
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Autonomous Camera-Based Navigation
of a Quadrocopter

Jakob Julian Engel

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Autonomous Camera-Based Navigation
of a Quadrocopter

Autonome kamerabasierte Navigation
eines Quadrocopters

Author: Jakob Julian Engel
Supervisor: Prof. Dr. Daniel Cremers
Advisor: Dr. Jürgen Sturm
Date: December 15, 2011

Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this master’s thesis, only supported by declared
resources.

München, den 15. Dezember 2011
Munich, December 15, 2011 Jakob Julian Engel

Contents

Abstract xi

1. Introduction 1
1.1. Problem Statement . 4
1.2. Outline . 5

2. Quadrocopter 7
2.1. Hardware . 9

2.1.1. Basic Quadrocopter Mechanics . 9
2.1.2. The Parrot AR.Drone . 9

2.2. Software . 10
2.2.1. Communication Channels . 11
2.2.2. Controlling the AR.Drone via iPone . 14
2.2.3. Available Software . 15

3. Monocular SLAM 17
3.1. State of the Art . 18
3.2. Notation . 20
3.3. Monocular, Keyframe-Based SLAM: Algorithm Outline 21
3.4. Keypoints . 22

3.4.1. Identifying Good Keypoints . 23
3.4.2. Multiscale Keypoint Detection . 27
3.4.3. Tracking a Keypoint . 27
3.4.4. Summary (Keypoints) . 28

3.5. Initialization . 28
3.5.1. The Essential Matrix . 30
3.5.2. Estimating the Essential Matrix . 30
3.5.3. Estimating Camera-Rotation and Translation 32
3.5.4. Triangulating Landmarks . 32
3.5.5. Nonlinear Refinement . 32

3.6. Mapping . 33
3.6.1. Map Optimization . 34
3.6.2. Adding Keyframes and Landmarks . 35
3.6.3. Further Mapping Tasks . 35

3.7. Tracking . 35
3.7.1. Pose Estimation . 35
3.7.2. Tracking Recovery . 36
3.7.3. Identifying New Keyframes . 36
3.7.4. Further Tracking Aspects . 37

vii

Contents

3.8. Summary . 37

4. Data Fusion and Filtering 39
4.1. The Linear Kalman Filter . 40
4.2. The Extended Kalman Filter . 41
4.3. The Unscented Kalman Filter . 42
4.4. Particle Filters . 42

5. Control 43

6. Scale Estimation for Monocular SLAM 47
6.1. Problem Formulation and Analysis . 47
6.2. Derivation of the ML Estimator for the Scale 48
6.3. The Effect of Measurement Noise . 49
6.4. Test with Synthetic Data . 50
6.5. Summary . 52

7. Implementation 53
7.1. Approach Outline . 53
7.2. Software Architecture . 54
7.3. Monocular SLAM . 54

7.3.1. Scale Estimation . 54
7.3.2. Integration of Sensor Data . 55

7.4. State Estimation and Prediction . 56
7.4.1. The State Space . 56
7.4.2. The Observation Model . 56
7.4.3. The State Transition Model . 58
7.4.4. Time Synchronization . 60
7.4.5. Calibration of Model Parameters . 64

7.5. Drone Control . 66

8. Results 67
8.1. Scale Estimation Accuracy . 67
8.2. Prediction Model Accuracy . 67
8.3. Control Accuracy and Responsiveness . 71
8.4. Drift Elimination due to Visual Tracking . 76
8.5. Robustness to Visual Tracking Loss . 76

9. Conclusion 79

10. Future Work 81

Appendix 87

A. SO(3) Representations 87

viii

Contents

Bibliography 89

ix

Contents

Abstract

In this thesis, we developed a system that enables a quadrocopter to localize and navi-
gate autonomously in previously unknown and GPS-denied environments. Our approach
uses a monocular camera onboard the quadrocopter and does not require artificial markers
or external sensors.

Our approach consists of three main components. First, we use a monocular, keyframe-
based simultaneous localization and mapping (SLAM) system for pose estimation. Second,
we employ an extended Kalman filter, which includes a full model of the drone’s flight
and control dynamics to fuse and synchronize all available data and to compensate for
delays arising from the communication process and the computations required. Third, we
use a PID controller to control the position and orientation of the drone.

We propose a novel method to estimate the absolute scale of the generated visual map
from inertial and altitude measurements, which is based on a statistical formulation of
the problem. Following a maximum likelihood (ML) approach, we derive a closed-form
solution for the ML estimator of the scale.

We implemented our approach on a real robot and extensively tested and evaluated it in
different real-world environments. As platform we use the Parrot AR.Drone, demonstrat-
ing what can be achieved with modern, low-cost and commercially available hardware
platforms as tool for robotics research. In our approach, all computations are performed
on a ground station, which is connected to the drone via wireless LAN.

The results demonstrate the system’s robustness and ability to accurately navigate in
unknown environments. In particular we demonstrate that our system is (1) robust to
temporary loss of visual tracking due to incorporation of inertial and altitude measure-
ments and (2) is able to eliminate the odometry drift due to the incorporation of a visual
SLAM system.

xi

1. Introduction

In recent years, both remote controlled and autonomously flying Miniature Aerial Vehi-
cles (MAVs) have become an important tool not only in the military domain, but also in
civilian environments. Particularly quadcopters are becoming more popular, especially for
observational and exploration purposes in indoor and outdoor environments, but also for
data collection, object manipulation or simply as high-tech toys.

There are numerous example where MAVs are successfully used in practice, for example
for exploratory tasks such as inspecting the damaged nuclear reactors in Fukushima in
March 2011 and for aerial based observation and monitoring of potentially dangerous
situations, such as protests or large scale sport events.

There are however many more potential applications: A swarm of small, light and cheap
quadcopters could for example be deployed to quickly and without risking human lives
explore collapsed buildings to find survivors. Equipped with high-resolution cameras,
MAVs could also be used as flying photographers, providing aerial based videos of sport
events or simply taking holiday photos from a whole new perspective.

Having a flying behavior similar to a traditional helicopter, a quadrocopter is able to
land and start vertically, stay perfectly still in the air and move in any given direction
at any time, without having to turn first. This enables quadrocopters - in contrary to
traditional airplanes - to maneuver in extremely constrained indoor spaces such as corri-
dors or offices, and makes them ideally suited for stationary observation or exploration in
obstacle-dense or indoor environments.

While the concept of an aircraft flying with four horizontally aligned rotors had already
been proposed in 1922 [42], this design quickly disappeared and was dominated by the
much more common two-rotor helicopter. There are two main reasons for this develop-
ment: While mechanically very simple, a quadrocopter is inherently unstable and hence
difficult to control - without the help of advanced electronic control systems and stabiliz-
ing routines, manual control turned out to be too complex. Furthermore, quadcopters are
less energy-efficient than traditional helicopters.

With the growing importance of MAVs however, the quadrocopter design has become
more popular again. It is mechanically much simpler than a normal helicopter as all
four rotors have a fixed pitch. Furthermore, the four rotors can be enclosed by a frame,
protecting them in collisions and permitting safe flights indoors and in obstacle-dense en-
vironments. Finally, the use of four rotors allows each to have a smaller diameter, causing
them to store less kinetic energy during flight and reducing the damage caused should the
rotor hit an object, making quadrocopters significantly safer to use close to people.

In order to navigate, modern MAVs can rely on a wide range of sensors. In addition to
an inertial measurement unit (IMU) measuring the aircraft’s orientation and acceleration,

1

1. Introduction

Figure 1.1. Top: the de Bothezat helicopter, built in 1922 by the US Army. It is considered to be
one of the first successful helicopters ever built, however it only ever reached a hight of approxi-
mately 9 m, and stayed in the air no more than 2:45 minutes. Middle: the Hummingbird miniature
quadrocopter produced by Ascending Technologies. It is used by the University of Pennsylvania’s
GRASP Lab [26, 25] (bottom), and is not only capable of extreme stunts such as triple-flips or flying
through extremely narrow gaps, but can also be used for object manipulation by attaching a grip-
per to the bottom of the drone. It however relies on an advanced external tracking system, using
20 high-speed cameras distributed around the room to estimate its current position.

2

Figure 1.2. The swash plate assembly required by a traditional helicopter to steer. The orange
control rods can be used to statically adjust the rotor blade’s pitch, enabling the helicopter to rise
and fall, while the yellow control rods allow for the swash plates to be tilted, causing the rotor
blade’s pitch to change during the course of each rotation and inducing a sideway movement. As
a quadrocopter can be navigated simply by adjusting the rotational speed of each rotor, there is no
need for such delicate mechanics.

a GPS based navigation system is often used to determine the MAV’s absolute position
- enabling it to autonomously navigate in a known environment, or simply to stay at its
position without drifting away. Even when being controlled remotely by an experienced
pilot, such systems can be of significant help, greatly reducing the pilot’s workload and
providing a much simpler navigational interface.

When flying in an unknown environment however - or indoors where there is no GPS
signal available - alternative localization methods are required. There is a wide range of
sensors available that can be used to accomplish this task: from relatively simple, small
and cheap ultrasonic range sensors measuring the distance to the closest object in one
particular direction, up to high-resolution laser range scanners providing a full depth
image, but coming at a price of several thousand euro. One of the most direct ways
to collect information about the surrounding environment are optical cameras: While
providing a huge amount of information, they are comparatively cheap, energy-efficient,
small and light and therefore particularly suited for MAVs. Dealing with this huge amount
of visual data however has proven to be a very challenging task requiring large amounts
of computational capacity.

The probably most important shortcoming of an optical camera and the reason for many
of the faced challenges is the lack of depth information - as only a two-dimensional pro-
jection of the visible field is observed, distance and size of objects in the image cannot be
determined.

The first and major component of any system capable of autonomous navigation is the
ability to localize itself in space. This is particularly the case for an aerial vehicle - while
for ground-based vehicles not moving typically is a trivial task, this is not the case for a
flying robot. Holding a position in the air requires constantly counteracting minor ran-
domly induced movements, which in turn requires a method to detect these movements.
While up to a certain degree - especially with modern, high-accuracy IMUs - this is possi-

3

1. Introduction

ble without taking external reference points into consideration, over time the lack of such
external references will lead to small errors accumulating and a slow drift away from the
desired position. With the possibility to estimate one’s own position with respect to some
fixed point however, this drift can be compensated for.

The task of accurately tracking the motion of a robot in an arbitrary, previously un-
seen environment has been the focus of a lot of research in the field of computer vision
and robotics, and is widely known as the simultaneous localization and mapping (SLAM)
problem. The general idea is very straight-forward: Using available sensor data, a map of
the environment is generated. This map in turn is used to re-estimate the new position
of the robot after a short period of time. A SLAM system thus aims at answering the
two questions “What does the world look like?” and “Where am I?”. This process can
furthermore be done actively, that is navigating a robot such that new information about
the environment can be acquired while assuring that the current pose can still be tracked
accurately. Such approaches are also called SPLAM (simultaneous planning, localization
and mapping) [35].

Once the MAV’s position can be estimated, it can be used to approach and hold a given
target position or follow a fixed path. Furthermore, such a system can be used to sig-
nificantly reduce a pilot’s workload, making manual control of the MAV much easier by
automatically compensating for the inherent instability of the aircraft and in particular
horizontal drift. In order to cope with previously unseen environments and allow for
truly autonomous behavior however, knowing the MAV’s position is not sufficient - one
also needs ways to detect obstacles, walls, and maybe objects of interest. While the map
built for SLAM can partly be used to infer information regarding the surrounding envi-
ronment such as the position of obstacles, in general additional methods are required.

1.1. Problem Statement

The objective of this thesis is to develop a system capable of controlling and navigating
the Parrot AR.Drone in an unknown environment using only onboard sensors, without
markers or calibration objects. The main sensor to be used is the frontal camera in order
to compute an absolute estimate of the drone’s pose by applying visual tracking meth-
ods. This pose estimate can then be used to calculate the control commands required to
fly to and hold a desired position in three-dimensional space. This approach enables a
quadrocopter to accomplish tasks such as

• holding a flying position in spite of external disturbances and interference such as
wind,

• high-level manual control of the drone: Instead of directly piloting the drone, this
system enables the pilot to send high-level control commands such as “move by
(δx, δy, δz)T meters” or “fly to position (x, y, z)T”,

• following a given path consisting of way points, specified in three-dimensional coor-
dinates relative to the starting point.

4

1.2. Outline

Particular challenges include estimating the unknown scale of the visual map, compensat-
ing for the large delays present in the system, and dealing with the limited sensor quality
available by combining visual pose estimates with additional sensor measurements avail-
able. Furthermore the system is required to be robust with respect to temporary loss of
visual tracking, missing or corrupted sensor measurements and varying connection qual-
ity of the wireless link.

1.2. Outline

In Chapter 2, we introduce the quadrocopter used (the Parrot AR.Drone) and state its
capabilities and available sensors. Being a commercial product, it offers only very limited
access to hardware and onboard software - we therefore treat the drone itself as a black
box, briefly summarizing the communication interface and the SDK provided by Parrot.

The following three chapters explain and detail techniques and methods used in our
approach: In Chapter 3, techniques and mathematical methods used in state-of-the-art
SLAM algorithms, in particular the components of the parallel tracking and mapping
(PTAM) system by Georg Klein and David Murray [14] are presented. In Chapter 4,
we present the data fusion and prediction method used in our system, the well-known
and widely used extended Kalman filter (EKF). In Chapter 5, we introduce proportional-
integral-differential (PID) control, a method widely used in industrial applications and in
our approach for controlling the drone.

In Chapter 6, we propose a novel method to estimate the absolute scale of the gener-
ated visual map from inertial and altitude measurements, which is based on a statistical
formulation of the problem. Following a maximum likelihood (ML) approach, we derive
a closed-form solution for the ML estimator of the scale.

In Chapter 7, we present our approach, the developed system and its three main com-
ponents: a monocular, keyframe-based SLAM system based on PTAM, an EKF for state
estimation, data fusion and state prediction and the PID controller controlling the drone.

In Chapter 8, we evaluate the performance and accuracy of the developed system on
experimental data obtained from a large number of test flights with the AR.Drone. In
particular we measure the accuracy of the proposed scale estimation method, demonstrate
how a SLAM system eliminates global drift and show how robustness to temporary loss
of visual tracking is compensated for by incorporating IMU measurements.

Finally, in Chapter 9 we summarize the result of this thesis, and the capabilities of the
developed system. In the last chapter, Chapter 10 we propose ways to improve and extend
the current system and give an outlook on future research.

5

2. Quadrocopter

The Parrot AR.Drone was introduced in January 2010, originally designed as a sophisti-
cated toy for augmented reality games. It is meant to be controlled by a pilot using a
smart phone or a tablet PC. In spite of the original design as a high-tech toy, the drone
quickly caught attention of universities and research institutions, and today is used in sev-
eral research projects in the fields of Robotics, Artificial Intelligence and Computer Vision
[17, 4]: in contrast to many other available remote controlled aerial vehicles, the drone
with a retail price of only 300e is inexpensive, robust, and easy to use and fly. In this
chapter, the drone hardware and the available sensors, as well as the available software
is presented: in Section 2.1, we first state the basic flight properties of a quadrocopter,
and then describe the Parrot AR.Drone and the available sensors in particular. In Section
2.2, we briefly present the available software and communication interfaces for the Parrot
AR.Drone.

7

2. Quadrocopter

x

y

z

yaw

roll

pitch

1

2

3

4

Figure 2.1. Schematics of the Parrot AR.Drone, as well as the main coordinate frame. It is com-
mon to specify the orientation (attitude) of an aircraft using roll-, pitch- and yaw-angles, defining
rotation around the y, x and z axis respectively.

8

2.1. Hardware

2.1. Hardware

2.1.1. Basic Quadrocopter Mechanics

A quadrocopter is a helicopter, which is lifted and maneuvered by four rotors. It can be
maneuvered in three-dimensional space solely by adjusting the individual engine speeds
(see Figure 2.1): while all four rotors contribute to the upwards thrust, two opposite ones
are rotating clockwise (rotors 2 and 3) while the other two (rotors 1 and 4) are rotating
counter-clockwise, canceling out their respective torques. Ignoring mechanical inaccu-
racies and external influences, running all engines at equal speed - precisely nullifying
gravity - allows a quadrocopter to stay in the air without moving. The following actions
can be taken to maneuver the quadrocopter:

• vertical acceleration is achieved by increasing or decreasing the speed of all four
rotors equally,

• yaw rotation can be achieved by increasing the speed of engines 1 and 4, while
decreasing the speed of engines 2 and 3 (or vice-versa) - resulting in an overall
clockwise (or counter-clockwise) torque, without changing overall upwards thrust
or balance,

• horizontal movement can be achieved by increasing the speed of one engine, while
decreasing the speed of the opposing one, resulting in a change of the roll or pitch
angle, and thereby inducing horizontal acceleration.

The fine tuning of the relative engine speeds is very sensible to small changes, making
it difficult to control a quadrocopter without advanced controlling routines and accurate
sensors.

2.1.2. The Parrot AR.Drone

The Parrot AR.Drone has dimensions of 52.5 cm× 51.5 cm with, and 45 cm× 29 cm without
hull. It has four rotors with a 20 cm diameter, fastened to a robust carbon-fiber skeleton
cross providing stability. A removable styrofoam hull protects the drone and particularly
the rotors during indoor-flights, allowing the drone to survive minor and not-so-minor
crashes such as flying into various types of room furniture, doors and walls - making
it well suited for experimental flying and development. An alternative outdoor-hull -
missing the rotor-protection and hence offering less protection against collisions - is also
provided and allows for better maneuverability and higher speeds.

The drone weights 380 g with the outdoor-hull, and 420 g with the indoor-hull. Al-
though not officially supported, in our tests the drone was able to fly with an additional
payload of up to 120 g using the indoor hull - stability, maneuverability and battery life
however suffered significantly, making the drone hardly controllable with that kind of ad-
ditional weight.

The drone is equipped with two cameras (one directed forward and one directed down-
ward), an ultrasound altimeter, a 3-axis accelerometer (measuring acceleration), a 2-axis
gyroscope (measuring pitch and roll angle) and a one-axis yaw precision gyroscope. The

9

2. Quadrocopter

Figure 2.2. The Parrot AR.Drone with indoor-hull (left) and outdoor-hull (right).

onboard controller is composed of an ARM9 468 MHz processor with 128 Mb DDR Ram,
on which a BusyBox based GNU/Linux distribution is running. It has an USB service port
and is controlled via wireless LAN.

Cameras

The AR.Drone has two on-board cameras, one pointing forward and one pointing down-
ward. The camera pointing forward runs at 18 fps with a resolution of 640× 480 pixels,
covering a field of view of 73.5◦ × 58.5◦. Due to the used fish eye lens, the image is subject
to significant radial distortion. Furthermore rapid drone movements produce strong mo-
tion blur, as well as linear distortion due to the camera’s rolling shutter (the time between
capturing the first and the last line is approximately 40 ms).

The camera pointing downwards runs at 60 fps with a resolution of 176× 144 pixels,
covering a field of view of only 47.5◦ × 36.5◦, but is afflicted only by negligible radial
distortion, motion blur or rolling shutter effects. Both cameras are subject to an automatic
brightness and contrast adjustment.

Gyroscopes and Altimeter

The measured roll and pitch angles are, with a deviation of only up to 0.5◦, surprisingly
accurate and not subject to drift over time. The yaw measurements however drift signifi-
cantly over time (with up to 60◦ per minute, differing from drone to drone - much lower
values have also been reported [17]). Furthermore an ultrasound based altimeter with a
maximal range of 6 m is installed on the drone.

2.2. Software

The Parrot AR.Drone comes with all software required to fly the quadcopter. Due to the
drone being a commercial product which is primarily sold as high-tech toy and not as a

10

2.2. Software

tool for research, accessing more than this basic functionality however turns out not to be
so easy.

The first and most important drawback is, that the software running onboard is not
accessible: while some basic communication via a telnet shell is possible, the control soft-
ware is neither open-source nor documented in any way - while custom changes including
starting additional processes are possible, this would require massive trial and error and
is connected with a risk of permanently damaging the drone [2]. For this thesis we there-
fore treat the drone as a black box, using only the available communication channels and
interfaces to access its functionalities.

This section is dedicated to describing these communication channels and the provided
functionalities, as well as introducing the official SDK for controlling the drone from any
operation system.

2.2.1. Communication Channels

As soon as the battery is connected, the drone sets up an ad-hoc wireless LAN network to
which any device may connect. Upon connect, the drone immediately starts to communi-
cate (sending data and receiving navigational commands) on four separate channels:

• navigation channel (UDP port 5554),

• video channel (UDP port 5555),

• command channel (UDP port 5556),

• control port (TCP port 5559, optional).

Note that the three major communication channels are UDP channels, hence packages
may get lost or be received in the wrong order. Also note the complete lack of any security
measures - anybody may connect to and control a running drone at any time, no password-
protection or encryption is possible.

Navigation Channel

While in normal mode the drone only broadcasts basic navigational data every 30 ms,
after switching to debug mode it starts sending large amounts of sensor measurements
every 5 ms. The exact encoding of the sent values will not be discussed here, it is partially
documented in [32]. The most important parameters and sensor values - and the ones
used in our approach - are the following:

• drone orientation as roll, pitch and yaw angles: as mentioned in the previous section,
roll and pitch values are drift-free and very accurate, while the measured yaw-angle
is subject to significant drift over time,

• horizontal velocity: in order to enable the drone to keep its position in spite of wind,
an optical-flow based motion estimation algorithm utilizing the full 60 fps from the
floor camera is performed onboard, estimating the drone’s horizontal speed. The
exact way these values are determined however is not documented.

11

2. Quadrocopter

Experiments have shown that the accuracy of these values strongly depends on
whether the ground below the drone is textured or not: when flying above a tex-
tured surface (or, for example, a cluttered desk) these values are extremely accurate
- when flying above a poorly textured surface however, the quality of these speed
estimates is very poor, deviating from the true value by up to 1 m/s above completely
untextured surfaces.

• drone height in millimeter: this value is based solely on the ultrasound altimeter
measurements. As long as the drone is flying over a flat, reflecting surface, this
value is quite accurate, with (at a height of 1 m) a mean error of only 8, 5 cm. As this
sensor measures relative height, when flying over uneven surfaces or close to walls
strong fluctuations will occur. This often induces sudden and undesired vertical
acceleration, as the drone tries to keep its relative height as supposed to its absolute
height. This value is measured only every 40 ms.

• battery state as an integer between 100 and 0,

• the control state as a 32-bit bit field, indicating the drone’s current internal status.
This might for example be “LANDED”, “HOVERING”, “ERROR”, “TAKEOF” etc.,

• the drone’s internal timestamp, at which the respective data was sent, in microsec-
onds. This is not necessarily the time at which the sensor values were taken, exper-
iments have shown that within the same package, some parameters are up to 60 ms
older than others.

Video Channel

The drone continuously transmits one video stream, which can be one of four different
channels - switching between channels can be accomplished by sending a control com-
mand to the drone. The four available channels are depicted in Figure 2.3. As can be seen,
neither of the available cameras can be accessed fully: for the downwards facing camera
the available frame rate is - with only 18 fps - significantly lower than the original 60 fps.
Furthermore the maximal supported resolution is 320× 240, halving the forward camera’s
original resolution1.

The video stream is encoded using a proprietary format, based on a simplified version
of the H.263 UVLC codec [41]. Images are encoded in YCBCR color space, 4:2:0 type2,
using 8 bit values. More details can be found in [32]. While the achieved compression is
fairly good (in practice around 10 kB per frame, resulting in a bandwidth required of only
180 kBps), this encoding produces significant artifacts in the decoded picture.

Command Channel

The Drone is navigated by broadcasting a stream of command packages, each defining the
following parameters:

1In earlier drone firmware versions, the full 480× 640 resolution was available for channels 1 and 2. This
however has been changed, because encoding a 480× 640 video stream puts too much computational load
on the on-board processor, occasionally affecting other vital functionalities such as flight stabilization.

2the cb and the cr channel are only sampled at half the original resolution

12

2.2. Software

(a): channel 1 (320× 240 @ 18 fps)

(c): channel 3 (176× 144 @ 18 fps)

(b): channel 2 (320× 240 @ 18 fps)

(d): channel 4 (176× 144 @ 18 fps)

Figure 2.3. The four different video channels available: (a) frontal camera only, (b) frontal camera
with embedded floor camera (87× 72), (c) bottom camera only, (d) bottom camera with embedded
frontal camera (58× 42).

13

2. Quadrocopter

Figure 2.4. The AR.FreeFlight App running on an iPhone. While for horizontal movement the
device is simply tilted in the respective direction, altitude and yaw rotation are controlled using
the button on the right side.

1. desired roll and pitch angle, yaw rotational speed as well as vertical speed, each as
fraction of the allowed maximum, i.e. as value between -1 and 1,

2. one bit switching between hover-mode (the drone tries to keep its position, ignoring
any other control commands) and manual control mode,

3. one bit indicating whether the drone is supposed to enter or exit an error-state,
immediately switching off all engines,

4. one bit indicating whether the drone is supposed to take off or land.

Being sent over an UDP channel, reception of any one command package cannot be guar-
anteed. In our implementation the command is therefore re-sent approximately every
10 ms, allowing for smoothly controlling the drone.

Control Port

Control commands can be used to change internal settings of the drone, for example
for switching between the four available video channels. In general a control command
is transmitted as a string of the format “[attribute]=[value]”, for a list of the available
commands we refer to [32].

2.2.2. Controlling the AR.Drone via iPone

Controlling the AR.Drone using a smart phone or tablet PC is straight-forward using the
freely available, open source AR.FreeFlight App provided by Parrot. While sufficient for
merely flying the drone, this App has some shortcomings - for example it is not possible
to record a video of the drone’s camera feed or to change internal settings of the drone.

14

2.2. Software

2.2.3. Available Software

Parrot provides a software development kit (SDK) to facilitate connecting to the drone from
any operating system. The SDK consists of a multi platform core written in plain ANSI
C code, as well as basic example applications for various platforms including Windows,
Linux, iPhone and Android. The SDK core takes care of the following tasks:

1. setting up the drone’s communication channels,

2. receiving and decoding video frames, calling a specified callback function every time
a new frame is available,

3. receiving and decoding navigational data, calling a specified callback function every
time new sensor data is available,

4. encoding and sending control commands.

The SDK is partially documented in [32], however a large part is neither documented
nor commented, making it difficult to use or modify. Furthermore the Windows and
Linux examples contain a number of bugs, the Windows example even raises a number of
compilation errors and does not reset properly after a connection loss.

15

3. Monocular SLAM

Simultaneous localization and mapping (SLAM) is the process of continuously estimating
the position and orientation of a robot in a previously unknown environment. This is
achieved by incrementally building a map of the environment from the available sensor
data, which, at the same time, is used to re-estimate the position of the robot in regular
intervals. SLAM systems are a key component of autonomously acting robots, and are
a requirement for navigation in a previously unknown environment. Furthermore, such
methods are the basis for many augmented reality (AR) applications, allowing to project
additional, virtual components into a video as if they were part of the real scene.

SLAM systems can employ different kinds of sensors: non-visual ones such as ultra-
sound or a laser-range scanner, or visual ones such as for example a monocular camera, a
stereo-camera or a red-green-blue-depth (RGBD) camera, providing not only the color but
also the depth of every pixel such as Microsoft’s Kinect or time-of-flight cameras. While
the mathematical problem behind SLAM is similar for different types of sensors, sensors
that provide more information can greatly simplify the process and reduce the compu-
tational cost. Particularly the possibility of measuring depth (using stereo or RGBD-
cameras) eliminates several challenges encountered when relying only on a monocular
camera - however often only a monocular camera is available. One particular drawback of
all depth-measuring devices is the very limited range at which they can operate accurately
- in order to navigate in large, open spaces (e.g. a factory building, or outside in GPS-
denied environments such as narrow streets), monocular SLAM systems are essential. In
this thesis we therefore focus on monocular SLAM, that is SLAM based on a single camera
moving through three-dimensional space.

In visual SLAM systems, the map of the environment is typically represented by a
number of landmarks, i.e. points in three-dimensional space that can be recognized and
localized in the camera image, typically appearing as small, distinctive regions or patches
(keypoints). Based on the locations of these keypoints in the image, the position of the
camera can be estimated. As new parts of the environment become visible, additional
landmarks are identified, added to the map and can then be integrated into the pose-
estimation process.

Although the SLAM problem has received significant attention from researchers in the
past decades, several open challenges remain. Particularly dealing with large or dynamic
environments, keeping computational complexity feasible while the map is growing, min-
imizing global drift and efficient detection of loop-closures are subject to current research.
One particular problem of monocular SLAM is the inherent scale ambiguity: due to the
projective nature of the sensor, map and movement of the camera can only be determined
up to scale - without a calibration object of known dimensions or additional sensor infor-
mation, one degree of freedom remains undetermined.

17

3. Monocular SLAM

In this chapter, we first give a short historical introduction to the SLAM problem and
summarize the current state of the art in Section 3.1, in particular we outline differences
and similarities between two fundamentally different approaches to the problem: the
filtering-based and the keyframe-based approach. We then give a detailed description
of a keyframe-based monocular SLAM system. First, in Section 3.2, we introduce the nota-
tion and conventions used in this chapter. A brief outline of the complete system is given
in Section 3.3, in particular we identify the three main components initialization, tracking
and mapping. We then proceed to presenting the concept of keypoints and landmarks in
Section 3.4, and how they can be detected and tracked in an image. In the subsequent
three sections, we give a detailed mathematical description of the three identified compo-
nents: initialization in Section 3.5, mapping in Section 3.6 and tracking in Section 3.7. In
Section 3.8, we give a short summery of the contents of this chapter.

3.1. State of the Art

Historically, the SLAM problem has been formulated first in 1986 [7], and is widely con-
sidered to be one of the key prerequisites of truly autonomous robots [28]. First proposed
solutions were based on the extended Kalman filter (EKF), these methods are also known
as EKF-SLAM: Positions of landmarks as well as the current position of the robot are
jointly represented as current state vector x. The fundamental problem of this approach
is the fact that the computational complexity of incorporating an observation, which is re-
quired for each new pose-estimate, scales quadratically in the number of landmarks (as a
full update of the maintained covariance matrix of x is required for each step). This limits
the number of landmarks to a few hundred in practice, making it impossible to navigate
in larger environments.

This limitation was addressed by FastSLAM by Montemerlo et al. [28]: The observation
that conditioned on the robot’s path, the positions of the individual landmarks become
independent allows for each landmark’s position to be estimated independently. Using a
particle filter instead of a Kalman filter (each particle representing one possible path taken
and maintaining its own estimate of all landmark positions), leads to a naı̈ve complexity
for each update of O(kn), k being the number of particles and n the number of landmarks.
Using a tree-based data structure, this can be reduced to O(k log n), hence logarithmic
instead of quadratic complexity in the number of landmarks - rendering maps containing
tens of thousands of landmarks computationally feasible.

The emergence of keyframe-based methods such as parallel tracking and mapping
(PTAM) by G. Klein and D. Murray in 2007 [14] can be seen as a major milestone in
the development of monocular SLAM methods. Keyframe-based approaches differ in
many ways from previously dominant filtering-based approaches such as EKF-SLAM or
FastSLAM: Instead of marginalizing out previous poses and summarizing all information
within a probability distribution (filtering), keyframe-based approaches retain a selected
subset of previous observations - called keyframes - explicitly representing past knowledge
gained. This difference becomes particularly evident when looking at how the map is
represented (see also Figure 3.1):

18

3.1. State of the Art

x1

x2

x3

x4

x5

C

(a)

x1

x2

x3

x4

x5

K1

K2

K3

(b)

Figure 3.1. (a) Visual representation of the map for filtering-based approaches: correlations be-
tween landmark positions are explicitly represented as covariance, and the current camera posi-
tion is an integral part of the map. The map can be interpreted as a fully connected graph with
{xi} ∪ {C} as nodes. (b) Visual representation of the map for keyframe-based approaches: obser-
vations serve as link between landmarks and keyframes, correlations between landmarks are not
explicitly represented. The map can be interpreted as a bipartite graph, with {xi} ∪ {Kj} as nodes
and all observations as edges.

Map Representation for Filtering-Based Approaches

• joint probability distribution over landmark-positions x1 . . . xn ∈ R3 and current
camera position C ∈ SE(3), e.g. as multivariate Gaussian distribution with mean
x := (x1, . . . , xn, C) ∈ R3n+6 and covariance Σ ∈ R(3n+6)×(3n+6)

• appearance of landmarks as image-patches

Map Representation for Keyframe-Based Approaches

• positions of landmarks x1 . . . xn ∈ R3

• positions of keyframes K1 . . .Km ∈ SE(3) and respective camera images I1 . . . Im

• all landmark observations in keyframes p̄ij ∈ R2 for i = 1 . . . n and j = 1 . . . m

Based on this keyframe-based map representation, the process of simultaneous localization
and mapping can be split into two distinct tasks:

1. Tracking: estimating the position of the camera C based on a fixed map, using only
the landmark positions xi.

2. Mapping: optimizing keyframe and landmark positions xi and Kj such that they
coincide with the observations p̄ij. This process is called bundle adjustment (BA),
and is detailed further in Section 3.6. Furthermore, new keyframes and landmarks
have to be integrated into the map, and other modifications such as removing invalid
landmarks, observations or even keyframes are applied.

19

3. Monocular SLAM

In the last years, these two approaches have become more and more interconnected, with
recent publications such as [13, 16, 24] adopting the advantages of both approaches. Stras-
dat et al. [39] have shown both by theoretical considerations as well as practical compar-
isons, that in general keyframe-based approaches are more promising than filtering. More
precisely, they argue that increasing the number of landmarks is more beneficial than
incorporating more observations in terms of accuracy gained per unit of computation.

Particularly the second task - optimizing a map consisting of keyframes, landmarks and
observations - has received significant attention: Strasdat et al. have explored different
bundle adjustment strategies [37] and proposed large scale and loop closure methods [38].
Kümmerle et al. developed a general framework for graph optimization called g2o [18],
generalizing the idea of bundle adjustments: In particular, this framework allows to in-
clude explicit constraints on the relationship between two keyframes (relative rotation and
translation) into the bundle adjustment process, allowing for truly constant-time monoc-
ular SLAM. Using this approach, the size of the mapped area is only constrained by the
memory required to store the map, and not by computational power available. The key
idea behind this is to enforce the map to be euclidean only locally, while globally it is
treated as a topological map [37].

Dense SLAM

In the last years, novel dense SLAM methods - both, based on monocular cameras as well
as based on RGBD-cameras - have been presented [29, 11]. These methods not only build
a dense map of the environment in form of a closed surface, but also use the whole image
for tracking - to some extend eliminating the need for keypoints and well-textured objects.
All dense methods however heavily rely on massive parallelization utilizing modern GPU
hardware, restricting their use for mobile robots. Furthermore, the map is stored in a three-
dimensional voxel cube, limiting the maximal map size to a small area1. This problematic
might be addressed in the near future by the use of octrees, as only a small portion of the
voxels (close to the surface boundaries, approx. 15%) contain relevant information.

3.2. Notation

We adopt the following conventions:

• matrices are denoted by upper-case, bold letters and (column-)vectors by lower-case,
bold letters,

• an image or a camera frame is interpreted as a continuous function I(x, y) : Ω → R

where Ω ⊂ R2 is the image space, mapping pixel coordinates to brightness values,

• the homogeneous representation of a point x ∈ Rd is denoted by x̃ := (xT, 1)T ∈
Rd+1,

1In the original version of DTAM as described in [29], the map consisted of a collection of 2.5 dimensional
keyframes instead of a global voxel cube - it did however not contain a dense equivalent to bundle ad-
justment. A newer version, presented as demo at the ICCV 2011 however stores all map information in a
global voxel cube, similar to KinectFusion [11].

20

3.3. Monocular, Keyframe-Based SLAM: Algorithm Outline

• dehomogenization and perspective projection is denoted by the function proj : Rd+1 →
Rd defined by proj(x1 . . . xd+1) := x−1

d+1(x1 . . . xd)
T,

• coordinate systems are denoted by calligraphic, upper-case letters. In particular, W
denotes the world-coordinate system, C the camera-coordinate system and Kj the
camera-coordinate system at keyframe j. If required, the coordinate system a point
is expressed in is indicated by adding it as subscript.

• the matrix transforming points from a coordinate system K1 to a different coordinate
system K2 is denoted by EK2K1 ∈ SE(3) ⊂ R4×4 (xK2 = proj(EK2K1 x̃K1)). For trans-
formation matrices from the world coordinate system, we abbreviate EK1 := EK1W .

• the camera projection matrix is denoted by Kcam ∈ R3×3,

• landmark positions expressed in the world-coordinate system are denoted by xi ∈
R3, i = 1 . . . n with n being the number of landmarks,

• an observation of landmark i in keyframe j is denoted by pij ∈ R2, in normal-
ized image coordinates. The respective pixel-coordinates are denoted by p̄ij :=
proj(Kcamp̃ij).

When optimizing over a rotation matrix R ∈ SO(3) ⊂ R3×3, it is assumed to be parametrized
as a rotation vector r ∈ so(3) ⊂ R3, using Rodrigues’ formula. When optimizing over a
transformation matrix between coordinate systems E ∈ SE(3) ⊂ R4×4, it is assumed to be

parametrized as translation vector plus rotation vector, i.e.
(

t
r

)
∈ R6.

3.3. Monocular, Keyframe-Based SLAM: Algorithm Outline

As mentioned in the introduction, the SLAM process can be split into two distinct parts,
running independently: tracking and mapping. As both parts require an existing map to
operate on, a separate initialization procedure generating an initial map is required. The
interaction between these three components is visualized in Figure 3.2.

• Initialization is performed once after the algorithm is started and requires a certain
type of camera-motion, e.g. translation parallel to the image plane.
input: initial video frames
output: initial map

• Mapping runs in a continuous loop, constantly optimizing the map and integrating
new keyframes when instructed to by the tracking component.
input: the whole map, new keyframes to integrate
output: updated map

• Tracking runs in a continuous loop which is evaluated once for each new video
frame.
input: new video frame I, landmark positions x1 . . . xn within the map
output: camera pose C at this frame

21

3. Monocular SLAM

initialization

mapping loop tracking loop

camera image I

camera pose C

read &
write read

initial
map

“add keyframe I at C”

map
• landmarks xi

• keyframes Kj

• observations pij

Figure 3.2. Schematic outline of a keyframe-based SLAM algorithm. Three main parts can be
identified: initialization, tracking and mapping. While the initialization stage only generates the
initial map, tracking and mapping are performed simultaneously in two continuous loops, both
operating on the same map.

In keyframe-based, monocular SLAM algorithms (here, as an example, from PTAM), the
map consists of:

• for each keyframe Kj the transformation from the global coordinate system EKj and
the image Ij itself,

• for each landmark its world-coordinates xi ∈ R3, the estimated normal of the patch
ni ∈ R3 and a reference to its source pixels,

• the locations of all landmark-observations in keyframes p̄ij ∈ R2, and the respective
observation uncertainties σ2

ij = 2l , where l is the scale at which the landmark was
observed (the coarser the keypoint i.e. the bigger the image patch, the larger the
uncertainty).

3.4. Keypoints

Keypoints - also called local feature points or points of interest - are the basic building
block of a vast amount of methods in the field of computer vision. They are motivated
by the fact that processing the image as a whole is computationally unfeasible - instead a
small set of particularly “interesting” and distinguishable image segments is used for tasks
such as object recognition, detection and tracking, pose estimation, image registration and
many more. Keypoints are small, distinguishable areas (windows) in the image, that are
frequently assumed to be locally planar segments of objects in the scene, and therefore
mainly occur on strongly textured objects. Note that this is only one of many possible ap-
proaches: particularly edge-based (Canny edge detector [5], edgelets [8]) or region-based
(MSER [23], PCBR [6]) features have also been explored and used in SLAM systems [8].

22

3.4. Keypoints

Figure 3.3. Locations of keypoints used by PTAM for tracking. The color represents the pyramid-
level on which the keypoints was found: blue dots correspond to coarse and large patches, while
red dots correspond to very fine and small keypoints.

In this thesis, a keypoint is a two-dimensional location in the camera image, while the
corresponding three-dimensional position will be referred to as a landmark. Keypoints
are hence the two-dimensional projections of landmarks onto the image plane. In the re-
mainder of this section, we first explain the characteristics of good keypoints and how they
can be formulated mathematically, which leads to the well-known Harris corner-detector
in Section 3.4.1. Furthermore we present the FAST corner detector and the Laplacian of
a Gaussian blob detector. In Section 3.4.2, we briefly introduce the concept of scale of a
keypoint. We then present a simple method to track keypoints in a video in Section 3.4.3.

3.4.1. Identifying Good Keypoints

One of the earliest and most widely used keypoint detectors was presented by Harris and
Stephens in 1988 [9], and is called the Harris corner detector. The basic idea is to define an
image-region (patch) as good for tracking, if shifts in all directions can be detected easily.
Mathematically this can be formulated by demanding that the change in appearance when
shifting the window by (x, y) be large for every (x, y) on the unit circle. This change in
appearance can be measured by a weighted sum of squared differences (SSD), and is
denoted by S(x, y). As weighting-function w(u, v), usually a Gaussian kernel with fixed
variance σ2 is used:

S(x, y) := ∑
u,v

w(u, v)(I(u + x, v + y)− I(u, v))2 (3.1)

23

3. Monocular SLAM

corner:
λ1 � 0,
λ2 � 0

edge:
λ1 ≈ 0,
λ2 � 0

edge:
λ1 � 0, λ2 ≈ 0

flat:
λ1 ≈ 0,
λ2 ≈ 0 λ1

λ2

Figure 3.4. The three different patch types that can be distinguished: for a corner (red), bot
eigenvalues are large and shifts in any direction can be detected. For an edge (blue), one eigenvalue
is large while the other is small, only shifts perpendicular to the edge can be detected. For a flat
region (green), both eigenvalues are small and no shifts can be detected.

Approximating I(u + x, v + y) by a first-order Taylor expansion, this can be expressed in
terms of the spacial derivatives of the image, Ix and Iy:

S(x, y) ≈∑
u,v

w(u, v)(Ix(u, v) · x + Iy(u, v) · y)2 (3.2)

Which can be simplified to:

S(x, y) ≈ (x, y)A
(

x
y

)
with A := ∑

u,v
w(u, v)

[
I2
x Ix Iy

Ix Iy I2
y

] (3.3)

Note that in this derivation, location and dimensions of the patch examined are implic-
itly encoded in the weighting function, i.e. as mean µ and variance σ2 in case of a Gaussian
kernel. Due to A (also called the structural tensor of a patch) being symmetric and posi-
tive semi-definite, the two extrema maxx,y S(x, y) and minx,y S(x, y) turn out to be the two
eigenvalues of A, denoted by λ1 and λ2. In fact, it can be observed that the nature of a
patch can be characterized by looking at the eigenvalues of A alone, yielding an efficient
algorithm to find good keypoints in an image (see Figure 3.4).

In their original paper, Harris and Stephens considered the exact computation of λ1
and λ2 to be computationally to expensive and instead suggested the following response
function:

Mc := λ1λ2 − κ (λ1 + λ2)
2

= det(A)− κ trace2(A)
(3.4)

24

3.4. Keypoints

(a) (b) (c)

Figure 3.5. The Harris response function Mc: (a) original image, (b) visualization of Mc for σ2 =
2.25, (c) visualization of Mc for σ2 = 25.

(a) (b)

Figure 3.6. (a) The FAST-16 corner detector inspects a circle of 16 pixels. As 12 continuous pixels
brighter than the center are found, the patch is classified as a corner. (b) FAST corners without
nonmaximum-suppression. Processing an image of 320× 240 pixel takes less than 1 ms on modern
hardware.

with κ being a positive constant. Shi and Tomasi later showed that using min(λ1, λ2)
as response function is more stable, the resulting detector is also referred to as Kanade-
Tomasi corner detector [34]. The full detector now operates by calculating Mc at each pixel
and choosing keypoints at local maxima which exceed a certain threshold.

The FAST Corner Detector

As the acronym already suggests, the FAST corner detector, presented by Rosten and
Drummond in 2006 [33], has the advantage of being significantly faster than other meth-
ods, achieving a speedup of factor 20 to 30 compared to Harris corners. The key idea is to
explicitly search for corners, deciding whether a pixel is the center of a corner by looking
at pixels aligned in a circle around it: if a long enough sequence of continuously brighter
or continuously darker pixels is found, it is classified as a corner. Rosten and Drummond
proposed to learn a decision tree to decide for each pixel in an image whether it is a corner
or not, using as few comparisons as possible. The learned decision trees are available as
C code, consisting of one gigantic if-then-else construct spanning over thousands of lines.
Although significantly faster, in several ways FAST performs as good as or even better

25

3. Monocular SLAM

(a) (b) (c)

Figure 3.7. Result of the Laplace response function ML: (a) original image and blobs found on
different scales, (b) ML(x, y; 2) and respective blobs, (c) ML(x, y; 10) and respective blobs.

than other corner detectors, and often is the method of choice for time-critical applications
such as real-time SLAM systems.

The Laplacian of a Gaussian Blob Detector

The Laplacian of Gaussian (LoG) blob detector [27, 21] finds blobs in the image instead of
corners, these are approximately circular regions in the image that are darker or brighter
than the surrounding. Such blobs are found by identifying local extrema of the LoG
response function ML(x, y; t), which is the Laplacian of the smoothed image:

ML(x, y; t) := t · ∆L(x, y; t)
with L(x, y; t) := g(x, y; t) ∗ I(x, y)

(3.5)

g(x, y; t) denotes a Gaussian kernel with variance t. Due to the associativity of convolution,
this can efficiently be calculated by convolving the image with two one-dimensional fil-
ters, namely the Laplacian of a one-dimensional Gaussian in both dimensions. ML(x, y; t)
produces strong local extrema for blobs with radius

√
t - in order to find blobs of differ-

ent sizes, it has to be calculated for different values of t. Analytically it can be shown
that L(x, y; t), the so-called scale-space representation of an image satisfies the diffusion
equation:

∂tL =
1
2

∆L (3.6)

allowing ML(x, y; t) to be approximated by a difference of Gaussians (DoG):

ML(x, y; t) ≈ t
∆t

(L(x, y; t + ∆t)− L(x, y; t− ∆t)) (3.7)

As for many algorithms L(x, y; t) for different values of t needs to be computed anyway,
ML can be computed by simply subtracting two images, making it computationally inex-
pensive.

26

3.4. Keypoints

3.4.2. Multiscale Keypoint Detection

When applying a corner detector such as FAST or Harris, only corners of a certain size are
detected. In order to identify keypoints at different scales, these techniques are combined
with a multiscale approach: the image is downscaled or blurred generating an image pyra-
mid, while the relative patch size is increased, allowing for “larger” corners to be detected.

A popular approach, used for example in the well-known Lucas-Kanade tracker (LKT),
is to detect Harris corners at each pyramid-level, and remove points that do not corre-
spond to a local maximum in scale-dimension with respect to their DoG-response. Prac-
tical results showed that with respect to the LKT, Harris corners perform best in spacial
dimensions, while the DoG response function provides a more stable maximum in scale
dimension [27, 21].

3.4.3. Tracking a Keypoint

Tracking a keypoint is the task of finding the exact position (and possibly other param-
eters such as scale and orientation) of a keypoint in an image, under the assumption that
a good initialization is available. When processing for example a video, the position of the
patch in the previous frame can be used as initialization, assuming that the displacement
between two consecutive frames is small. Tracking is not to be confused with methods
for matching keypoints such as SIFT [22] and SURF [3] (which build an invariant rep-
resentation of a patch) or Ferns [31] (training a classifier to recognize a patch from any
viewpoint), although these methods can also be used for tracking, referred to as tracking
by detection. A general formulation of tracking is to find parameters p of a warp func-
tion f (x, y; p) : R2 ×Rd → R2, such that the difference between the original patch T(x, y)
and the transformed image I(f (x, y; p)) becomes minimal, that is minimizing the sum of
squared differences (SSD):

p∗ = arg min ESSD(p)

with ESSD(p) :=∑
x,y
(I(f (x, y; p))− T(x, y))2 (3.8)

In order to achieve invariance to affine lightning changes, a normalized cross-correlation
error function can be used instead. Note that this error function is highly non-convex and
hence only a local minimum can be found, underlining the need for a good initialization.
The warp function f (x, y; p) can take different forms, for tracking a two-dimensional im-
age patch two important warp functions are:

Pure Translation: It is often sufficient to consider only translation for frame-to-frame
tracking. The resulting transformation has two degrees of freedom, the displacement in
two dimensions:

f (x, y; δx, δy) =
(

x + δx
y + δy

)
(3.9)

Affine Transformation: An affine transformation allows for displacement, non-uniform

27

3. Monocular SLAM

scaling and rotation, leading to 6 degrees of freedom:

f (x, y; p) =
(

p1 p2
p3 p4

)(
x
y

)
+

(
p5
p6

)
(3.10)

For practical applications, choosing a good warp function and parametrization for the task
at hand is essential.

3.4.4. Summary (Keypoints)

As keypoints are a fundamental component of many algorithms in the field of computer
vision, a wide variety of methods is available, of which only a small portion has been
discussed in this section. It can be summarized that the Harris corner detector, combined
with a LoG-based scale-selection performs best when computationally feasible, allowing
for a higher scale-resolution and yielding accurate and robust results. In time-critical
applications - as for example a SLAM system - the FAST corner detector has the advantage
of being significantly faster, however due to its discrete nature only a small number of
scales can be used (halving the image resolution for each scale).

For frame-to-frame tracking, a purely translational warp function is sufficient, as changes
in scale and perspective are small. When using a fixed template however - for example
from a reference image of an object of interest - an affine, or even a projective warp func-
tion is required.

The SLAM system used in this thesis (PTAM) uses FAST keypoints on four different
scales. Keypoints are tracked with respect to translation only, using a keyframe the key-
point was observed in as template. In order to compensate for the potentially large change
in viewpoint, the template is warped according to the expected change in viewpoint prior
to the tracking process - making use of the fact that the respective landmark’s three-
dimensional position and patch-normal is known.

3.5. Initialization

One of the fundamental difficulties in keyframe-based, monocular SLAM is the inherent
chicken-and-egg like nature of the problem: to build a map, the ability to track the camera
motion is required, which in turn requires the existence of a map. This issue arises from
the fact that no depth information is available: while for stereo-SLAM or RGBD-SLAM the
initial map can be built simply from the first image (as the three-dimensional position of
features can be estimated from one frame alone) this is not possible for monocular SLAM,
as the landmark positions are not fully observable. A common approach to solve this is to
apply a separate initialization procedure:

1. Take the first keyframe K1 and detect promising keypoints p1 . . . pn using e.g. the
FAST corner detector.

28

3.5. Initialization

Figure 3.8. Initialization procedure of PTAM. Every line corresponds to a successfully tracked
keypoint, going from its location in the first keyframe to its location in the current frame.

2. Track keypoints using a simple frame-to-frame tracking approach as described in
Section 3.4, until the camera has moved far enough such that the landmark positions
can be triangulated.

3. Take the second keyframe K2 and extract new keypoint positions p′1 . . . p′n.

4. Generate the initial map from these point-correspondences. The scale of the map as
well as the position and orientation of the first keyframe can be defined arbitrarily,
due to numerical considerations the initial map is often scaled such that the average
distance between camera and landmarks is one.

In the remainder of this section we detail the mathematical methods used for the fourth
step, that is: given n corresponding observations p1, . . . , pn ∈ R2 in K1 and p′1, . . . , p′n ∈ R2

in K2 and assuming, without loss of generality, that K1 = W , the task is to estimate both
EK2 as well as the landmark positions x1 . . . xn.

This is done by first estimating the essential matrix E, encoding the relation between
two viewpoints, which we introduce and motivate in Section 3.5.1. We then describe how
it can be estimated from n point-correspondences in Section 3.5.2, how the transforma-
tion between the two viewpoints is extracted in Section 3.5.3, and how how the landmark
positions are triangulated in Section 3.5.4. Finally, in Section 3.5.5, we briefly discuss the
accuracy of this method, and how the estimates can be refined using nonlinear optimiza-
tion. In this section, the transformation to be estimated is denoted by its rotation matrix R

29

3. Monocular SLAM

and translation vector t:

EK2 =:

 R t

0 0 0 1

3.5.1. The Essential Matrix

The essential matrix plays a central role in epipolar geometry and encodes the relation
between two images, taken of the same scene but from different viewpoints. Note that
in this chapter, we focus entirely on the essential matrix E, describing the relationship
between points expressed in homogeneous, normalized image coordinates: p̃norm = K−1

camp̃image.
However, the same methods can be applied when the two calibration matrices K and K′

are unknown, using the fundamental matrix F. The essential and the fundamental matrix
are related by E = K′TcamFKcam. The essential matrix is defined as

E := R [t]× ∈ R3×3 (3.11)

where [t]× ∈ R3×3 is the matrix corresponding to the cross-product with t. Using this defi-
nition, it can be deduced that for every pair of corresponding point-observations p, p′ ∈ R2

from two different viewpoints, the relation p̃′T E p̃ = 0 is satisfied: Let x ∈ R3 be the three-
dimensional point in one camera-coordinate system, and x′ = R(x − t) the point in the
second camera coordinate system. It follows that:

(x′)T E x
(1)
= (x− t)T RT R [t]× x

(2)
= (x− t)T [t]× x

(3)
= 0 (3.12)

1. substitution of E = R [t]× and x′ = R(x− t)

2. as a rotation matrix, R is orthonormal, hence RT = R−1

3. [t]× x = t × x is perpendicular to both t and x, hence its scalar product with any
linear combination of those two vectors is zero

Using p̃ = 1
x3

x and p̃′ = 1
x′3

x′, equation (3.12) is equivalent to p̃′T E p̃ = 0.

Not every 3 × 3 matrix is an essential matrix: As E is a product of a rotation and
a crossproduct matrix, it satisfies a number of properties, in particular every essential
matrix has two singular values that are equal while the third one is zero. Interpreted as a
projective element, E has 5 degrees of freedom and is only defined up to scale. This leaves
three internal constraints, which can be expressed by 2EETE− tr(EET)E = 0. While this
gives nine equations in the elements of E, only three of these are algebraically independent
[20].

3.5.2. Estimating the Essential Matrix

As can be seen from the definition (3.11), E has 6 degrees of freedom. Only 5 of these
can however be determined from point correspondences - as mentioned, E can only be

30

3.5. Initialization

I1

I2

c1

Figure 3.9. Geometric interpretation of the essential matrix: each point-observation p in I1 con-
strains the point to lie on a line in three-dimensional space, passing through the camera center c1
and p. The projection of this line onto the second image plane I2 is given by l = E p̃. All such lines
in I2 cross in one point, the epipole, which is the projection of c1.

determined up to scale, leaving the scale of t unknown. As each pair of observations in-
troduces two additional constraint on E and one additional unknown, namely the depth of
the point, a minimum of 5 points is required to estimate it. In fact there are many different
methods to estimate E from five, six or seven correspondences [20].

A more common approach however is the comparatively simple eight-point algorithm2,
which requires a minimum of 8 point-correspondences: For each pair p, p′, the relation-
ship p̃′TEp̃ = 0 leads to one linear constraint on the entries of E. Combining n such
constraints results in a linear system:

A e = 0 (3.13)

with A ∈ Rn×9 being built by stacking the constraints, while e ∈ R9 contains the entries
of E. In the absence of noise and for n ≥ 8, (3.13) will have a unique solution (up to scale),
namely the null-space of A. In the presence of noise and with n > 8 however, (3.13) will
only yield the trivial solution e = 0. In order to still get an estimate, it is relaxed to

min
e

A e subject to ‖e‖ = 1 (3.14)

2In OpenCV, the eighth-point algorithm and the seven-point algorithm are implemented. The seven-point
algorithm is similar to the eight-point algorithm but exploits the fact that det(E) = 0, leading to a cubic
polynomial which can be solved analytically.

31

3. Monocular SLAM

This minimization problem can be solved using the singular value decomposition (SVD) of
A, the solution being the right singular vector of A corresponding to the smallest singular
value. Note that this procedure yields a matrix E ∈ R3×3 which is the least-square solution
to (3.12). Due to the presence of noise however, this matrix in general does not satisfy the
properties of an essential matrix as described above and therefore additional normalization
steps are required. Furthermore is has been shown that other methods, exploiting the
internal constraints of an essential matrix and solving analytically for the five unknown
degrees of freedom are both faster and more stable in practice, however nonlinear and
therefore significantly more complex [36].

3.5.3. Estimating Camera-Rotation and Translation

Once E has been estimated, it is possible to recover R and t from it: Let E = UΣVT be the
SVD of E. Algebraic resolution leads to four candidate solutions satisfying (3.11):

[t]× = ±V W Σ VT

R = U W−1 VT (3.15)

using W =

0 −1 0
1 0 0
0 0 1

 or W =

 0 1 0
−1 0 0
0 0 1

It can be shown that only one of those four solutions is valid, as for any pair of corre-
sponding observations p, p′, three solutions will generate a point x lying behind at least
one camera plane. Furthermore, in practice [t]× will not be a skew-symmetric matrix due
to a noisy estimate of E - in order to avoid this, w33 can be set to zero, forcing [t]× to be
skew-symmetric. For a derivation of these formulae and further details we refer to the
excellent book Multiple View Geometry by Hartley and Zisserman [10].

3.5.4. Triangulating Landmarks

With R and t known, the 3D-position of a landmark x can be triangulated. As each ob-
servation yields two constraints on x, this is an over constrained problem. The maximum-
likelihood solution x∗ is given by the minimizer of the two-sided reprojection error:

x∗ = arg min
x

Erep(x, R, t) with

Erep(x, R, t) :=‖proj(Kcamx)− p̄‖2 + ‖proj(K′camR(x− t))− p̄′‖2
(3.16)

where p̄ and p̄′ are the pixel-coordinates of the landmark observations. An analytic so-
lution from any three constraints can be used as initialization, such a solution however is
very ill-conditioned and may lead to very poor estimates.

3.5.5. Nonlinear Refinement

Although the eight-point algorithm can easily incorporate more than 8 points, it turns out
that doing so does not significantly increase the accuracy of the estimate for R and t. This

32

3.6. Mapping

Figure 3.10. The map maintained by PTAM. Keyframes are depicted as red-white-green coordinate
frames, landmarks as red crosses.

is due to the fact that it minimizes the algebraic error function (3.13), which does not have
a direct geometric interpretation: while without noise this error function does have its
minimum at the correct position, in the presence of noise the minimum of this error func-
tion does not correspond to the optimal solution in a maximum-likelihood sense. This is
particularly true if the point-correspondences are in pixel-coordinates, and (3.13) is solved
for the fundamental matrix.

In order to get a better estimate, a nonlinear minimization using the result of the method
described above as initialization is applied, minimizing the total reprojection error and
solving for R, t and x1 . . . xn simultaneously:

min
x1...xn,R,t

n

∑
i=1

Erep(xi, R, t) (3.17)

with Erep(xi, R, t) defined as in (3.16). This nonlinear refinement is equivalent to a bundle
adjustment step as explained in the following Section 3.6.

3.6. Mapping

The mapping loop continuously optimizes the map and extends it by incorporating new
keyframes and landmarks.

33

3. Monocular SLAM

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

K1 K2 K3 K4 K5

(a)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

K1 K2 K3 K4 K5

(b)

Figure 3.11. Visualization of global (a) versus local (b) BA: each edge corresponds to an observation
and respective error term eij. For the local BA, fixed landmarks and keyframes are drawn shaded,
resulting in a large portion of the error terms being constant and hence negligible.

3.6.1. Map Optimization

Given all observations pij, the goal is to refine the keyframe and landmark positions Kj and
xi, such that they best coincide with these observations. Assuming independent, Gaussian
noise on each observation in pixel, the maximum-likelihood solution to this problem is
obtained by minimizing the total reprojection error Erep: Let the reprojection error of a
single observation p of landmark xW , and from a camera-position C be defined as

e(p, xW , C) := p̄− proj(Kcamproj(EC x̃W)) ∈ R2 (3.18)

which corresponds to the distance in pixel between the location where the landmark ac-
tually was observed and its projection onto the image. In the remainder of this section,
we use eij := e(pij, xi,Kj) for the reprojection error of an observation pij contained in the
map. The total reprojection error is now given by:

Erep(x1 . . . xn,K1 . . .Km) := ∑
j=1...m

i∈Lj

Obj

(
‖eij‖2

σ2
ij

)
(3.19)

where Obj : R → R is a robust kernel function and Lj the set of indices of all landmarks
observed in keyframe j. Minimizing this error function, using an iterative method such as
Levenberg-Marquardt is referred to as global bundle adjustment (BA).

For a growing number of landmarks and keyframes, optimizing this error function as a
whole each time a new keyframe or landmark is added quickly becomes computationally
unfeasible. This gives rise to the concept of local bundle adjustments. Optimization of
(3.19) is performed by only considering a small subset of keyframes and a corresponding

34

3.7. Tracking

subset of landmarks, keeping everything else fixed: after adding a new keyframe, optimiz-
ing only over the most recently added keyframes and a corresponding set of landmarks
may be sufficient, assuming that the estimates for older keyframes and landmarks already
are comparatively accurate. This is visualized in Figure 3.11. It is to mention, that the
total reprojection error (3.19) is a non-convex function and hence only a local and possibly
suboptimal minimum will be found.

3.6.2. Adding Keyframes and Landmarks

When a new keyframe has been identified by the tracking part, it can simply be added to
the set of keyframes using the known camera position and observations of existing land-
marks. To generate new landmarks, additional points from the new frame are extracted
and matched to points in other keyframes, using epipolar search - if a match is found, the
respective landmark position can be triangulated and is added to the map. Afterwards,
a local bundle adjustment step, including the new keyframe and all new landmarks is
performed.

3.6.3. Further Mapping Tasks

Apart from bundle adjustments and incorporation of new keyframes, additional rou-
tines are required to remove outliers, merge landmarks corresponding to the same three-
dimensional point, or identify additional observations and landmarks. The mapping loop
continuously executes these tasks (adding new keyframes, performing local BA, perform-
ing global BA, pruning the map), ordered by their priority.

3.7. Tracking

The tracking loop is executed once for each new video-frame I, and calculates the corre-
sponding camera position C, based on the known landmark positions x1 . . . xn. It requires
an initial guess of the camera pose C0, for example the pose in the previous frame.

3.7.1. Pose Estimation

First, all potentially visible landmarks are projected into the image based on the expected
camera position C0, and for each such landmark, a warped template of its expected ap-
pearance is generated from a keyframe it was observed in. Using a tracking approach
such as described in Section 3.4.3, the exact location of the landmark in the image is then
computed to subpixel accuracy. The result of this stage is a set of k 3D-to-2D point corre-
spondences, x1 . . . xk and p1 . . . pk.

Based on these 3D-to-2D point correspondences, the camera position C is to be esti-
mated. This is called the perspective n-point (PnP) problem, and is fundamental for many
tasks in computer vision and robotics. Again, there are many ways to solve this problem,
including iterative and non-iterative methods, a good overview is given in [19].

For a SLAM system, it can generally be assumed that a good initialization is available as
the camera movement is small in between two frames - applying a gradient-descend based,

35

3. Monocular SLAM

(a) (b)

Figure 3.12. (a) PTAM tracking the camera position C, represented by a red-white-green coordinate
frame; landmarks are drawn as red crosses. (b) The respective camera image, the xy-plane of the
world-coordinate system is projected into the image as black grid.

iterative method, minimizing the reprojection error as defined in Section 3.6 is therefore
the preferred method:

C∗ = arg min
C

k

∑
i=1

Obj
(
‖e(pi, xi, C)‖2

σ2
i

)
(3.20)

Note that the tracking process as described here does not require any feature descriptors
(SIFT, SURF, ORB). This is in contrast to many other approaches, in particular filtering-
based ones where feature points are frequently matched based on such descriptors.

3.7.2. Tracking Recovery

When tracking is lost, the above method cannot be applied as no initial estimate of the
camera position C0 is available. A separate recovery procedure is therefore required. There
are several possibilities to achieve this, for example using viewpoint invariant feature
descriptors such as SIFT and SURF. PTAM tries to recover by comparing the downscaled
current frame with all existing keyframes, trying to find an approximate match. Based on
this match, an initial guess of the camera orientation, assuming the position to be that of
the keyframe is computed. The resulting camera pose is then used as C0 and the normal
tracking procedure as described in Section 3.7.1 is applied.

3.7.3. Identifying New Keyframes

The tracking part also decides if a frame will be added as new keyframe based on heuristic
criteria such as:

• tracking quality is good (a high fraction of landmarks has been found),

• no keyframe was added for some time,

36

3.8. Summary

• no keyframe was taken from a point close to the current camera position.

3.7.4. Further Tracking Aspects

In practice, several improvements are possible. For example, a motion-model can be ap-
plied to compute a better initial estimate of the camera position C0, or an additional coarse
tracking stage, only considering keypoints found on a higher scale may be added in order
to track fast motion.

3.8. Summary

In this chapter, we first gave an overview over the monocular SLAM problem, how it can
be solved and reviewed the current state of the art. We distinguished between two dis-
tinct approaches - the filtering-based and the keyframe-based approach - and identified
their similarities and differences. We introduced keypoints as basic building block of both
approaches, and described in detail how they can be defined, found and tracked in an
image. Furthermore, we identified the three main components of keyframe-based, monoc-
ular SLAM algorithms (initialization, tracking and mapping), and how they interact. We
proceeded to detailing these three components and the fundamental mathematical meth-
ods applied.

37

4. Data Fusion and Filtering

In robotics one generally deals with dynamic systems, i.e. (physical) systems that change
their state over time. For a quadrocopter for example, the state might consist of its current
position, orientation and velocity. In order to accurately control such a system, sensors are
used to collect information and infer the current state as accurately as possible. Measure-
ments from real-world sensors however are always subject to measurement errors (also
called noise), hence using only the most recent measurement often leads to unstable and
poor results. Furthermore in many cases multiple sensors can be used to acquire infor-
mation about the same state variable - in order to get an optimal estimate, these measure-
ments can then be combined to give a single estimate with higher accuracy. The goal of
data fusion and filtering algorithms is to use sensor measurements and knowledge about
the dynamics of the system to gain an accurate estimate of the system’s current state.

In this chapter, we introduce the linear Kalman filter in Section 4.1 and its extension to
nonlinear systems, the extended Kalman filter, in Section 4.2. In Sections 4.3 and 4.4 we
briefly introduce two further filtering methods, the unscented Kalman filter and particle
filters.

0 100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (t)

measurements
true value
geometric average
Kalman filter

Figure 4.1. Example of filtering: the true state is shown in blue, the (noisy) measurements xt are
shown in green. The black line corresponds to a simple geometric-decay filter - while this does lead
to significantly smoother results, an artificial delay is introduced. The red line shows the result of
a Kalman filter estimating x and ẋ.

39

4. Data Fusion and Filtering

4.1. The Linear Kalman Filter

The Kalman filter is a well-known method to filter and fuse noisy measurements of a
dynamic system to get a good estimate of the current state. It assume,s that all observed
and latent variables have a (multivariate) Gaussian distribution, the measurements are
subject to independent, Gaussian noise and the system is linear. Under these assumptions
it can even be shown that the Kalman filter is the optimal method to compute an estimate
of the current state as well as the uncertainty (covariance) of this estimate. In the remainder
of this section, we use the following notation:

• n, m, d: dimension of the state vector, measurement vector and control vector respec-
tively,

• xk ∈ Rn: true state at time k. The estimate of this vector, incorporating measurements
up to and including the measurement at time j is denoted by x̂k|j,

• Pk|j ∈ Rn×n: estimated covariance of x̂k|j,

• B ∈ Rn×d: control-input model, mapping the control vector uk ∈ Rd to its effect on
the internal state,

• F ∈ Rn×n: state transition model, mapping the state at time k− 1 to the state at time k.
This transition is assumed to be subject to zero-mean Gaussian noise wk ∼ N (0, Q),
where Q is known: xk = F xk−1 + B uk + wk.

• zk ∈ Rm: observation at time k. Again this observation is assumed to be subject to
zero-mean Gaussian noise vk ∼ N (0, R), where R is known: zk = H xk + vk, where
H ∈ Rm×n is the observation model, mapping the internal state to the respective
expected observation.

Using the above definitions, the linear Kalman filter now operates in a continuous prediction-
update-loop:

1. predicting the state x ahead in time, increasing uncertainty:

x̂k|k−1 = F x̂k−1|k−1 + B uk

Pk|k−1 = F Pk−1|k−1 FT + Q
(4.1)

2. updating the state x by incorporating an observation, decreasing uncertainty:

yk = zk −H x̂k|k−1

Sk = H Pk|k−1 HT + R

Kk = Pk|k−1 HT S−1
k

x̂k|k = x̂k|k−1 + Kk yk

Pk|k = (I−Kk H) Pk|k−1

(4.2)

A full derivation and proof of these formulae is beyond the scope of this work, for further
details we refer to the excellent book Probabilistic Robotics by Thrun et al. [40].

40

4.2. The Extended Kalman Filter

Prediction:

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

f(
x)

xt−1|t−1

xt|t−1

p(xk|Zk−1) =∫
p(xk|xk−1)p(xk−1|Zk−1) dxk−1

Update:

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

f(
x)

xt|t−1

z

xt|t

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1)

Figure 4.2. Prediction and update step for a one-dimensional Kalman filter, with Zk := {z1 . . . zk}.
While the prediction step corresponds to a convolution of two Gaussians, the update step is an
application of Bayes formula: posterior ∝ likelihood · prior. For both steps, the resulting distribution
again is an analytically computable Gaussian.

4.2. The Extended Kalman Filter

The extended Kalman filter drops the assumption of a linear system, making it applicable
to a much wider range of real-world problems. The only difference is that observation,
state transition and control model can now be defined by any two differentiable functions
f : Rn ×Rd → Rn and h : Rn → Rm:

xk = f (xk−1, uk−1) + wk−1

zk = h(xk) + vk
(4.3)

The difficulty now lies in the fact that when we apply a nonlinear transformation to a
Gaussian random variable, the resulting random variable is no longer Gaussian: in order
to still make the above framework applicable, h and f are approximated by a first-order
Taylor approximation, which however leads to the result no longer being optimal. Let

Fk−1 :=
∂ f
∂x

∣∣∣∣
x̂k−1|k−1,uk

Hk :=
∂h
∂x

∣∣∣∣
x̂k|k−1

(4.4)

Update and prediction can then be approximated as follows, the only differences to the lin-
ear Kalman filter in addition to H and F now being different for every step are highlighted
in red:

41

4. Data Fusion and Filtering

1. prediction:

x̂k|k−1 = f (x̂k−1|k−1, uk)

Pk|k−1 = Fk−1 Pk−1|k−1 FT
k−1 + Q

(4.5)

2. update:

yk = zk − h(x̂k|k−1)

Sk = Hk Pk|k−1 HT
k + R

Kk = Pk|k−1 HT
k S−1

k

x̂k|k = x̂k|k−1 + Kk yk

Pk|k = (I−Kk Hk) Pk|k−1

(4.6)

4.3. The Unscented Kalman Filter

The unscented Kalman filter is a further improvement on the extended Kalman filter, often
leading to more robust and accurate results [12]. It addresses the problem that using a first-
order Taylor approximation to transform a probability distribution in general leads to poor
results when f is highly nonlinear: instead of linearization, the transformed distribution
is estimated from a number of nonlinearly transformed sample points from the original
distribution.

4.4. Particle Filters

Particle filters further relax the assumptions made: both state and observation are no
longer required to have a Gaussian distribution - allowing for example to track multiple
hypothesis simultaneously. This is achieved by characterizing the distribution using a set
of sample points called particles. The major drawback of this method is, that the number
of particles required grows exponentially in the dimension of the state - often rendering
this approach computationally unfeasible for large n.

42

5. Control

Control theory deals with the problem of controlling the behavior of a dynamic system,
i.e. a (physical) system that changes its state over time and which can be controlled by one
or more system input values. The general goal is to calculate system input values u(t),
such that the system reaches and holds a desired state. In other words, the measured error
e(t) between a given setpoint w(t) and the measured output of the system y(t) is to be
minimized over time. In particular, the goal is to quickly reach the desired setpoint and
hold it without oscillating around it, counteracting any random disturbances introduced
into the system by the environment. This process is schematically represented in Figure
5.1.

In this chapter, we present the proportional-integral-derivative controller (PID con-
troller), a generic control loop feedback mechanism widely used in industrial control sys-
tems. A PID controller is used in our approach to directly control the quadrocopter. It is
based on three separate control mechanisms, the control signal being a weighted sum of
all three terms:

• the proportional part depends on the current error e(t),

• the integral part depends on the accumulated past error
∫ t

0 e(τ)dτ,

• the derivative part depends on the predicted future error, based on the derivative of
the error with respect to time ė(t).

If integral and derivative of the error cannot be measured directly, they are approximated
by numeric integration and differentiation:

∫ t
0 e(τ)dτ ≈ ∑t

τ=1 e(τ) and ė(t) ≈ 1
δt
(e(t)−

e(t− δt)). The PID controller now calculates the system input values according to

u(t) = Kp e(t) + Ki

∫ t

0
e(τ)dτ + Kd ė(t) (5.1)

where Kp, Ki and Kd are tunable parameters that typically are determined experimentally
by the means of trial-and-error, however there are heuristic methods and guidelines to

controller control process

sensor

reference
w(t)

measured
error e(t)

system
input u(t) system output

disturbance

measured output y(t)

Figure 5.1. Schematic representation of a general control loop. The goal is to calculate system input
values u(t) such that the measured error e(t) = w(t)− y(t) is minimized.

43

5. Control

0 200 400 600 800 1000
0

5

10

15

20

reference w(t)
output y(t)

tconv

(a)

0 200 400 600 800 1000
0

5

10

15

20

reference w(t)
output y(t)

tconv

(b)

Figure 5.2. (a) proportional control. (b) the same system when adding a derivative term.

help this process. The quality of a control system can be measured by the convergence
time tconv, measuring how long it takes until e(t) stays within an specified, small interval
around zero. The effect of these three parts of a PID-controller is explained below.

The Proportional Term

The proportional part is always required, and is the part responsible for reducing the error:
the bigger the error, the stronger the control signal. In real-world systems however, a
purely proportional controller causes severe overshoot, leading to strong oscillations. The
behavior of a typical system1, controlled by a purely proportional controller is visualized
in Figure 5.2a.

The Derivative Term

The derivative part has the effect of dampening occurring oscillations: the higher the rate
of change of the error, the more this term contributes towards slowing down this rate of
change, reducing overshoot and oscillations. The effect of adding a derivative term to the
controller is visualized in Figure 5.2b.

The Integral Term

The integral part is responsible for eliminating steady-state errors: for a biased system
requiring a constant control input to hold a state, a pure PD-controller will settle above or
below the setpoint. Depending on accumulated past error, the integral term compensates
for this bias - it however needs to be treated with caution as it may increases convergence
time and cause strong oscillations. The effect of adding a derivative term to a PD-controller
is visualized in Figure 5.3.

1a first-order time delay system

44

0 50 100 150 200 250 300
0

5

10

15

20

reference w(t)
output y(t)

steady state error

(a) PD-control

0 50 100 150 200 250 300
0

5

10

15

20

reference w(t)
output y(t)

overshooting

(b) PID-control

0 50 100 150 200 250 300

−5

0

5

10

P−control
D−control
I−control
total control

(c) The three control components, corresponding to the state as plotted in (b)

Figure 5.3. (a) PD-control of a biased system, resulting in a steady-state error. (b) the same system
when adding an integral term. While for this system overshooting is unavoidable, the integral term
causes it to still settle at the correct value. (c) the three distinct control terms working together.

45

6. Scale Estimation for Monocular SLAM

One of the major shortcomings of monocular SLAM methods is, that the scale λ ∈ R

of the map cannot be determined without using either additional sensor information or
knowledge about objects present in the scene. To use a monocular SLAM method for
navigation however, an estimate for this scale factor is essential. Online estimation of
this scaling factor by combining visual keypoints and inertial measurements (acceleration)
has recently been addressed in the literature [30, 15] and used in practice [1]. In this
chapter, we analyze the problem from a statistical perspective and derive a novel method
to estimate the scaling factor particularly suited for the sensors available on the Parrot
AR.Drone.

6.1. Problem Formulation and Analysis

The goal is to accurately and online estimate the scale of a monocular SLAM system from
a continuous sequence of noisy pose estimates pv(t) computed by this SLAM system, and
a sequence of noisy sensor measurements of the absolute position ps(t), speed vs(t) or
acceleration as(t). We derive a method for the case when vs(t) can be measured drift-free,
as it is the case for the Parrot AR.Drone: The horizontal speeds are calculated onboard by
the drone, using the ultrasound altimeter and an optical-flow based algorithm on the floor
camera. The ultrasound altimeter measures the relative height, which is subject to “drift”
for uneven ground.

In regular time intervals, the distance traveled within the last interval is measured by
both the SLAM system and the available sensors, creating a pair of measurements xi, yi:

xi := pv(ti)− pv(ti−1)

yi :=
∫ ti

ti−1

vs(t)dt
(6.1)

Assuming independent Gaussian noise on all measurements, the noise on xi and yi is also
independent and Gaussian. Furthermore we assume that

• the variance of the noise on xi is a constant σ2
x , and independent of λ: The noise

on pv(t) depends on many factors, but in particular it scales linearly with the depth
of the feature points observed. As the initial scale of the map can be chosen such
that the average feature depth is constant, the noise on the pose estimate scaled
according to the SLAM map is constant assuming the average feature depth not to
change significantly over time. At this point we do not consider other influences on
the pose estimation accuracy such as the number of visible landmarks.

47

6. Scale Estimation for Monocular SLAM

• the variance of the noise on yi is a constant σ2
y , which follows directly from the noise

on vs(t) having a constant variance. σ2
y does however scale linearly with the interval

size.

This leads to the following statistical problem formulation: Given two sets of correspond-
ing, noisy, d-dimensional measurements X := {x1 . . . xn} and Y := {y1 . . . yn} of the true
distance covered, the task is to estimate the unknown scaling factor λ. The samples are
assumed to be distributed according to

xi ∼ N (λµi, σ2
x)

yi ∼ N (µi, σ2
y)

(6.2)

where µi ∈ Rd denotes the true (unknown) distance covered and σ2
x , σ2

y ∈ R+ are the
known variances of the measurement errors.

6.2. Derivation of the ML Estimator for the Scale

Following a maximum likelihood (ML) approach, the negative log-likelihood of obtaining
the measurements X, Y is given by:

L(µ1 . . . µn, λ) ∝
1
2

n

∑
i=1

(
‖xi − λµi‖2

σ2
x

+
‖yi − µi‖2

σ2
y

)
(6.3)

The ML estimator for λ can now be calculated as

λ∗ := arg min
λ

min
µ1 ...µn

L(µ1 . . . µn, λ) (6.4)

Setting the derivative of L(µ1 . . . µn, λ) with respect to µi to zero, we can calculate the
optimal values for µi in terms of λ:

∂L(µ1 . . . µn, λ)

∂µi
∝

λ2µi − λxi

σ2
x

+
µi − yi

σ2
y

!
= 0

⇒ µi =
λσ2

y xi + σ2
x yi

λ2σ2
y + σ2

x

(6.5)

Substituting (6.5) into (6.4) and simplifying gives

λ∗ = arg min
λ
L̂(λ)

with L̂(λ) := min
µ1 ...µn

L(µ1 . . . µn, λ) ∝
1
2

n

∑
i=1

‖xi − λyi‖2

λ2σ2
y + σ2

x

(6.6)

Setting the derivative with respect to λ to zero leads to

L̂′(λ) ∝
n

∑
i=1

(λyi − xi)
T(σ2

x yi + λσ2
y xi)

(λ2σ2
y + σ2

x)
2

!
= 0

48

6.3. The Effect of Measurement Noise

which simplifies to a quadratic equation in λ. Using the observations that

• limλ→∞ L̂(λ) = limλ→−∞ L̂(λ) ∈ R,

• ∃λ0 ∈ R+ : ∀λ > λ0 : L̂′(λ) > 0 ∧ L̂′(−λ) > 0, i.e. for large enough positive or
negative λ, L̂′(λ) becomes positive (This only holds if and only if ∑n

i=1 xT
i yi > 0,

which is the case for a reasonable set of measurements.),

• L̂(λ) has at most two extrema,

it can be concluded that L̂(λ) has a unique, global minimum at

λ∗ =
sxx − syy +

√
(sxx − syy)2 + 4s2

xy

2σ−1
x σysxy

with sxx := σ2
y

n

∑
i=1

xT
i xi syy := σ2

x

n

∑
i=1

yT
i yi sxy := σyσx

n

∑
i=1

xT
i yi

(6.7)

which is the ML estimator for the scale factor λ.

6.3. The Effect of Measurement Noise

The above derivation shows, that the variances of the measurement errors σ2
x and σ2

y have
a non-negligible influence on the estimate for λ. The reason for this becomes clear with
the following example: We artificially generate measurement pairs xi, yi ∈ R3 according
to (6.2) and estimate λ by

1. scaling the yi such that they best correspond to the xi

λ∗y := arg min
λ

∑
i
‖xi − λyi‖2 =

∑i xT
i yi

∑i yT
i yi

(6.8)

2. scaling the xi such that they best correspond to the yi

λ∗x :=

(
arg min

λ
∑

i
‖λxi − yi‖2

)−1

=
∑i xT

i xi

∑i xT
i yi

(6.9)

See Figure 6.1 for an example. It turns out that λ∗x = limσx→0 λ∗ and λ∗y = limσy→0 λ∗,
i.e. the two above solutions correspond to the ML estimator if one of the measurements
sources is assumed to be noise-free. In practice however this will never be the case, and
none of these two limit cases will yield an unbiased result. In essence this means that in
order to estimate λ, the variances of the measurement errors σ2

x and σ2
y need to be known

(or estimated), otherwise only a lower and an upper bound for λ can be given (λ∗ always
lies in between λ∗y and λ∗x).

49

6. Scale Estimation for Monocular SLAM

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

xi

λ−1

x xi
yi

λyyi

Figure 6.1. 100 artificially generated measurement pairs (x component), with λ = 3, σ2
x = 1 and

σ2
y = 0.3. The dotted lines correspond to the with λ∗x = 3.05 and λ∗y = 2.82 scaled measurements

respectively. When adding more measurement pairs with these particular values, λ∗x converges to
3.07, while λ∗y converges to 2.81.

10
0

10
1

10
2

10
3

10
4

1.5

2

2.5

3

number of samples added

es
ti

m
a
te

d
sc

a
le

λ

λ
∗ λ

∗

x
λ
∗

y arith. mean geo. mean median

Figure 6.2. Estimated scale for the different estimators as more samples are added (λ = 2, σx = 1,
σy = 0.3), observe that only λ∗ converges to the correct value.

6.4. Test with Synthetic Data

In this section, we compare the estimator proposed λ∗ with λ∗x, λ∗y and three further es-
timation strategies on synthetically generated data according to the model (6.2), drawing
the true distances covered µi from a normal distribution N (03, I3×3):

arith. mean :=
1
n ∑

i

‖xi‖
‖yi‖

(6.10)

geo. mean :=

(
∏

i

‖xi‖
‖yi‖

) 1
n

(6.11)

median := median
{
‖xi‖
‖yi‖

, i = 1 . . . n
}

(6.12)

As expected, all these estimators are biased, i.e. by adding more measurements they con-
verge to a value (significantly) different from the real scaling factor λ, this can be observed
in Figure 6.2. Figure 6.3 shows how this bias increases when increasing the measurement
noise. In all our experiments (varying the true scale λ, the noise variances σx, σy, as well as
the number of dimensions considered) the proposed method is the only one converging to
the true scale factor. The differences become much less significant when the measurement
noise is reduced. The influence of wrong σx, σy is analyzed in Figure 6.4.

50

6.4. Test with Synthetic Data

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σx

es
ti

m
a
te

d
sc

a
le

λ

λ
∗

λ
∗

x

λ
∗

y

arith. mean
geo. mean

median

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σy

es
ti

m
a
te

d
sc

a
le

λ

λ
∗

λ
∗

x

λ
∗

y

arith. mean
geo. mean

median

Figure 6.3. Estimated scale for 50,000 samples and different values for (a) σx and (b) σy: observe
how λ∗y becomes more biased for large σy, while the bias of λ∗x depends only on σx.

0 0.5 1 1.5 2
1.5

2

2.5

assumed σx

e
s
t
im

a
t
e
d

s
c
a
le

λ

σx = σy = 0.1

σx = σy = 0.25

σx = σy = 0.5

σx = σy = 1.0

Figure 6.4. Effect of incorrect σx: Four sets of samples with different true noise levels and a true
scale of λ = 2 are generated. We then estimate the scale using our approach, with the correct value
for σy and a range of different values for σx: observe how the bias caused by a wrong value for
σx becomes significantly larger for large noise levels. Note that σx = σy = 1 corresponds to the
measurement error being approximately as large as the true distances moved, while σx = σy = 0.1
corresponds to the measurement error being approximately 10% of the true distances moved.

51

6. Scale Estimation for Monocular SLAM

6.5. Summary

In this chapter, we derived a novel closed-form method to estimate the scaling factor λ of
a monocular SLAM system using for example an IMU and an ultrasound altimeter. In or-
der to deal with drift (IMU) or discontinuities (ultrasound altimeter over uneven ground),
the moved path is split into intervals, generating two noisy sets of measurements X, Y.
We argued that, in order to estimate λ from such sets of measurements without bias, the
approximate variances of the measurement errors σ2

x , σ2
y need to be known. Our method

is computationally inexpensive and flexible: outliers can easily be removed from the set of
measurements, and data from multiple sensors can easily be incorporated into the estima-
tion.

In practice, the measurement noise of at least one source will be small and hence rough
approximations of σx and σy lead to accurate results: if the standard deviation of the mea-
surement error is approximately 10% of the true distances moved, the bias for unknown
σ2

x or σ2
y will be less than 2% (see Figure 6.4).

52

7. Implementation

In this chapter, we describe our approach to the problem and the system developed and
implemented in the course of this thesis. In Section 7.1, we first outline our approach,
summarizing the methods used and how they interact. We briefly present the software
architecture in Section 7.2. In the following three sections, we describe the three main
components of our approach: in Section 7.3, we describe the monocular SLAM system,
how it is augmented to benefit from the additional sensor measurements available and
how the method derived in Chapter 6 is used to estimate the scale of the map. In Section
7.4, we describe the extended Kalman filter used to fuse information from the different
sensors available, the prediction model developed and how time delays are compensated
for. In Section 7.5, we describe the PID-controller controlling the drone.

7.1. Approach Outline

Our approach consists of three major components:

• Monocular SLAM: a monocular SLAM algorithm as described in Chapter 3 (PTAM)
is applied to incoming video frames and computes an estimate of the drone’s pose,
based on a predicted pose calculated by the Kalman filter. By comparing sensor
data with PTAM’s pose estimate, the initially unknown scale of the map is estimated
using our method as described in Chapter 6.

• Extended Kalman filter: in order to fuse the pose estimate provided by PTAM with
available sensor information as well as the predicted effect of sent control commands,
an extended Kalman filter (EKF) as introduced in Chapter 4 is developed. It not only
computes a more accurate estimate of the drone’s pose and speed at each video
frame, but also a prediction of its future state when the next control command will
take effect, compensating for delays in the communication process.

monocular SLAM extended Kalman Filter PID control

video frame
@ 18 Hz

sensor
measurements
@ 200 Hz

control
command
@ 100 Hz

target position

pose estimate

pose prediction

drone pose

control sent

Figure 7.1. Outline of our approach.

53

7. Implementation

• PID controller: based on an estimate of the drone’s position and speed provided by
the EKF, a PID-controller as introduced in Chapter 5 is used to calculate appropriate
control commands to fly to and hold a given target position.

7.2. Software Architecture

The first task to be solved for this thesis was to build a reliable and fault-tolerant software
system controlling the Parrot AR.Drone. In particular, the challenge was to develop a
fault-tolerant system, for example it needs to quickly and automatically detect and restore
a lost connection to the drone without loosing the internal state of the control system. We
achieved this by encapsulating all SDK-dependent code and direct drone-communication
in a separate process: the drone proxy process offers a clean local interface for accessing
video and navigational data, as well as sending control commands to the drone. Fur-
thermore it can record and replay all data sent by the drone, simulating a real flight and
significantly facilitating the debugging process.

A second process, the UI process monitors the state of the drone proxy and automat-
ically restarts it when a connection loss or error is detected. It also offers the possibility
of manually controlling the drone via keyboard or gamepad and serves as a graphical
interface for managing drone connection and recording or replaying flights.

The main algorithmic component runs in a third process: the control process contains
the SLAM system, the Kalman filter and the PID-controller, as well as video and map
visualization. When controlling the drone manually, this process is not required - allowing
for immediate manual takeover when it is interrupted for debugging purposes.

These three processes communicate using named pipes for interchanging message, as
well as shared memory regions, mutexes and events for asynchronously interchanging
video, navigational and control data. The software architecture is visualized in Figure 7.2.

7.3. Monocular SLAM

For the task of monocular SLAM, our solution is based on the open-source parallel tracking
and mapping system by Klein and Murray [14], a well-known and widely used keyframe-
based monocular SLAM system as described in Chapter 3. It is augmented to make use of
the additional sensor information available, in particular the main drawback of monocular
SLAM, the impossibility to recover the scale of the scene, is resolved.

7.3.1. Scale Estimation

In order to navigate a quadrocopter, knowing the scale of the map is essential - it is
required for specifying a flight path in euclidean space, calculating appropriate control
commands and fusing the visual pose estimate with IMU measurements.

54

7.3. Monocular SLAM

drone

drone proxy
C / C++

SLAM, control, KI
C++

UI, process
management

C#

shared memory blocks:
video, navdata, control

named pipe

named pipe

wireless LAN

save &
load

HD

Figure 7.2. The software architecture.

The scale is estimated using the method derived in Chapter 6: a new three-dimensional
sample pair is generated every second, using the ultrasound height measurements and
integrating over the measured horizontal speeds. If the measured height changes by more
than a fixed threshold in between two measurements (corresponding to a vertical speed of
more than 3 m/s), a discontinuity in the ground level is assumed and the respective vertical
distances are removed. Furthermore the vertical differences are weighted more, as they are
more accurate than the measured horizontal velocities. The estimated scaling factor λ∗ is
applied to PTAM’s estimate of the drone’s position, i.e. (x, y, z)T

World = λ∗ (x, y, z)T
PTAM + o,

where the offset o ∈ R3 is adapted for each re-estimation of λ∗, such that for some fix
point (e.g. the current drone position, or the starting position) this mapping remains fixed.

7.3.2. Integration of Sensor Data

In addition to scaling and orientating the map correctly, the IMU measurements available
are used to increase both resilience and accuracy of PTAM. The Kalman filter is used to
generate an accurate prior estimate of the drone’s position for each video frame, which is
then utilized in three ways:

• it is used as initialization for tracking (C0), replacing PTAM’s built-in decaying ve-
locity model.

• when tracking is lost, it is used as alternative initialization for the recovery process,
in some cases speeding up recovery.

55

7. Implementation

• when the roll or pitch angle measured by the IMU deviate strongly from PTAM’s
pose estimate, tracking is assumed to be lost and the respective result discarded, in
particular it is not added as keyframe. This basic validity check drastically reduces
the probability of permanently corrupting the map by adding false keyframes.

7.4. State Estimation and Prediction

Estimating the state of the drone - that is its pose as well as velocity - is essential for
navigation and autonomous flying. In particular the estimate is required to not only be
accurate, but also afflicted with as little delay as possible: the more recent the estimate, the
quicker the PID-controller can react and the more accurately the drone can be controlled.
We use an extended Kalman filter to estimate the state of the drone, fusing optical pose
estimates provided by PTAM with sensor measurements provided by the IMU. In this
section, we describe the Kalman filter used, in particular we define the state space as
well as the state transition model, the observation model and the control model. We also
describe how the different sensors are synchronized and how the model parameters are
determined.

7.4.1. The State Space

The internal state of the Kalman filter is defined to be

x(t) := (x, y, z, ẋ, ẏ, ż, Φ, Θ, Ψ, Ψ̇)T ∈ R10 (7.1)

where

• x, y and z correspond to the world-coordinates of the drone center in meters,

• ẋ, ẏ and ż correspond to the velocity of the drone in meters per second, expressed in
the world coordinate system,

• Φ, Θ and Ψ correspond to roll angle, pitch angle and yaw angle in degree, repre-
senting the drone’s orientation. While in general such a representation of a 3D-
orientation is problematic due to ambiguities and loss of one degree of freedom at
certain constellations (Gimbal lock), the fact that both roll and pitch angle are always
small makes this representation well suited.

• Ψ̇ corresponds to the yaw-rotational speed in degree per second.

As the state changes over time and measurements are integrated in irregular intervals, the
respective values will be treated as continuous functions of time when appropriate. For
better readability, the time argument is omitted when clear from context.

7.4.2. The Observation Model

The observation model calculates the expected measurements based on the current state of
the drone. As two distinct and asynchronous observation sources are available, two sepa-
rate observation models are required. We adopt the notation introduced in Chapter 4, that

56

7.4. State Estimation and Prediction

is z ∈ Rm denotes the measurement vector, while h : Rn → Rm denotes the observation
model, mapping the current state to the respective expected observation.

Visual SLAM Observation Model

The visual SLAM system generates an estimate of the drone’s pose for every video frame,
that is approximately every 55 ms, which due to the very limited resolution of 320× 240
pixel is subject to significant noise. This pose estimate is treated as direct observation of
the respective state parameters, that is

hPTAM(x) := (x, y, z, Φ, Θ, Ψ)T ∈ R6 (7.2)

and
zPTAM := log(EDCEC) ∈ R6 (7.3)

where EC ∈ SE(3) is the camera pose as estimated by PTAM, EDC ∈ SE(3) the (constant)
transformation transforming the camera coordinate system to the drone coordinate sys-
tem, and log : SE(3) → R6 the transformation from an element of SE(3) to the respective
roll-pitch-yaw representation (x, y, z, Φ, Θ, Ψ) as described in appendix A.

Sensor Observation Model

As detailed in Chapter 2, the drone sends updated IMU measurements every 5 ms. These
measurements however do not correspond to raw sensor measurements, but have already
been subject to filtering and other preprocessing steps - as a result, they heavily violate
the assumption of independent measurement noise. To compensate for this, the respective
measurement variances are chosen to be comparatively high. The sensor values used are:

• horizontal speed ẋd, ẏd, measuring the forward and sideway movement of the drone
in its own coordinate frame,

• relative height h: this value corresponds to the drone’s relative height, and is mea-
sured every 40 ms. Assuming a flat ground surface with occasional discontinuities,
changes corresponding to a vertical speed of more than 3 m/s are filtered out. Never-
theless, treating it as direct observation of the drone’s height would be problematic:
Deviations due to an uneven ground or an inaccurately estimated scale λ would
cause unstable and oscillating values for the drone’s estimated height and in partic-
ular its vertical speed. Instead, only the change in height is used: Let z(t − δt) be
the height of the drone according to the filter after the last height-observation, and
h(t− δt) and h(t) the measured relative heights at time t− δt and t. The observed
absolute height at time t is then given by z(t− δt) + h(t)− h(t− δt).

• roll- and pitch angles Φ̂, Θ̂: as these sensor values are very accurate, drift-free and
calibrated with with respect to PTAM’s map after the initialization procedure, they
can be treated as direct observations of the respective state variables.

• Yaw angle Ψ̂: as this sensor value is subject to significant drift over time, it handled
the same way as the relative height measurements.

57

7. Implementation

The resulting measurement vector and observation function are:

hIMU(x) :=

cos(Ψ)ẋ− sin(Ψ)ẏ
sin(Ψ)ẋ + cos(Ψ)ẏ

z
Φ
Θ
Ψ

 ∈ R6 (7.4)

and

zIMU :=

ẋd
ẏd

z(t− δt) + h(t)− h(t− δt)
Φ̂
Θ̂

Ψ(t− δt) + Ψ̂(t)− Ψ̂(t− δt)

 ∈ R6 (7.5)

7.4.3. The State Transition Model

The state transition model f : Rn ×Rd → Rn propagates the state through time, that is
based on the state x(t) and the active control command u(t) at time t, a prediction for
the state x(t + δt) at time t + δt is calculated. As the drone sends accurate timestamps
in microseconds with each sensor measurement package, these can be used to determine
the exact prediction intervals δt. Prediction is thus performed in irregular time steps of
δt ≈ 5± 1 ms. In this section, we describe the state transition model and the control model
used, and how it is derived. In Section 7.4.5 we describe how the required model constants
are estimated from test-flights.

Horizontal Acceleration

The horizontal velocity of the drone changes according to the horizontal acceleration,
which depends on the current attitude of the drone. It is given by(

ẍ
ÿ

)
=

1
m

f (7.6)

where m ∈ R is the drone’s mass and f ∈ R2 the sum of all horizontal forces acting upon
it. The horizontally acting force f consists of two components:

• air resistance fdrag ∈ R2: for a comparatively slow-moving object, the force acting
upon it due to air resistance is approximately proportional to its current velocity, that
is

fdrag ∝ −
(

ẋ
ẏ

)
(7.7)

• accelerating force due to roll- and pitch angle fthrust ∈ R2: the propellers are as-
sumed to generate a constant force acting along the drone’s z-axis. If it is tilted, a

58

7.4. State Estimation and Prediction

portion of this force acts horizontally, this portion is given by projecting the drone’s
z-axis onto the horizontal plane:

fthrust ∝
(

cos Ψ sin Φ cos Θ− sin Ψ sin Θ
− sin Ψ sin Φ cos Θ− cos Ψ sin Θ

)
(7.8)

Assuming fdrag and fthrust to be constant over the short time period considered, substi-
tuting (7.7) and (7.8) into (7.6) and merging the proportionality constants, the drone’s
horizontal acceleration is given by

ẍ(x) = c1 (c2 (cos Ψ sin Φ cos Θ− sin Ψ sin Θ)− ẋ)
ÿ(x) = c1 (c2 (− sin Ψ sin Φ cos Θ− cos Ψ sin Θ)− ẏ)

(7.9)

where c1 and c2 are model constants: c2 defines the maximal speed attained with respect
to a given attitude, while c1 defines how fast the speed adjusts to a changed attitude. The
drone is assumed to behave the same in x and y direction.

Influence of Control Commands

The control command u = (Φ̄, Θ̄, ¯̇Ψ, ¯̇z)T ∈ [−1, 1]4 defines the desired roll and pitch an-
gles, the desired yaw rotational speed as well as the desired vertical speed of the drone
as a fraction of the maximal value permitted. These parameters serve as input values
for a controller running onboard on the drone, which then adjusts the engine speeds ac-
cordingly. The behavior of this controller is modeled by approximating the roll and pitch
rotational speed, the vertical acceleration as well as the yaw rotational acceleration based
on the current state and the sent control command. We use a model similar to the one
derived for the horizontal accelerations, that is

Φ̇(x, u) = c3 (c4 Φ̄−Φ)

Θ̇(x, u) = c3 (c4 Θ̄−Θ)

Ψ̈(x, u) = c5 (c6
¯̇Ψ− Ψ̇)

z̈(x, u) = c7 (c8 ¯̇z− ż)

(7.10)

where c3 to c8 are model constants which are determined experimentally in Section 7.4.5.
Again, the behavior of the drone is assumed to be the same with respect to roll and pitch
angle.

59

7. Implementation

The Complete State Transition Function

The complete state update x(t + δt)← f (x(t), u(t)) for a time period of δt is given by:

x
y
z
ẋ
ẏ
ż
Φ
Θ
Ψ
Ψ̇

←

x
y
z
ẋ
ẏ
ż
Φ
Θ
Ψ
Ψ̇

+ δt

ẋ
ẏ
ż

ẍ(x)
ÿ(x)

z̈(x, u)
Φ̇(x, u)
Θ̇(x, u)

Ψ̇
Ψ̈(x, u)

(7.11)

where ẍ(x) and ÿ(x) are defined in (7.9) and Φ̇(x, u), Θ̇(x, u), Ψ̈(x, u) and z̈(x, u) in (7.10).

7.4.4. Time Synchronization

An important aspect when fusing data from multiple sensors - in particular when trans-
mitted via wireless LAN and therefore subject to significant time delay - is the synchro-
nization of this data. In case of the Parrot AR.Drone, in particular the video stream and the
resulting pose-estimates from the visual SLAM system are subject to significant time delay:
The time required between the instant a frame is captured and the instant the respective
calculated control signal is applied (i.e. the time required for encoding the image on the
drone, transmitting it via wireless LAN, decoding it on the PC, applying visual tracking,
data fusion and control calculations and transmitting the resulting control signal back to
the drone) lies between 150 ms and 400 ms. In this section, we describe the communication
model and how the resulting delays are compensated for.

Communication Model

When a connection to the drone is established, two latency values are measured using an
echo signal to the drone: the time required to transmit an average video frame t10kB, and
the time required to transmit a control command or navigational data package t0.5kB. They
are updated in regular intervals while the connection is active. t0.5kB typically lies between
5 ms and 80 ms, while t10kB lies between 30 ms and 200 ms, depending on the bandwidth
used by nearby wireless LAN networks. In order to analyze the communication process,
we define the following time spans:

• camera image delay tcam: the delay between the instant a frame is captured and the
instant it is decoded and ready for further processing on the PC.

• height and horizontal velocity delay txyz: the delay between the instant the data
from which the drone estimates its own velocity was measured, and the instant the
estimates are available on the PC. The height-measurement has approximately the
same delay as the horizontal velocities.

60

7.4. State Estimation and Prediction

AR.Drone PC

time

video frame

ẋd , ẏd , zd

Φd , Θd , Ψd

control command

trpy

txyz

tcam +
tPTAM

tcontrol

tPTAM

Figure 7.3. Sequence diagram of the communication between the drone and a PC, the defined
delays are indicated. For every communication channel, only one exemplary message is drawn -
in practice a new video frame is sent approximately every 55 ms, new sensor measurements every
5 ms and an updated control command every 10 ms.

• gyroscope data delay trpy: the measurements of the drone’s roll, pitch and yaw
angle are subject to little preprocessing and therefore have the smallest delay, which
is denoted by trpy.

• control delay tcontrol: every 10 ms an updated control signal is calculated by the PC,
sent to the drone and used as setpoint for the internal attitude controller. The time
between the instant it is sent, and the instant it is applied is denoted by tcontrol.

• tracking time tPTAM: the time required for visual tracking, which varies significantly
from frame to frame.

Figure 7.3 depicts the communication between the drone and a PC as a sequence diagram,
the defined delays are indicated.

Compensating for Delays

All sensor values received from the drone are stored in a buffer, as are all control sig-
nals sent. They are not incorporated into the Kalman filter directly. Only when a new
video frame is received, the Kalman filter is rolled forward permanently up to the point
in time at which it was received (T1), incorporating time-corrected sensor measurements
as observations and removing them from the buffer. The resulting pose is used as initial-
ization for visual tracking. After the tracking is completed, the calculated pose is added
as observation to the Kalman filter.

Simultaneously - every 10 ms - a new control command is calculated using the best
estimate possible of the drone’s state for the point in time the command will be applied,
i.e. tcontrol in the feature (T3): The Kalman filter is temporarily rolled forward up to T3,
incorporating all sensor measurements and sent control commands stored in the buffers.
This prediction process is depicted in Figure 7.4.

61

7. Implementation

EKF prediction:
obs. Φ, Θ, Ψ:

obs. ẋ, ẏ, z:
obs. visual pose:

tcontrol + trpy

≈ 120 ms
txyz − trpy

≈ 20 ms
tcam − txyz +

tPTAM

≈ 100± 30 ms
T1 T2 T3

time

Figure 7.4. The filter is permanently rolled forward up to T1. For each new control command, it
is temporarily rolled forward up to T3, which is the point in time at which the calculated control
command will take effect: For the first tcam − txyz + tPTAM ≈ 100± 30 ms, complete IMU measure-
ments are available and can be added as observations. For the following txyz − trpy ≈ 20 ms, only
roll, pitch and yaw angle measurements are available. The last tcontrol + trpy ≈ 120 ms are predicted
using only the previously sent control commands. This calculation process is done approximately
at T2. The given time spans are typical values, in practice they are adapted continuously corre-
sponding to the measured wireless LAN latencies.

Measuring the Delays

As the Parrot AR.Drone does not transmit timestamps with the sent video frames or sen-
sor data packages, only the time at which they were received by the PC can be used
to experimentally determine the values required in order to compensate for the delays
present.

• (tcam− trpy) is estimated by comparing the roll angle measured by the IMU with the
roll angle calculated by PTAM over a series of test flights: Let ΦPTAM(t) be the roll
angle measured by PTAM for a frame received at time t, and ΦIMU(t) the roll angle
measured by the IMU, received at time t. The delay is estimated by minimizing
the sum of squared differences between the two functions (interpolating linearly),
sampling at regular intervals of 5 ms:

tcam − trpy = arg min
δt

E(δt)

with E(δt) :=∑
t
(ΦIMU(t)−ΦPTAM(t + δt))

2 (7.12)

The result is visualized in Figure 7.5.

• (tcam − txyz) is estimated by comparing the height measured by the IMU with the
height calculated by PTAM over a series of test flights, using the same method.

• (trpy + tcontrol) is estimated by comparing the sent control commands with the roll
angle measured by the IMU, and manually aligning the instant the control command
is changed with the instant this change starts to take effect. Figure 7.6 shows a short
extract of the test flight.

62

7.4. State Estimation and Prediction

0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

20

time [s]

a
n
g
le

[d
eg

re
e]

ΦIMU(t)
ΦP TAM (t)

0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

20

time [s]

a
n
g
le

[d
eg

re
e]

ΦIMU(t)
ΦP TAM (t + 50ms)

0 10 20 30 40 50 60 70 80 90 100
8

8.5

9

9.5

10
x 10

5

δt [ms]

E(δt)

Figure 7.5. The top-left plot shows the measured angles ΦPTAM(t) and ΦIMU(t) for an extract of the
test flights, the delay is clearly visible. In the right plot, the same extract is plotted time-aligned.
The bottom plot shows the error function E(δt), a clear minimum at δt = 50 ms becomes visible.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−20

−15

−10

−5

0

5

10

time [s]

Φ(t)

c4Φ̄(t)

c4Φ̄(t − 75 ms)

Figure 7.6. Manual alignment of the sent control signal and the respective attitude angle.

63

7. Implementation

c2

c
1

0 4 8 12 16 20 24 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

time (s)

sp
ee

d
(m

/
s)

ẋ(t)
ˆ̇x(t)
5 fthrust,x(t)

Figure 7.7. Left: visualization of Ec1,c2(c1, c2) as defined in (7.14): a clear minimum at c1 = 0.6 and
c2 = 16 is visible. Right: true speed ẋ(t) versus predicted speed ˆ̇x(t), as well as fthrust,x(t) for a
short extract of the test-flights.

Taking into account the known latencies for the test flights t10kB = 35 ms and t0.5kB = 5 ms,
we determined the following delay values. Note that neither of the four defined time spans
tcam, trpy, txyz and tcontrol can be determined from these three relations alone, however only
the following values are required:

(tcam − trpy) = 20 ms + t10kB − t0.5kB

(tcam − txyz) = 0 ms + t10kB − t0.5kB

(trpy + tcontrol) = 65 ms + 2 t0.5kB

(7.13)

7.4.5. Calibration of Model Parameters

The constant parameters of the model derived above, c1 to c8, were estimated by min-
imizing the difference between the values predicted by the model and the true values
calculated by the EKF over a series of test flights. This is possible because the influence of
c1 to c8 on the state are negligible after the respective observations have been integrated
(at T1 in Figure 7.4). They are only required for the state prediction at T3. For c1 and c2 we
minimize the following error function:

Ec1,c2(c1, c2) := ∑
t

(
ẋ(t)− ˆ̇x(t)

)2

ˆ̇x(t + δt) = ˆ̇x(t) + δt c1 (c2 fthrust,x(t)− ˆ̇x(t))
(7.14)

Observe that ˆ̇x(t) is calculated using solely the measured attitude of the drone, while ẋ(t)
is the “ground truth”, that is the speed estimate at time t after integrating all measurements
available. The result is visualized in Figure 7.7. The remaining model parameters c3 to c8
were estimated analogously, see Figures 7.8 and 7.9 for the results.

64

7.4. State Estimation and Prediction

c3

c
4

0 8 16 24 32 40
0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

time (s)
ro

ll
a
n
g
le

Φ(t)

Φ̂(t)

c4 Φ̄(t)

Figure 7.8. Left: visualization of Ec3,c4(c3, c4): a clear minimum at c3 = 10.6 and c4 = 24 is
visible. Right: true roll angle Φ(t) versus predicted roll angle Φ̂(t), as well as the respective
control command Φ̄(t) for a short extract of the test-flights.

c8

c
7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (s)

ve
rt

ic
a
l
sp

ee
d

(m
/
s)

ż(t)
ˆ̇z(t)

c8
¯̇z(t)

Figure 7.9. Left: visualization of Ec7,c8(c7, c8): a clear minimum at c7 = 1.4 and c8 = 1 is visible.
Right: true vertical speed ż(t) versus predicted vertical speed ˆ̇z(t), as well as the respective control
command ¯̇z(t) for a short extract of the test-flights.

65

7. Implementation

7.5. Drone Control

In order to control the drone we use a PID controller, taking the predicted drone state for T3
as input. In particular we directly use the speed estimates maintained by the Kalman filter.
Let x = (x, y, z, ẋ, ẏ, ż, Φ, Θ, Ψ, Ψ̇)T be the predicted state of the drone, and p = (x̂, ŷ, ẑ, Ψ̂)T

the target position and yaw angle. The control signal u = (Φ̄, Θ̄, ¯̇z, ¯̇Ψ) is now calculated by
applying PID control to these four parameters, and rotating the result horizontally such
that it corresponds to the drone’s coordinate system:

Φ̄ = (0.5 (x̂− x) + 0.32 ẋ) cos Ψ− (0.5 (ŷ− y) + 0.32 ẏ) sin Ψ
Θ̄ = −(0.5 (x̂− x) + 0.32 ẋ) sin Ψ− (0.4 (ŷ− y) + 0.32 ẏ) cos Ψ

¯̇z = 0.6 (ẑ− z) + 0.1 ż + 0.01
∫
(ẑ− z)

¯̇Ψ = 0.02 (Ψ̂−Ψ)

(7.15)

We found that integral control is only required for controlling the drone’s height, while
the yaw angle can be controlled by a proportional controller alone without resulting in
oscillations or overshoot. The integral term for the height control is reset when the target
height is first reached, and capped at a maximum of 0.2. The other parameters were
determined experimentally.

66

8. Results

In this chapter, we evaluate the performance and accuracy of the developed system on
experimental data obtained from a large number of test flights with the AR.Drone. In
the first Section 8.1, we verify the accuracy of the scale estimation method derived in
Chapter 6. In Section 8.2, we analyze the precision of the prediction model and the time
synchronization method as described in Section 7.4, giving both an example as well as a
quantitative evaluation. In Section 8.3, we measure the performance of the PID controller
as described in Section 7.5 with respect to stability and convergence speed. Section 8.4
demonstrates how the addition of a visual SLAM system significantly improves the con-
trol accuracy and eliminates drift. In Section 8.5, the system’s ability to recover from a
temporary loss of visual tracking due to e.g. fast motion or external influences.

8.1. Scale Estimation Accuracy

To analyze the accuracy of the scale estimation method used and derived, the drone is
repeatedly instructed to fly a fixed figure, while the scale of the map is re-estimated every
second. The ground truth is obtained afterwards by manually moving the drone a fixed
distance, and comparing the moved distance with the displacement measured by the vi-
sual SLAM system. Figure 8.1 shows the estimated length of 1 m for the first 20 s of the test
flights. For Figure 8.1a, we only use vertical motion to estimate the scale, and instruct the
drone to repeatedly fly up and down a distance of 1.5 m. For Figure 8.1b, only horizontal
motion is used, and the drone is instructed to repeatedly fly along a horizontal line with a
length of 1.5 m.

Observe how the scale can be estimated accurately from both types of motion alone,
the estimate however converges faster and is more accurate if the drone moves vertically,
i.e. the ultrasound altimeter can be used. For vertical motion, the standard deviation of the
estimation error after 20 s is only 1.75%, while for horizontal motion it is 5%. In practice,
all three dimensions are used, allowing for accurate scale estimation from arbitrary motion
- the accuracy depending on how the drone moves. The initial scale estimate is base only
on the distance moved in between the first two keyframes, and therefore is very inaccurate.
In oder to avoid severe overshoot due to a wrong scale, the initial estimate is doubled -
hence the initially large estimates.

8.2. Prediction Model Accuracy

The main purpose of the prediction and control model f : Rn ×Rd → Rn of the EKF - as
detailed in Section 7.4.3 - is to compensate for the time delays present in the system, in
particular to allow prediction for the timespan where no sensor measurements at all, or

67

8. Results

0 5 10 15 20
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

time [s]

es
ti

m
a
te

fo
r

1
m

0 5 10 15 20
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

time [s]

es
ti

m
a
te

fo
r

1
m

0 5 10 15 20
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

time [s]

es
ti

m
a
te

fo
r

1
m

(a): vertical motion

0 5 10 15 20
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

time [s]

es
ti

m
a
te

fo
r

1
m

(b): horizontal motion

Figure 8.1. Error on the estimated scale for a total of ten test flights, five with only horizontal and
five with only vertical motion. The top plots show mean and standard deviation for the estimated
length of 1 m. The bottom plots show the individual runs.

68

8.2. Prediction Model Accuracy

only IMU measurements are available (T1 to T3 in Figure 7.4, in practice around 150 ms to
400 ms). Due to the relative inaccuracy of the prediction model compared to the sensor
measurements and the visual pose estimates, its influence on the filter state at T1, after all
sensor measurements up to that point in time have been incorporated is negligible. Only
the for T3 predicted pose - which is the relevant one for the PID controller - is strongly
influenced by the prediction model.

Qualitative Example

An example of the accuracy of the prediction model with respect to horizontal speed, posi-
tion and roll angle is given in Figure 8.2: For this plot, the drone is instructed to fly to and
hold x = 0 m. At t = 5 s, it is forcefully pushed away from this position, and immediately
tries to return to it.

The prediction for the drone’s state at time t as computed at T3, xT3(t), is drawn as red
line. The state of the filter at time t as computed at T1, xT1(t), is drawn as dashed, black
line: this is the best state estimate available at time t without predicting ahead, based
on the most recent video frame tracked - note the clearly visible delay. The continuous
black line shows the same estimate as the dashed one, but shifted in time such that it
aligns with the time the respective measurements and video frames were taken at, that is
xT1(t + td). For this comparison it is treated as ground truth, as the state prediction model
has comparatively little influence on it as argued above.

Quantitative Evaluation

We also performed a quantitative evaluation of the accuracy gained due to the prediction
model. We do this by treating xT1(t + td) as ground truth, and computing the root mean
squared error (RMSE) between this ground truth and

1. the pose computed by the prediction model xT3(t) (red line in Figure 8.2).

RMSEpred :=

√
1
n

n

∑
i=1

(xT1(ti + ti,d)− xT3(ti))2 (8.1)

2. the most recent estimate available at that point in time, without predicting ahead
xT1(t) (dashed black line in Figure 8.2).

RMSEraw :=

√
1
n

n

∑
i=1

(xT1(ti + ti,d)− xT1(ti))2 (8.2)

Table 8.1 shows the RMSE for three different flight patterns and all state variables. Also
given is the percentage decrease of the RMSE when predicting ahead (acc := 1− RMSEpred

RMSEraw
).

While RMSEpred is always smaller than RMSEraw, the difference becomes far more signif-
icant for flights where the respective parameter changes frequently. Furthermore it can
be observed that the prediction model for vertical motion is relatively poor due to the
comparatively unpredictable reaction of the drone to thrust control, while the model for

69

8. Results

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2

time [s]

p
o
si

ti
o
n
:

x
(t

)
[m

]

xT1

(t + td)
xT1

(t)
xT3

(t)

0 1 2 3 4 5 6 7 8

−2

−1.5

−1

−0.5

0

0.5

1

time [s]

ve
lo

ci
ty

:
ẋ
(t

)
[m

/
s]

ẋT1
(t + td)

ẋT1
(t)

ẋT3
(t)

0 1 2 3 4 5 6 7 8
−20

−10

0

10

20

time [s]

a
n
g
le

:
Φ

(t
)

[d
eg

re
e]

ΦT1
(t + td)

ΦT1
(t)

ΦT3
(t)

Figure 8.2. The position (top), velocity (middle) and roll angle (bottom) of the drone. The accuracy
of the prediction model can well be observed by comparing the red to the black line: Only at t = 5 s
there is a strong deviation, as the prediction model cannot predict the drone being pushed away -
this can only be observed after the respective sensor measurements are added to the filter, hence
the red line briefly coincides with the dashed black line. The bottom row shows the environment
this experiment was conducted in, the total delay td lay around 200 ms.

70

8.3. Control Accuracy and Responsiveness

Flight pattern 1: Flight pattern 2: Flight pattern 3:
horizontal movement vertical movement house

RMSEraw RMSEpred acc RMSEraw RMSEpred acc RMSEraw RMSEpred acc

x 18 cm 2 cm 87% 4 cm 1 cm 62% 3 cm 1 cm 64%
y 3 cm 1 cm 59% 3 cm 1 cm 58% 2 cm 1 cm 55%
z 6 cm 4 cm 30% 9 cm 3 cm 65% 7 cm 3 cm 63%

ẋ 27 cm/s 8 cm/s 70% 10 cm/s 5 cm/s 49% 8 cm/s 4 cm/s 53%
ẏ 9 cm/s 4 cm/s 56% 8 cm/s 4 cm/s 51% 4 cm/s 3 cm/s 38%
ż 26 cm/s 23 cm/s 12% 19 cm/s 16 cm/s 17% 15 cm/s 13 cm/s 8%

Φ 3.9◦ 1.7◦ 57% 1.6◦ 0.7◦ 57% 1.3◦ 0.5◦ 60%
Θ 1.7◦ 0.5◦ 68% 1.4◦ 0.6◦ 57% 0.8◦ 0.3◦ 58%
Ψ 0.7◦ 0.2◦ 67% 0.7◦ 0.2◦ 71% 0.3◦ 0.1◦ 61%

Ψ̇ 5.7 ◦/s 3.2 ◦/s 45% 5.7 ◦/s 3.1 ◦/s 45% 3.1 ◦/s 1.9 ◦/s 39%

Table 8.1. Accuracy of the prediction model for three different flight patterns: movement only in
x-direction (100 times a distance of 1.5 m, taking 4 minutes in total), movement only in z-direction
(100 times a height of 1.5 m, taking 8 minutes in total) and a horizontal house (see Figure 8.6a).

movement in horizontal direction is quite accurate, significantly reducing the RMSE. Note
that this evaluation criterion does not capture the full benefit of the prediction model:
while for some parameters the prediction is inaccurate or might even increase the error, it
compensates very well for delays - which is essential for avoiding oscillations.

8.3. Control Accuracy and Responsiveness

We evaluate the accuracy and responsiveness of the PID-controller with respect to two
main criteria:

• Stability: How accurately can the drone hold a target position?

• Convergence speed: How fast does the drone reach and hold a target position from
a certain initial distance?

The performance of the PID controller heavily depends on the accuracy of the estimated
drone state - it is particularly sensible to delays, as a delay quickly leads to strong oscilla-
tions. Figure 8.3 shows the x, y and z control for the star flown in Figure 8.6c, as well as
the respective proportional and derivative components as an example.

71

8. Results

0 5 10 15 20 25 30 35 40 45

−2

−1

0

1

2

time [s]

p
o
s:

x
[m

]
/
/

se
n
t

co
nt

ro
l

x̂(t) (setpoint)
x(t) (state)
x̄(t) (sent control)
P component
D component

0 5 10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

1.5

2

time [s]

p
o
s:

y
[m

]
/
/

se
n
t

co
n
tr

o
l

ŷ(t) (setpoint)
y(t) (state)
ȳ(t) (sent control)
P component
D component

0 5 10 15 20 25 30 35 40 45

−0.5

0

0.5

1

time [s]

p
o
s:

z
[m

]
/
/

se
n
t

co
n
tr

o
l

ẑ(t) (setpoint)
z(t) (state)
z̄(t) (sent control)
P component
D component
I component

Figure 8.3. Control example: x (top), y (middle) and z (bottom) control for the star flight path
displayed in Figure 8.6c, as well as the previously flown vertical calibration rectangle. Initially, the
maximum control signal sent is capped at 0.5, as the scale estimate might still be inaccurate, and
such that PTAM can take good keyframes without too much motion blur.

72

8.3. Control Accuracy and Responsiveness

(x, y) RMSE (z) RMSE (x, y, z) RMSE (Ψ) RMSE
(cm) (cm) (cm) (degree)

large indoor area 7.7 1.6 7.8 0.30
office 10.3 6.9 12.4 0.65
outdoor 17.6 3.8 18.0 0.72

Table 8.2. Control stability: outdoor, the horizontal RMSE is comparatively large due to wind,
while the vertical RMSE in a constrained environment with an uneven floor (office) is poor due to
turbulences and unreliable altimeter measurements. The yaw RMSE is very low under all condi-
tions.

Stability

To evaluate the stability of the controller, the drone is instructed to stay at a given target
position for 60 s, having initialized the map and its scale by previously flying a 2 m ×
1 m vertical rectangle. As evaluation criterion we use again the root mean square error,
sampling in 5 ms intervals. The RMSE is computed according to

RMSE(xi, yi) :=

√
1
n

n

∑
i=1

xT
i xi (8.3)

assuming the target position to be 0. Table 8.2 shows the total, the horizontal and the
vertical RMSE in three different environments depicted in Figure 8.4. It can be observed
that the drone is capable of very accurately holding its position in different environments,
without oscillating.

Convergence Speed

To measure the convergence speed, the drone is instructed to repeatedly fly to and hold a
target position at a certain distance d ∈ R3. We examine the following values:

• reach time treach: the time passed until the target is reached for the first time,

• convergence time tconv: the time required for achieving a stable state at the target
position, that is not leaving it for 5 s,

• overshoot dover: the maximal distance from the target, after it has first been reached.

The drone is considered to be at the target position if its Euclidean distance is less than
15 cm. Figure 8.5 shows an example of such a flight, Table 8.3 shows these values for
different d.

It can be observed that the drone is capable of moving much faster in horizontal direc-
tion (covering 4 m in only 3 s, flying at a speed of up to 2 m/s) - this is directly due to the
low accuracy of the height prediction model (quickly leading to oscillations), and the fact
that the drone’s reaction to thrust control is difficult to predict.

73

8. Results

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x [m]

y
[m

]

large indoor area

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x [m]

y
[m

]

office

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x [m]

y
[m

]

outdoor

Figure 8.4. The three different environments for the stability evaluation in Table 8.2. The bottom
row shows the horizontal path of the drone over 60 s.

74

8.3. Control Accuracy and Responsiveness

0 2 4 6 8 10 12

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time [s]

p
o
s:

x
[m

]
/
/

se
n
t

co
nt

ro
l

x̂(t) (setpoint)
x(t) (state)
x̄(t) (sent control)
P component
D component

treach tconv

dover

Figure 8.5. Example for flying to and holding a position 4 m away, the four values examined are
indicated: treach = 2.7 s, tconv = 4.65 s and dover = 30 cm.

treach (s) tconv (s) dover (cm)

d = (1 m, 0 m, 0 m)T 1.6± 0.2 3.1± 1.3 10± 5
d = (4 m, 0 m, 0 m)T 3.0± 0.3 5.5± 0.5 26± 10
d = (0 m, 0 m, 1 m)T 3.1± 0.1 3.1± 0.1 2± 1
d = (1 m, 1 m, 1 m)T 3.0± 0.1 3.9± 0.5 10± 5

Table 8.3. Control convergence speed: treach, tconv and dover for different distances. The table shows
the average and standard deviations over 10 test flights each, and for 4 different values for d. The
drone control behaves very similar in all horizontal directions, we therefore only examine flight
along the x direction.

75

8. Results

8.4. Drift Elimination due to Visual Tracking

To demonstrate how the incorporation of a visual SLAM system eliminates drift, we com-
pare the estimated trajectory from the EKF (fusing the visual pose estimate with the IMU
data) with the raw odometry, that is the trajectory estimated only from the IMU measure-
ments and optical-flow based speed estimates of the drone. Figures 8.6a to 8.6c show three
flight paths consisting of way points and flown without human intervention, the map and
its scale having been initialized by previously flying a 1 m× 3 m vertical rectangle. All
three flights took approximately 35 s each (15 s for the initialization rectangle and 20 s for
the figure itself). In Figure 8.6d, the drone is instructed to hold its position while being
pushed away for 50 s. In all four flights the drone landed no more than 15 cm away from
its takeoff position.

8.5. Robustness to Visual Tracking Loss

In this section, we demonstrate the system’s ability to deal with a temporary loss of visual
tracking. This happens not only when the drone is rotated quickly, but also when it is
flying at high velocities (> 1.5 m/s), as the frontal camera is subject to significant motion
blur and rolling shutter effects. Figure 8.7 shows the drone being pushed and rotated
away from its target position, such that visual tracking inevitably fails. Using only IMU
and altimeter measurements, the drone is able to return to a position close enough to its
original position, such that visual tracking recovers and it can return to its target position.

76

8.5. Robustness to Visual Tracking Loss

−1 0 1 2 3

−1

0

1

2

3

x [m]

y
[m

]

EKF trajectory
raw odometry
target trajectory

(a) house

−2 −1 0 1 2

−2

−1

0

1

2

x [m]

y
[m

]

EKF trajectory
raw odometry
target trajectory

(b) house 2

−2 −1 0 1

−2

−1

0

1

x [m]

y
[m

]

EKF trajectory
raw odometry
target trajectory

(c) star

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

x [m]

y
[m

]

EKF trajectory
raw odometry

(d) under disturbance

Figure 8.6. (a) to (c): top view of three closed, horizontal figures flown automatically by the drone,
the axis are labeled in meters. (d): top view of the drone holding its position, while being pushed
away repeatedly. Both the horizontal as well as the yaw-rotational drift of the raw odometry are
clearly visible, in particular when the drone is being pushed away. The bottom row shows the
environment these experiments were conducted in.

77

8. Results

t = 0.4 s t = 0.8 s t = 1.2 s t = 1.6 s

t = 2.0 s t = 2.4 s t = 2.8 s t = 3.2 s

t = 3.6 s t = 4.0 s t = 4.4 s t = 7.0 s

0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

x
[m

]
/
/

se
n
t

co
n
tr

o
l

x̂(t) (setpoint)
x(t) (state)
x̄(t) (sent control)

0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

y
[m

]
/
/

se
nt

co
n
tr

o
l

ŷ(t) (setpoint)
y(t) (state)
ȳ(t) (sent control)

0 1 2 3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

time [s]

z
[m

]
/
/

se
nt

co
n
tr

o
l

ẑ(t) (setpoint)
z(t) (state)
z̄(t) (sent control)

0 2 4 6 8
−200

−100

0

100

200

time [s]

Ψ
[d

eg
re

e]
/
/

se
n
t

co
n
tr

o
l

Ψ̂(t) (setpoint)
Ψ(t) (state)

100 · Ψ̄(t) (sent control)

Figure 8.7. Top: the drone’s video stream. Bottom: x (top-left), y (top-right) z (bottom-left) and Ψ
(bottom-left) control. At t = 0.5 s, the drone is pushed and rotated away from its position, such
that visual tracking gets lost (red vertical line). Using only IMU measurements, the drone attempts
to return to its original position. At t = 3.2 s, visual tracking recovers (blue vertical line), the filter
is updated with the visual pose estimates, and the drone can return to its real target position.

78

9. Conclusion

In this thesis, we developed a system that enables a low-cost quadrocopter - such as the
Parrot AR.Drone - to localize and navigate autonomously in previously unknown and po-
tentially GPS-denied environments. Our approach uses a monocular camera onboard the
quadrocopter, and does not require artificial markers or external sensors.

To achieve this, our approach employs a keyframe-based, monocular simultaneous lo-
calization and mapping (SLAM) system to build a sparse map of the environment, and
to compute a visual pose estimate within this map for each video frame. We contribute a
novel method to estimate the scale of this map from inertial and altitude measurements
by formulating the problem statistically, and deriving a closed-form solution for the max-
imum likelihood (ML) estimator of the unknown scaling factor.

We developed an extended Kalman filter (EKF) to fuse this visual pose estimate with
additional sensor measurements available, to synchronize the different data sources and
to compensate for delays arising from the communication process and the computations
required for tracking a video frame. This is achieved by formulating and implementing a
full model of the drone’s flight dynamics and the effect of sent control commands, capable
of compensating for delays of up to 400 ms.

Proportional-integral-differential (PID) control is applied to control the pose of the
drone, and fly to and hold a desired target position: our approach allows the drone to
approach its target position with a speed of up to 2 m/s and to accurately hold a flying
position with a root mean squared error (RMSE) of only 8 cm.

On one hand, the system is robust with respect to temporary loss of visual tracking due
to occlusions or quick rotation, as it is able to approximately return to its original pose
using the IMU and altimeter measurements such that visual tracking can recover. On the
other hand, the visual tracking eliminates drift, allowing the drone to navigate in a large
area as long as the battery permits, and automatically land no more than 15 cm away from
its takeoff position. We extensively tested the system in different real-world indoor and
outdoor environments, demonstrating its reliability and accuracy in practice.

In summary, we showed in our experiments that a low-cost MAV can robustly and ac-
curately be controlled and navigated in an unknown environment based only on a single
monocular camera with a low resolution of 320× 240 pixel, provided there are enough
landmarks in its field of view. Our approach resolves encountered challenges such as es-
timating the unknown scale of the map or compensating for delays arising from wireless
LAN communication. We showed how IMU-based odometry and visual SLAM can be
combined in a consistent framework to balance out their respective weaknesses.

With the developed system, we contribute a complete solution that facilitates the use of

79

9. Conclusion

low-cost, robust and commercially available quadrocopters as platform for future robotics
research by enabling them to autonomously navigate in previously unknown environ-
ments using only onboard sensors.

80

10. Future Work

There are a number of interesting research directions to augment and build upon the cur-
rent system, which we will briefly discuss in this chapter.

Direct Incorporation of IMU Measurements and Increasing Map Size

One of the major limitations of the current system is the size of the visual map. The time
required for tracking a video frame grows linearly with the number of landmarks in the
map, severely limiting the map size in practice. There are several interesting approaches
to enable constant-time tracking. For example enforcing euclidean consistency of the map
only in a local window, while globally the map is treated topologically as recently pro-
posed by Strasdat et al. [37]. Essentially this allows the map to grow arbitrarily without
affecting the complexity of tracking a video frame or incorporating new keyframes.

An interesting topic for future research is how IMU and altimeter measurements - in
particular with respect to the camera’s attitude - can be integrated into this pose-graph
framework as additional soft constraints on and in between consecutive keyframes. This
additional information can not only be used to eliminate three out seven drift dimensions
(scale, as well as roll and pitch angle), but can also be used as additional constraint be-
tween poorly connected or unconnected parts of the visual map. Consider flying through
an open door or window: only very few landmarks will be visible from both sides of the
door, causing visual tracking to be inaccurate or even fail completely. IMU measurements
can then be used to impose relative constraints between keyframes taken on both sides of
the door, allowing to continue visual tracking within the same map.

Increasing Robustness using Multiple Cameras

A further interesting research opportunity is given by the problem that when only one
monocular camera is used, visual tracking is bound to fail if there are not enough land-
marks in the field of view of that camera. This is particularly true for a low-resolution
camera such as the one used for this thesis. An interesting topic for future research would
be how incorporating multiple cameras can improve the tracking process by providing
redundancy to e.g. a white wall in one direction.

Additionally, differently orientated cameras can provide strong redundancy to different
types of motion: while tracking rotation around the optical axis of a camera is compara-
tively easy, large rotations around the x and y axis typically cause visual tracking to fail
as the field of view changes rapidly, and - for monocular SLAM - new landmarks cannot
be initialized due to the lack of sufficient parallax. Using three orthogonally orientated
cameras, any type of motion can be tracked well by at least one of these cameras.

81

10. Future Work

In this thesis we showed that accurate visual tracking can be done using a camera with
a resolution of only 320× 240 - in terms of computational complexity tracking four such
cameras rigidly attached to each other (i.e. undergoing the same motion) is equivalent
to tracking one 640× 480 camera, as the tracking time only depends on the image size,
the number of potentially visible landmarks and the number of landmarks found. In-
corporating multiple low-resolution cameras pointing in different directions might hence
provide significantly more accurate and robust tracking performance than using one high-
resolution camera while requiring the same computational power. Due to the very low
cost, weight and power consumption of such cameras, this is of particular interest in the
context of miniature aerial vehicle navigation.

Onboard Computation

The current system depends on a ground station for computationally complex tasks such
as visual SLAM, which is mainly due to the very limited access to the onboard processing
capabilities of the Parrot AR.Drone. While this does allow for more computational power
to be used, it is also the reason for some of the challenges encountered in the course of
this thesis, in particular for the large delays due to wireless LAN communication.

A next step would be to make the drone fly truly autonomously by performing all
computations required onboard - the comparatively low computational power required by
the current system suggests that a similar approach can well be performed on integrated
hardware. An interesting research topic would be how the approach presented can be
divided in two parts, the time-critical tracking, filtering and controlling part running on
integrated hardware while the computationally expensive map optimization is done on a
ground station PC.

Such an approach would efficiently combine the benefit of visual tracking onboard (little
delay) and the computational power of a ground station for optimizing and maintaining
a large map. Additionally, little bandwidth would be required as only sparse representa-
tions of keyframes and landmarks need to be communicated, instead of streaming each
video frame. This could be extended as far as to allow the drone to autonomously explore
small new areas of the environment and then fly back in range of the ground station to
drop new observations and keyframes, while receiving an optimized version of the global
map.

Dense Mapping and Tracking

An interesting and very promising research topic is the transition from sparse, keypoint-
based SLAM to dense methods, either using depth-measuring cameras or by inferring the
three-dimensional structure of the observed scene from camera motion alone.

In particular an online generated, three-dimensional model of the environment greatly
facilitates autonomous obstacle avoidance and recognition, path planning or identification
of e.g. possible landing sites - after all the MAV is not supposed to fly into a white wall
just because there are no keypoints on it. Furthermore, the capability of easily generating
accurate, three-dimensional models of large indoor environments is of interest in industrial

82

applications - such a model can also be generated offline, after the MAV used to acquire
the visual data has landed.

Due to the heavy dependency on GPU hardware of all dense SLAM methods, this would
have to be combined with a hybrid approach, using a ground station for computationally
complex tasks. The current development of GPUs for mobile phones however indicates
that it will be possible to run such methods on integrated hardware in the near future.

83

Appendix

85

A. SO(3) Representations

Throughout this thesis, three different representations for three-dimensional rotations are
used:

• as rotation matrix R ∈ SO(3) ⊂ R3×3,

• as rotation vector r ∈ so(3) ⊂ R3,

• as roll angle (Φ ∈ R), pitch angle (Θ ∈ R) and yaw angle (Ψ ∈ R).

While conversion between r and R is done using Rodrigues formula, there are differ-
ent conventions regarding the interpretation of the roll, pitch and yaw representation, in
particular with respect to multiplication order. For this work the following conversion
formulae are used:

Roll, Pitch, Yaw to SO(3)

The roll (Φ), pitch (Θ) and yaw (Ψ) angles denote three consecutive rotations around
different axis. The overall rotation matrix is given by:

R =

 cos Ψ cos Φ cos Ψ sin Φ sin Θ + sin Ψ cos Θ cos Ψ sin Φ cos Θ− sin Ψ sin Θ
− sin Ψ cos Φ − sin Ψ sin Φ sin Θ + cos Ψ cos Θ − sin Ψ sin Φ cos Θ− cos Ψ sin Θ
− sin Φ cos Φ sin Θ cos Φ cos Θ

(A.1)

SO(3) to Roll, Pitch, Yaw

Given a rotation matrix R, the corresponding angles can be extracted. Let

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (A.2)

Roll, pitch and yaw angles can then be extracted by:

Φ = Atan2
(
−r31,

√
r2

11 + r2
21

)
Ψ = −Atan2

(
r21

cos(Φ)
,

r11

cos(Φ)

)
Θ = Atan2

(
r32

cos(Φ)
,

r33

cos(Φ)

) (A.3)

87

A. SO(3) Representations

where Atan2(x, y) is defined by

Atan2(x, y) :=

arctan y
x for x > 0

arctan y
x + π for x < 0, y ≥ 0

arctan y
x − π for x < 0, y < 0

+π/2 for x = 0, y > 0
−π/2 for x = 0, y < 0
0 for x = 0, y = 0

(A.4)

88

Bibliography

[1] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart. Onboard IMU and monocular
vision based control for MAVs in unknown in- and outdoor environments. In Proc. of
the International Conference on Robotics and Automation (ICRA), 2011.

[2] ARDrone Flyers. AR.Drone — ARDrone-Flyers.com, 2011. [http://www.
ardrone-flyers.com/].

[3] H. Bay, T. Tuytelaars, and L.V. Gool. SURF: Speeded-up robust features. In Proc. of the
European Conference on Computer Vision (ECCV), 2008.

[4] C. Bills, J. Chen, and A. Saxena. Autonomous MAV flight in indoor environments
using single image perspective cues. In Proc. of the International Conference on Robotics
and Automation (ICRA), 2011.

[5] J. Canny. A computational approach to edge detection. Conference on Pattern Analysis
and Machine Intelligence, PAMI-8(6):679 – 698, 1986.

[6] H. Deng, W. Zhang, E. Mortensen, T. Dietterich, and L. Shapiro. Principal curvature-
based region detector for object recognition. In Proc. of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2007.

[7] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: Part I.
Robotics & Automation Magazine, 13(2):99 – 110, 2006.

[8] E. Eade and T. Drummond. Edge landmarks in monocular SLAM. Image and Vision
Computing, 27(5):588 – 596, 2009.

[9] C. Harris and M. Stephens. A combined corner and edge detector. In Proc. of the Alvey
Vision Conference, 1988.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2004.

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. KinectFusion: real-time
3d reconstruction and interaction using a moving depth camera. In Proc. of the 24th
annual ACM symposium on User interface software and technology (UIST), 2011.

[12] S. Julier and J. Uhlmann. A new extension of the Kalman filter to nonlinear sys-
tems. In Proc. of the International Symposium on Aerospace/Defense Sensing, Simulation
and Controls, 1997.

[13] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and map-
ping. IEEE Transactions on Robotics, 24(6):1365 – 1378, 2008.

89

http://www.ardrone-flyers.com/
http://www.ardrone-flyers.com/

Bibliography

[14] G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In
Proc. of the International Symposium on Mixed and Augmented Reality (ISMAR), 2007.

[15] L. Kneip, S. Weiss, and R. Siegwart. Deterministic initialization of metric state esti-
mation filters for loosely-coupled monocular vision-inertial systems. In Proc. of the
International Conference on Intelligent Robots and Systems (IROS), 2011.

[16] K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustment to real-time
visual mapping. IEEE Transactions on Robotics, 24(5):1066 – 1077, 2008.

[17] T. Krajnı́k, V. Vonásek, D. Fišer, and J. Faigl. AR-drone as a platform for robotic
research and education. In Proc. of the Communications in Computer and Information
Science (CCIS), 2011.

[18] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In Proc. of the International Conference on Robotics
and Automation (ICRA), 2011.

[19] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate O(n) solution to the PnP
problem. International Journal of Computer Vision (IJCV), 81(2):155 – 166, 2009.

[20] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc. of the Interna-
tional Conference on Pattern Recognition (ICPR), 2006.

[21] T. Lindeberg. Feature detection with automatic scale selection. International Journal of
Computer Vision (IJCV), 30(2):79 – 116, 1998.

[22] D. Lowe. Object recognition from local scale-invariant features. In Proc. of the Interna-
tional Conference on Computer Vision (ICCV), 1999.

[23] J. Matas, O. Chum, M.Urban, and T. Pajdla. Robust wide-baseline stereo from maxi-
mally stable extremal regions. Image and Vision Computing, 22(10):761 – 767, 2004.

[24] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. A constant time efficient
stereo SLAM system. In Proc. of the British Machine Vision Conference (BMVC), 2009.

[25] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for
quadrotors. In Proc. of the International Conference on Robotics and Automation (ICRA),
2011.

[26] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and control for pre-
cise aggressive maneuvers with quadrotors. In Proc. of the International Symposium on
Experimental Robotics (ISER), 2010.

[27] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. In-
ternational Journal of Computer Vision (IJCV), 60(1):63 – 86, 2004.

[28] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution
to the simultaneous localization and mapping problem. In Proc. of the AAAI National
Conference on Artificial Intelligence, 2002.

90

Bibliography

[29] R.A. Newcombe, S. Lovegrove, and A.J. Davison. DTAM: Dense tracking and map-
ping in real-time. In Proc. of the International Conference on Computer Vision (ICCV),
2011.

[30] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart. Fusion of IMU and vision for
absolute scale estimation in monocular SLAM. Journal of Intelligent Robotic Systems,
61(1–4):287 – 299, 2010.

[31] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using
random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3):448
– 461, 2010.

[32] Parrot. AR-Drone developer guide for SDK 1.6, 2011. [http://projects.ardrone.
org].

[33] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In
Proc. of the European Conference on Computer Vision (ECCV), 2006.

[34] J. Shi and C. Tomasi. Good features to track. In Proc. of the Conference on Computer
Vision and Pattern Recognition (CVPR), 1994.

[35] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD thesis, Universiät
Freiburg, 2006.

[36] H. Stewénius, C. Engels, and D. Nistér. Recent developments on direct relative orien-
tation. Journal of Photogrammetry and Remote Sensing (ISPRS), 60(4):284 – 294, 2006.

[37] H. Strasdat, A. Davison, J. Montiel, and K. Konolige. Double window optimisation
for constant time visual SLAM. In Proc. of the International Conference on Computer
Vision (ICCV), 2011.

[38] H. Strasdat, J. Montiel, , and A. Davison. Scale-drift aware large scale monocular
SLAM. In Proc. of Robotics: Science and Sytems, 2010.

[39] H. Strasdat, J. Montiel, and A. Davison. Real-time monocular SLAM: Why filter? In
Proc. of the International Conference on Robotics and Automation (ICRA), 2010.

[40] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents series). MIT Press, 2005.

[41] Wikipedia. H.263 — Wikipedia, the free encyclopedia, 2011. [http://en.wikipedia.
org/w/index.php?title=H.263&oldid=439433519].

[42] Wikipedia. Quadrotor — Wikipedia, the free encyclopedia, 2011. [http://en.
wikipedia.org/w/index.php?title=Quadrotor&oldid=443167665].

91

http://projects.ardrone.org
http://projects.ardrone.org
http://en.wikipedia.org/w/index.php?title=H.263&oldid=439433519
http://en.wikipedia.org/w/index.php?title=H.263&oldid=439433519
http://en.wikipedia.org/w/index.php?title=Quadrotor&oldid=443167665
http://en.wikipedia.org/w/index.php?title=Quadrotor&oldid=443167665

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Outline

	2 Quadrocopter
	2.1 Hardware
	2.1.1 Basic Quadrocopter Mechanics
	2.1.2 The Parrot AR.Drone

	2.2 Software
	2.2.1 Communication Channels
	2.2.2 Controlling the AR.Drone via iPone
	2.2.3 Available Software

	3 Monocular SLAM
	3.1 State of the Art
	3.2 Notation
	3.3 Monocular, Keyframe-Based SLAM: Algorithm Outline
	3.4 Keypoints
	3.4.1 Identifying Good Keypoints
	3.4.2 Multiscale Keypoint Detection
	3.4.3 Tracking a Keypoint
	3.4.4 Summary (Keypoints)

	3.5 Initialization
	3.5.1 The Essential Matrix
	3.5.2 Estimating the Essential Matrix
	3.5.3 Estimating Camera-Rotation and Translation
	3.5.4 Triangulating Landmarks
	3.5.5 Nonlinear Refinement

	3.6 Mapping
	3.6.1 Map Optimization
	3.6.2 Adding Keyframes and Landmarks
	3.6.3 Further Mapping Tasks

	3.7 Tracking
	3.7.1 Pose Estimation
	3.7.2 Tracking Recovery
	3.7.3 Identifying New Keyframes
	3.7.4 Further Tracking Aspects

	3.8 Summary

	4 Data Fusion and Filtering
	4.1 The Linear Kalman Filter
	4.2 The Extended Kalman Filter
	4.3 The Unscented Kalman Filter
	4.4 Particle Filters

	5 Control
	6 Scale Estimation for Monocular SLAM
	6.1 Problem Formulation and Analysis
	6.2 Derivation of the ML Estimator for the Scale
	6.3 The Effect of Measurement Noise
	6.4 Test with Synthetic Data
	6.5 Summary

	7 Implementation
	7.1 Approach Outline
	7.2 Software Architecture
	7.3 Monocular SLAM
	7.3.1 Scale Estimation
	7.3.2 Integration of Sensor Data

	7.4 State Estimation and Prediction
	7.4.1 The State Space
	7.4.2 The Observation Model
	7.4.3 The State Transition Model
	7.4.4 Time Synchronization
	7.4.5 Calibration of Model Parameters

	7.5 Drone Control

	8 Results
	8.1 Scale Estimation Accuracy
	8.2 Prediction Model Accuracy
	8.3 Control Accuracy and Responsiveness
	8.4 Drift Elimination due to Visual Tracking
	8.5 Robustness to Visual Tracking Loss

	9 Conclusion
	10 Future Work
	Appendix
	A SO(3) Representations
	Bibliography

