 3m.

as it continues to navigate based only on odometry and
IMU measurements. As soon as visual tracking recov-
ers, the EKF state is updated with the absolute pose esti-
mate, eliminating accumulated estimation error. Figure 16
shows an extract from a flight where visual tracking is lost
temporarily, due to the quadrocopter being pushed and ro-
tated away from its target position.

6.5. Discussion
We demonstrated our system repeatedly and with great

success at various events and to external visitors, and gen-
erally observed good and very reliable performance.

One weakness is the heavy reliance on wireless LAN
communication, which causes problems in the presence
of many wireless-capable devices like smartphones. This
can be resolved by running all computations onboard,
which would require more sophisticated hardware.

Second, our approach requires a suitable visual envi-
ronment: As it relies heavily on the frontal camera, a suffi-
cient amount of structure / texture at an adequate distance
(in our experience 2-15 m) is required in its field of view.
For ultrasound-based scale estimation, a flat ground sur-
face is assumed – sudden jumps (e.g., flying over a table)
are detected as outlier and filtered out. Depending on the
flight-pattern, a sloped ground surface can bias the scale
estimation result. This however is rarely the case indoors,
while outdoors the pressure altimeter poses a suitable al-
ternative.

Third, as for all monocular SLAM methods, PTAM
cannot handle large rotation (yaw) without sufficient si-
multaneous translation, such that newly seen parts of the
environment can be triangulated.

7. Conclusion

We presented a visual navigation system for a low-cost
quadrocopter with off-board processing. Our approach
enables the quadrocopter to visually navigate in unstruc-
tured, GPS-denied environments and does not require ar-
tificial landmarks nor prior knowledge.

The contribution of this paper is two-fold: first, we pre-
sented a robust solution for visual navigation of a low-cost
quadrocopter with off-board computation. Second, we
derived a maximum-likelihood estimator in closed form
to recover the absolute scale of the visual map, which
is an efficient and more accurate alternative to existing
filtering-based methods.

We extensively tested and evaluated our system, among
other with respect to its pose estimation accuracy (10cm
error over a 3× 3× 1m volume) and control accuracy
(4.9 cm RMSE indoor and 18.0 cm outdoor). We experi-
mentally showed that the derived scale estimation method
accurately estimates the scale of the visual map and can
be used with different metric sensors, and how it com-
pares to a state-of-the-art filtering-based approach – both
in simulation and on real data.

We made the complete implementation available as an
open-source ROS package tum ardrone, with the aim to
facilitate the reproduction of our results and to stimulate
future research projects on such platforms.
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Figure 16: Robustness to Visual Tracking Loss: The quadrocopter is instructed to hold a flying position. At t = 1s it is pushed and rotated
away, such that visual tracking gets lost. Using IMU measurements, the quadrocopter tries to fly back to the goal location, in particular it corrects
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