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Abstract
Classical formulations of the shape matching problem

involve the definition of a matching cost that directly de-
pends on the action of the desired map when applied to
some input data. Such formulations are typically one-sided
– they seek for a mapping from one shape to the other, but
not vice versa. In this paper we consider an unbiased for-
mulation of this problem, in which we solve simultaneously
for a low-distortion map relating the two given shapes and
its inverse. We phrase the problem in the spectral domain
using the language of functional maps, resulting in an es-
pecially compact and efficient optimization problem. The
benefits of our proposed regularization are especially evi-
dent in the scarce data setting, where we demonstrate highly
competitive results with respect to the state of the art.

1. Introduction

Establishing correspondences between deformable
shapes is a cornerstone problem in 3D computer vision and
robotics, with applications ranging from texture mapping
to object recognition and reconstruction. At its heart, the
shape matching problem concerns the question of deter-
mining a map π : X → Y between two given shapes X
and Y , satisfying desirable properties for the task at hand.
In computer graphics and 3D reconstruction, conformal
(i.e., angle preserving) maps are often required to preserve
texture quality [16, 1]; for pose transfer and interpolation
applications, one is interested in continuous maps [12]
associating nearby points to nearby points; finally, for
shape retrieval and registration, the interest shifts to maps
having minimum metric distortion (near-isometries) [24].

A common denominator to this variety of approaches is
the implicit and natural requirement for the existence of an
inverse map π−1 : Y → X , such that (π ◦ π−1)y = y
for any point y ∈ Y , and vice versa (π−1 ◦ π)x = x for
any x ∈ X . However, often due to algorithmic relaxations
of the original matching problems, this property is rarely
fulfilled by existing approaches – resulting in a substantial

bias of the solutions in favor of one direction. An immediate
consequence of this behavior is that the map quality will
depend on the specific ordering of the shapes in input.

In this paper, we consider the shape matching problem in
a new light: We propose a simple solution that considers the
two mapping directions simultaneously, by putting equal
weight on them. We demonstrate that this choice leads to
maps of considerably higher quality than existing one-sided
alternatives, while requiring significantly less data to drive
the matching.

Related work. As mentioned previously, most shape
matching approaches aim to minimize some notion of dis-
tortion among the input shapes, often depending on the ap-
plication. Such distortion criteria include local feature sim-
ilarity [27, 10, 2, 40, 21], geodesic [24, 7] or diffusion dis-
tances [11, 9, 30], or higher-order structures [41] (we refer
to [36] for a recent survey). Windheuser et al. [38] proposed
to model shapes as thin shells, and considered a symmet-
ric formulation where they seek for a diffeomorphism with
minimum physical deformation energy. Although their con-
struction is unbiased, the resulting optimization problem is
infeasible for shapes with more than 1K points. A recent
trend is to use machine learning techniques to learn optimal
point descriptors [39, 22, 5] and correspondences [33, 4],
but these typically come with no theoretical guarantees on
the final solutions.

Most related to our paper is the line of works based upon
the notion of soft correspondence. Contrarily to traditional
point-wise maps, soft maps assign to each point a contin-
uous distribution (e.g., a probability density) on the other
shape, encoding a measure of “confidence” of the corre-
spondence. Several approaches formulate the soft corre-
spondence problem as one of mass transportation [23, 34]
or Bayesian inference [37].

In this paper we build upon the functional correspon-
dence framework, introduced by Ovsjanikov et al. [26] as
a means to model the correspondence as a linear operator
(named functional map) between functional spaces on the
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two shapes. Such a choice leads to an especially compact
representation of the map in the Laplacian eigenbases. In
this representation, the problem of determining the corre-
spondence is reduced to solving a linear system of equa-
tions, given some known set of corresponding functions
(e.g., descriptor fields) on the two shapes. This approach
was extended in several follow-up works by imposing a
prior on the geometric structure of the functional map ma-
trix [29, 17], by simultaneous diagonalization of Lapla-
cians [18], and by allowing partially similar shapes [31]
among others. Huang et al. [14] considered functional map
networks to encode structural similarities among multiple
shapes in a collection. Their formulation seeks for cycle-
consistent functional maps across the collection – namely
maps that compose to the identity along any cycle. As we
show in this paper, when applied to a pair of shapes their
approach is equivalent to a relaxed version of our formula-
tion.

Main contribution. In this paper we introduce a novel
method for computing dense correspondences among de-
formable 3D shapes. Differently from most existing ap-
proaches, we simultaneously solve for the map going from
one shape to the other, and the “coupled” map going in the
inverse direction. Due to this property, we name our method
coupled functional maps. Compared to the approaches of
[26, 14], our algorithm provides better performances with a
smaller computational effort. The advantage of our method
is especially pronounced in the scarce data settings, when
the problem becomes highly underdetermined. We further
demonstrate how the joint optimization of the two maps has
a “densifying” effect on the correspondence, giving rise to
a better coverage of the two shapes.

The rest of the paper is organized as follows. Section 2
gives the necessary mathematical background on spectral
geometry and functional maps. Section 3 presents our
method, while Section 4 puts it in relation to existing ap-
proaches. Implementation details are given in Section 5.
Experimental results are presented in Section 6, and finally,
Section 7 concludes the paper.

2. Background
Notation. In this paper we use bold capital letters to de-
note matrices, bold lower-case letters for vectors, and italic
lower-case letters for scalars. Given a matrix A, we de-

note by ‖A‖F =
(∑

ij a
2
ij

)1/2
its Frobenius norm, by

‖A‖2,1 =
∑
j

(∑
i a

2
ij

)1/2
its L2,1-norm, and by ‖A‖∗ =∑

i σi its nuclear (or trace) norm, where σ1, σ2, . . . denote
the singular values of A.

Analysis on manifolds. We model shapes as compact
connected 2-manifolds X . Given f, g : X → R real scalar

fields on the manifold, we define the standard inner product
〈f, g〉L2(X ) =

∫
X f(x)g(x)dx, where integration is done

using the area element induced by the Riemannian metric.
We denote by L2(X ) = {f : X → R | 〈f, f〉L2(X ) < ∞}
the space of square-integrable functions on X .

The intrinsic gradient ∇X f and the positive semi-
definite Laplace-Beltrami operator ∆X f = −divX (∇X f)
generalize the notions of gradient and Laplacian to man-
ifolds. The Laplace-Beltrami operator admits an eigen-
decomposition

∆Xφi(x) = λiφi(x) (1)

where 0 = λ1 < λ2 ≤ . . . are eigenvalues and φ1, φ2, . . .
are the corresponding eigenfunctions. The eigenfunctions
form an orthonormal basis on L2(X ), i.e., 〈φi, φj〉L2(X ) =
δij , generalizing the classical Fourier analysis: a function
f ∈ L2(X ) can be expanded into the Fourier series as

f(x) =
∑
i≥1

〈f, φi〉L2(X )φi(x) . (2)

Functional correspondence. Let us be now given two
manifolds, X and Y . Ovsjanikov et al. [26] proposed mod-
eling functional correspondence between shapes as a linear
operator T : L2(X ) → L2(Y). One can easily see that
classical vertex-wise correspondence is a particular setting
where T maps delta-functions to delta-functions.

Assuming to be given two orthonormal bases {φi}i≥1
and {ψi}i≥1 on L2(X ) and L2(Y) respectively, the func-
tional correspondence can be expressed w.r.t. to these bases
as follows:

Tf = T
∑
i≥1

〈f, φi〉L2(X )φi =
∑
i≥1

〈f, φi〉L2(X )Tφi

=
∑
ij≥1

〈f, φi〉L2(X ) 〈Tφi, ψj〉L2(Y)︸ ︷︷ ︸
cij

ψj , (3)

Thus, T amounts to a linear transformation of the Fourier
coefficients of f from basis {φi}i≥1 to basis {ψi}i≥1,
which is captured by the coefficients cij . Truncating the
Fourier series (3) at the first k coefficients, one obtains
a rank-k approximation of T , represented in the bases
{φi, ψi}i≥1 as a k × k matrix C = (cij).

The spectral representation of the operator T as a ma-
trix C allows manipulating correspondences in a conve-
nient way as linear algebra operations. For example, given
three manifolds X , Y and Z and the correspondences T1 :
L2(X ) → L2(Y) and T2 : L2(Y) → L2(Z) expressed by
the matrices C1,C2 in the respective bases, one can express
the map T3 : L2(X )→ L2(Z) as C3 = C1C2.

In order to compute C, Ovsjanikov et al. [26] assume to
be given a set of q corresponding functions {f1, . . . , fq} ⊆
L2(X ) and {g1, . . . , gq} ⊆ L2(Y). Denoting by aij =



〈fi, φj〉L2(X ) and bij = 〈gi, ψj〉L2(Y) the q × k matrices
of the respective Fourier coefficients, functional correspon-
dence boils down to the linear system

AC = B . (4)

If q ≥ k, the system (4) is (over-)determined and is solved
in the least squares sense to find C.

Structure of C. We note that the coefficients C depend
on the choice of the bases. In particular, it is convenient to
use the eigenfunctions of the Laplace-Beltrami operators of
X and Y as the bases {φi, ψi}i≥1; truncating the series at
the first k coefficients has the effect of ‘low-pass’ filtering
thus producing smooth correspondences. In the following,
this will be our tacit basis choice.

Furthermore, note that the system (4) has qk equations
and k2 variables. However, in many situations the actual
number of variables is significantly smaller, as C manifests
a certain structure that can be taken advantage of. In par-
ticular, if X and Y are isometric and have simple spectrum
(i.e., the Laplace-Beltrami eigenvalues have no multiplic-
ity), then Tφi = ±ψi, or in other words, cij = ±δij . In
more realistic scenarios (approximately isometric shapes),
the matrix C would manifest a funnel-shaped structure,
with the majority of elements distant from the diagonal
close to zero.

With further assumption that the map T is area-
preserving, Ovsjanikov et al. [26] show that the matrix C
is orthogonal (C>C = I). This fact was exploited by Kov-
natsky et al. [18] to construct coupled bases via joint diag-
onalization of Laplacians.

Conversion to point-wise map. Functional maps repre-
sented by the matrix of spectral coefficients C can be con-
verted to a point-wise map using any of the approaches de-
scribed in [26, 32, 37]. For an unbiased analysis of the qual-
ity of the maps (and thus avoid the post-processing refine-
ment of more sophisticated techniques) in this paper we fol-
low the simple nearest-neighbor approach of Ovsjanikov et
al. [26]. Specifically, let Φ contain the eigenfunctions φi as
its columns, and similarly for Ψ. For each point y ∈ Y we
consider its corresponding column in Ψ> (i.e., the Fourier
coefficients of a delta function δy supported at y), and look
for the closest column in CΦ> in the L2 sense. The point
x ∈ X associated to this column is marked as a match for
y. By interpreting the matrices Φ>,Ψ> as the spectral em-
beddings of the two shapes in a k-dimensional Euclidean
space, we see that the action of the functional map C is to
align the two embeddings. The nearest-neighbor approach
thus simply evaluates the point-wise proximity of the two
spectral embeddings after application of the functional map.
Note that this simple approach can generate one-to-many
matches, as no bijectivity constraints are imposed during
the recovery process.

T1 = ΨC>1 Φ>

T2 = ΦC>2 Ψ>

X Y

Figure 1. Our approach simultaneously solves for the two maps
T1,T2, where T2 ≈ T−1

1 . Note that Ti and Ci encode the same
functional map, with respect to different choices of a basis.

3. Coupled functional maps
The main idea of our paper is to simultaneously compute

two maps, which we denote by T1 : L2(X ) → L2(Y) and
T2 : L2(Y) → L2(X ), in a coupled manner. For some
f ∈ L2(X ) and g ∈ L2(Y),

T1f =
∑
ij≥1

〈f, φi〉L2(X ) 〈T1φi, ψj〉L2(Y)︸ ︷︷ ︸
c1ij

ψj , (5)

T2g =
∑
ij≥1

〈g, ψi〉L2(Y) 〈T2ψi, φj〉L2(X )︸ ︷︷ ︸
c2ij

φj (6)

T2T1f =
∑
ijkl≥1

c2ijc
1
klφj〈f, φk〉L2(X )〈ψi, φl〉L2(Y)

=
∑
ijk≥1

c1kic
2
ijφj〈f, φk〉L2(X )

=
∑
k≥1

φk〈f, φk〉L2(X ) = f ; (7)

it follows from the last coupling constraint that C2C1 = I.
This leads us to the following system of equations

AC1 = B

A = BC2 (8)
C1C2 = I.

Note that this system is non-linear due to the coupling con-
straint.

We will show that approximately solving the system (8)
instead of (4) improves the calculation of functional matri-
ces noticeably, and analyze the reasons for it in the next
section. In practice, to numerically solve problem (8), we
minimize an expression of the form

‖AC1 −B‖+ ‖A−BC2‖ (9)



FM FMN CFM GT

Figure 2. C matrices obtained from two shape pairs (top: quasi-
isometric, bottom: non-isometric) in the FAUST dataset by three
different algorithms: functional maps (FM), functional map net-
works (FMN) and our method (CFM). Ground truth C is shown in
the rightmost column as a reference.

subject to the constraints C1C2 = I. Here there are differ-
ent possibilities of choosing the norm in (9) and of the way
one takes account of the constraints. In addition, regulariza-
tion terms may make sense. In our formulation, we make
use of the L2,1- norm to be more robust to outliers, and we
take account of the constraints by means of a penalty term:

min
C1,C2

‖AC1 −B‖2,1 + ‖A−BC2‖2,1 +

µ1‖C1C2 − I‖2F + µ2

∑2
i=1 ‖Ci ◦W‖2F (10)

where ◦ denotes Hadamard (element-wise) matrix product.

The µ2-term models the structure of
C with the weight matrix W (which
is funnel shaped with zeroes along the
diagonal and larger values outside, see
Figure 2) and acts as a regularization,
similar to the ones introduced in [29]
and [31].

Finally, we note that the feasible set of our problem
M = {(X,Y) : X>Y = I} is a manifold (or more specif-
ically, a sub-manifold of Rn×n × Rn×n), and our problem
can be approached by means of manifold optimization tech-
niques [13]. We leave the development of such an approach
to future research.

4. Relation to previous works
Relation to Ovsjanikov et al. [26] The baseline func-
tional maps approach results in a linear system (4) of qk
equations with k2 variables. In order for the system to be
determined, the size of the basis must be selected to satisfy
k ≤ q. In CFM, we consider two coupled systems (8) with
2k2 variables and k(2q + k) equations. In order to obtain
a determined system, we can have a basis twice as large,
k ≤ 2q. This effectively allows representing finer maps
with a given amount of data.

Relation to Huang et al. [14]. Our approach can be seen
as a special case of the method described in [14], on a func-
tional map network of just two shapes and maps. There is,
however, an important difference. The method of Huang et
al. operates in two steps: (i) map computation via low-rank
matrix recovery and (ii) latent basis function extraction. In
the two-shapes setting, the authors solve (i) by constructing
the matrix

Z =

(
I C1

C2 I

)
,

and computing the correspondences by solving the opti-
mization problem

min
Z
‖Z‖∗ + ‖AC1 −B‖+ ‖A−BC2‖ . (11)

Due to non-smoothness of the nuclear norm, the authors
resort to an ADMM technique involving singular value
thresholding. Yet, problem (11) is a relaxed version of

min
Z

rank(Z) s.t.

{
AC1 = B
A = BC2

, (12)

where the nuclear norm is used as a convex proxy for the
rank, and the constraints are introduced as penalties with
appropriate weights. By virtue of the following Lemma, we
observe that Equation (12) is equivalent to our problem (8):

Lemma 1 Let X and Y be n × n matrices. Then,

rank

(
I X
Y I

)
= n iff XY = I.

Proof. We define the matrices

A =

(
I 0
−Y I

)
, B =

(
I −X
0 I

)
,

which both have full rank 2n because of the identity matri-
ces on their diagonals. Thus,

rank(Z) = rank(AZB) =

(
I 0
0 I−XY

)
.

It follows that rank(Z) ≥ n and rank(Z) = n iff XY = I.

We can thus conclude that Huang et al. solve, in the first
step of their algorithm, a relaxed version of our problem,
resorting to a computationally heavier approach. Moreover,
we replace the second step with the µ2-term shown in (10).

5. Implementation
We implemented our method in MATLAB1 using the

manifold optimization toolbox [6]. The optimization was
performed using the nonlinear conjugate gradients method.

1The code is available at http://vision.inf.usi.ch/EynRodGlaBro 3DV2016/

http://vision.inf.usi.ch/EynRodGlaBro_3DV2016/
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Figure 3. Correspondences on FAUST shapes measured using the
Princeton protocol. Inputs are q=50 blobs, line styles match in-
creasing values of k = 40 (solid), 80 (dashed), 120 (dotted), and
200 (dash-dot).

To speed up convergence, we initialized our method with
the output of functional maps. In our experiments we ob-
served convergence in less than 50 iterations (<1s for a pair
of shapes).

We adopt the discretization of the Laplace-Beltrami op-
erator [19] based on the classical cotangent weights [28,
25]:

sij =

{
−(cotαij + cotβij)/2 ij ∈ E;
0 otherwise,

(13)

where αij , βij are the angles in front of the edge ij. The
vertex weights are defined as local area elements ai =
1
3

∑
jk:ijk∈F area(xixjxk), equal to one third of the sum

of the one-ring triangle areas.
This is followed by the computation of the first k non-

constant eigenvectors φi of the generalized eigenvalue prob-
lem Sφ = DφΛ. Here D is the diagonal matrix of the ver-
tex weights. The inner product is discretized as 〈f ,g〉 =
f>Dg, where the vector f = (f(xi))

> represents a func-
tion on the surface (similarly for g).

The W matrix we used for regularization was built fol-
lowing the formulation introduced in [31]:

wij = e−σ
√
i2+j2‖ n

‖n‖
× ((i, j)> − p)‖, (14)

where p = (1, 1)> is the matrix origin, n = (1, 1)> is the
direction of the diagonal, and σ ∈ R+ regulates the spread
around the diagonal. In our experiments we set σ = 0.03
(see figure in Section 3).

The code of functional maps (FM) [26] and functional
map networks (FMN) [14] we used in our experiments are,
respectively, a CVX implementation of (4) and the original
source code provided by the authors.

k=40 k=80 k=120 k=200

Figure 4. Mapping of a delta function from a FAUST shape to
another, for different values of k (inputs are q=50 blobs). Top:
FM, Middle: FMN, Bottom: CFM.

6. Results

Datasets. We used subsets of FAUST [3], contain-
ing scanned human shapes (6.9K vertices) in different
poses, and TOSCA [8], containing higher-resolution syn-
thetic shapes (27.8K vertices) of animals and humans.
Both datasets provide vertex-wise correspondence between
shapes (in TOSCA, only between shapes belonging to the
same class).

Evaluation. To evaluate the correspondence quality, we
used the Princeton protocol [15]. For a given tolerance r,
we plot the percentage of correspondences falling within
geodesic diameter r from the groundtruth correspondence.

Problem behavior. In our first experiment, we study the
behavior of our problem following closely [17]. In particu-
lar, we are interested in the tradeoff between the basis size
k and the dimensionality of the data (number of available
correspondences) q. We used two human shapes from the
FAUST dataset, providing as input data Gaussian blobs cen-
tered at q=50 corresponding vertices. Functional maps were
computed using k = 40, 80, 120, and 200 Laplacian eigen-
vectors. We compared the performance of functional maps
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Figure 5. Correspondences on FAUST shapes using the Princeton
protocol. Inputs are SHOT descriptors (q=320), k=30.

(FM) [26], functional map networks (FMN) [14], and the
proposed method (CFM).

The correspondence quality is visualized in Figure 3. In
case k = 40, the problem is over-determined and all the
methods produce nearly-equal results. Increasing k, the per-
formance of FM and FMN first increases but then starts de-
teriorating. Conversely, the performance of CFM increases
monotonously with the increase of k. This is evident in
Figure 4, where a delta function on the reference shape is
mapped to another shape using CFM with increasing values
of k. Results show that with bigger k the mapped function
is more localized and, at the same time, more precise than
the one obtained with other approaches.

Shape correspondence. We performed the same experi-
ment on the two datasets we took into consideration. For
FAUST, we matched one shape (015) with 10 others, taken
from different subjects in different poses (001, 012, 023,
. . . , 090). For Tosca, we matched one shape (cat0) with
10 others from the same class in different poses. We used
the extrinsic SHOT descriptors [35], computed using 9 nor-
mal bins (q=320) for FAUST and 10 for Tosca (q=352). We
calculated face-based Laplacians as in [14] and the maps
using the three methods FM, FMN, and CFM. The number
of eigenfunctions we took into considerations were, respec-
tively, k=30 for FAUST and k=100 for Tosca.

Figures 5 and 6 show the quality of our correspondences,
measured quantitatively using the Princeton protocol. In
both datasets we perform best, both obtaining a higher per-
centage of correct correspondences within a small geodesic
diameter and saturating earlier than other methods. In terms
of geodesic errors (see Figure 8), CFM has the best perfor-
mance on isometric (leftmost column) and non-isometric
shapes, keeping most of the errors below the threshold of
10% of the shape diameter. This is also reflected in Figure
9, where correspondence is shown by mapping a colormap
from the reference shape to few others, and where our algo-
rithm exhibits the smallest color distortion.
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Figure 6. Correspondences on TOSCA shapes using the Princeton
protocol. Inputs are SHOT descriptors (q=352), k=100.

Reference FM (12.31%) FMN (23.59%) CFM (46.86%)

Figure 7. Displaying map surjectivity. The numbers in parentheses
denote the percentage of surface area that is covered by the map,
giving an indication as to how close the map is to a surjective one.
Indirectly, this plot shows how well the map aligns the spectral
embeddings of the two shapes.

Map surjectivity. In an ideal setting, one would like a
map π : X → Y to be surjective, i.e., such that every point
y ∈ Y is the image of a point x ∈ X under π. This criterion
can be used to show how well a given functional map aligns
the spectral embeddings of two shapes: this is due to the fact
that the nearest-neighbor approach used to convert a func-
tional map into a point-wise map captures the quality of the
alignment itself. In Figure 7 we show, for each method, how
many points in the target shape have a corresponding one in
the reference shape, and whether they are consistently lo-
cated (color). CFM is, amongst the three evaluated maps,
the one which is closest to surjectivity.

7. Conclusions

In this paper we introduced a novel algorithm for dense
matching of deformable 3D shapes. Our method builds
upon the intuition that solving jointly for the map and its
inverse has a regularizing effect on the correspondence –
resulting in maps that are more accurate, denser, and more
efficient to compute than competing approaches on the same
data. Importantly, our approach can be applied in situations
where the amount of available data is very scarce.

Future work. Despite its simplicity, we believe that our
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Figure 8. Correspondence quality on FAUST shapes shown as geodesic errors (from blue=small to red=large, saturated at 10% of the
geodesic diameter). Top: FM, Middle: FMN, Bottom: CFM.

method can be adapted to a number of different scenarios
as a powerful correspondence regularizer. A particularly
promising application is partial functional correspondence
[31, 20], where the shapes to be matched are allowed to
have missing parts and the diagonal prior on C assumes
a slanted structure. Second, in its current formulation our
method makes use of large quadratic penalties in place of
exact constraints. As noted in our discussion, the problem
could be rephrased as an optimization on a biorthogonal
manifold [13], leading to a more elegant and rigorous op-
timization than the one we proposed here. Exploring this
possibility is an exciting direction of future research.
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