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Abstract

Convolutional neural networks (CNNs) have recently
been very successful in a variety of computer vision tasks,
especially on those linked to recognition. Optical flow esti-
mation has not been among the tasks where CNNs were suc-
cessful. In this paper we construct appropriate CNNs which
are capable of solving the optical flow estimation problem
as a supervised learning task. We propose and compare
two architectures: a generic architecture and another one
including a layer that correlates feature vectors at different
image locations.

Since existing ground truth data sets are not sufficiently
large to train a CNN, we generate a synthetic Flying Chairs
dataset. We show that networks trained on this unrealistic
data still generalize very well to existing datasets such as
Sintel and KITTI, achieving competitive accuracy at frame
rates of 5 to 10 fps.

1. Introduction

Convolutional neural networks have become the method
of choice in many fields of computer vision. They are clas-
sically applied to classification [25, 24], but recently pre-
sented architectures also allow for per-pixel predictions like
semantic segmentation [28] or depth estimation from single
images [10]. In this paper, we propose training CNNs end-
to-end to learn predicting the optical flow field from a pair
of images.

While optical flow estimation needs precise per-pixel lo-
calization, it also requires finding correspondences between
two input images. This involves not only learning image
feature representations, but also learning to match them at
different locations in the two images. In this respect, optical
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Figure 1. We present neural networks which learn to estimate op-
tical flow, being trained end-to-end. The information is first spa-
tially compressed in a contractive part of the network and then
refined in an expanding part.

flow estimation fundamentally differs from previous appli-
cations of CNNs.

Since it was not clear whether this task could be solved
with a standard CNN architecture, we additionally devel-
oped an architecture with a correlation layer that explicitly
provides matching capabilities. This architecture is trained
end-to-end. The idea is to exploit the ability of convolu-
tional networks to learn strong features at multiple levels of
scale and abstraction and to help it with finding the actual
correspondences based on these features. The layers on top
of the correlation layer learn how to predict flow from these
matches. Surprisingly, helping the network this way is not
necessary and even the raw network can learn to predict op-
tical flow with competitive accuracy.

Training such a network to predict generic optical flow
requires a sufficiently large training set. Although data aug-
mentation does help, the existing optical flow datasets are
still too small to train a network on par with state of the art.
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Getting optical flow ground truth for realistic video material
is known to be extremely difficult [7]. Trading in realism
for quantity, we generate a synthetic Flying Chairs dataset
which consists of random background images from Flickr
on which we overlay segmented images of chairs from [1].
These data have little in common with the real world, but
we can generate arbitrary amounts of samples with custom
properties. CNNs trained on just these data generalize sur-
prisingly well to realistic datasets, even without fine-tuning.

Leveraging an efficient GPU implementation of CNNs,
our method is faster than most competitors. Our networks
predict optical flow at up to 10 image pairs per second on
the full resolution of the Sintel dataset, achieving state-of-
the-art accuracy among real-time methods.

2. Related Work
Optical Flow. Variational approaches have dominated
optical flow estimation since the work of Horn and
Schunck [19]. Many improvements have been introduced
[29, 5, 34]. The recent focus was on large displacements,
and combinatorial matching has been integrated into the
variational approach [6, 35]. The work of [35] termed Deep-
Matching and DeepFlow is related to our work in that fea-
ture information is aggregated from fine to coarse using
sparse convolutions and max-pooling. However, it does
not perform any learning and all parameters are set man-
ually. The successive work of [30] termed EpicFlow has
put even more emphasis on the quality of sparse matching
as the matches from [35] are merely interpolated to dense
flow fields while respecting image boundaries. We only use
a variational approach for optional refinement of the flow
field predicted by the convolutional net and do not require
any handcrafted methods for aggregation, matching and in-
terpolation.

Several authors have applied machine learning tech-
niques to optical flow before. Sun et al. [32] study statis-
tics of optical flow and learn regularizers using Gaussian
scale mixtures; Rosenbaum et al. [31] model local statis-
tics of optical flow with Gaussian mixture models. Black et
al. [4] compute principal components of a training set of
flow fields. To predict optical flow they then estimate coef-
ficients of a linear combination of these ’basis flows’. Other
methods train classifiers to select among different inertial
estimates [21] or to obtain occlusion probabilities [27].

There has been work on unsupervised learning of dis-
parity or motion between frames of videos using neural
network models. These methods typically use multiplica-
tive interactions to model relations between a pair of im-
ages. Disparities and optical flow can then be inferred from
the latent variables. Taylor et al. [33] approach the task
with factored gated restricted Boltzmann machines. Konda
and Memisevic [23] use a special autoencoder called ‘syn-
chrony autoencoder’. While these approaches work well

in a controlled setup and learn features useful for activity
recognition in videos, they are not competitive with classi-
cal methods on realistic videos.

3. Network Architectures

Convolutional Networks. Convolutional neural net-
works trained with backpropagation [25] have recently been
shown to perform well on large-scale image classification
by Krizhevsky et al. [24]. This gave the beginning to a
surge of works on applying CNNs to various computer vi-
sion tasks.

While there has been no work on estimating optical flow
with CNNs, there has been research on matching with neu-
ral networks. Fischer et al. [12] extract feature represen-
tations from CNNs trained in supervised or unsupervised
manner and match these features based on Euclidean dis-
tance. Zbontar and LeCun [36] train a CNN with a Siamese
architecture to predict similarity of image patches. A dras-
tic difference of these methods to our approach is that they
are patch based and leave the spatial aggregation to post-
processing, whereas the networks in this paper directly pre-
dict complete flow fields.

Recent applications of CNNs include semantic segmen-
tation [11, 15, 17, 28], depth prediction [10], keypoint pre-
diction [17] and edge detection [13]. These tasks are simi-
lar to optical flow estimation in that they involve per-pixel
predictions. Since our architectures are largely inspired by
the recent progress in these per-pixel prediction tasks, we
briefly review different approaches.

The simplest solution is to apply a conventional CNN in
a ‘sliding window’ fashion, hence computing a single pre-
diction (e.g. class label) for each input image patch [8, 11].
This works well in many situations, but has drawbacks:
high computational costs (even with optimized implementa-
tions involving re-usage of intermediate feature maps) and
per-patch nature, disallowing to account for global output
properties, for example sharp edges. Another simple ap-
proach [17] is to upsample all feature maps to the desired
full resolution and stack them together, resulting in a con-
catenated per-pixel feature vector that can be used to predict
the value of interest.

Eigen et al. [10] refine a coarse depth map by training an
additional network which gets as inputs the coarse predic-
tion and the input image. Long et al. [28] and Dosovitskiy et
al. [9] iteratively refine the coarse feature maps with the
use of ‘upconvolutional’ layers 1 . Our approach integrates
ideas from both works. Unlike Long et al., we ‘upconvolve’
not just the coarse prediction, but the whole coarse feature
maps, allowing to transfer more high-level information to
the fine prediction. Unlike Dosovitskiy et al., we concate-

1These layers are often named ’deconvolutional’, although the opera-
tion they perform is technically convolution, not deconvolution



Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom).

nate the ‘upconvolution’ results with the features from the
‘contractive’ part of the network.

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

A simple choice is to stack both input images together
and feed them through a rather generic network, allowing
the network to decide itself how to process the image pair to
extract the motion information. This is illustrated in Fig. 2
(top). We call this architecture consisting only of convolu-
tional layers ‘FlowNetSimple’.

In principle, if this network is large enough, it could learn
to predict optical flow. However, we can never be sure that a
local gradient optimization like stochastic gradient descent
can get the network to this point. Therefore, it could be ben-
eficial to hand-design an architecture which is less generic,
but may perform better with the given data and optimization
techniques.

A straightforward step is to create two separate, yet iden-
tical processing streams for the two images and to combine
them at a later stage as shown in Fig. 2 (bottom). With
this architecture the network is constrained to first produce
meaningful representations of the two images separately
and then combine them on a higher level. This roughly

resembles the standard matching approach when one first
extracts features from patches of both images and then com-
pares those feature vectors. However, given feature repre-
sentations of two images, how would the network find cor-
respondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 → Rc, with w, h, and c being their
width, height and number of channels, our correlation layer
lets the network compare each patch from f1 with each path
from f2.

For now we consider only a single comparison of two
patches. The ’correlation’ of two patches centered at x1 in
the first map and x2 in the second map is then defined as

c(x1,x2) =
∑

o∈[−k,k]×[−k,k]

〈f1(x1 + o), f2(x2 + o)〉 (1)

for a square patch of size K := 2k + 1. Note that Eq. 1
is identical to one step of a convolution in neural networks,
but instead of convolving data with a filter, it convolves data
with other data. For this reason, it has no trainable weights.

Computing c(x1,x2) involves c · K2 multiplications.
Comparing all patch combinations involves w2 · h2 such
computations, yields a large result and makes efficient for-
ward and backward passes intractable. Thus, for computa-



Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

tional reasons we limit the maximum displacement for com-
parisons and also introduce striding in both feature maps.

Given a maximum displacement d, for each location x1

we compute correlations c(x1,x2) only in a neighborhood
of size D := 2d + 1, by limiting the range of x2. We use
strides s1 and s2, to quantize x1 globally and to quantize x2

within the neighborhood centered around x1.
In theory, the result produced by the correlation is four-

dimensional: for every combination of two 2D positions we
obtain a correlation value, i.e. the scalar product of the two
vectors which contain the values of the cropped patches re-
spectively. In practice we organize the relative displace-
ments in channels. This means we obtain an output of size
(w × h×D2). For the backward pass we implemented the
derivatives with respect to each bottom blob accordingly.

Refinement. CNNs are good at extracting high-level ab-
stract features of images, by interleaving convolutional lay-
ers and pooling, i.e. spatially shrinking the feature maps.
Pooling is necessary to make network training computation-
ally feasible and, more fundamentally, to allow aggregation
of information over large areas of the input images. How-
ever, pooling results in reduced resolution, so in order to
provide dense per-pixel predictions we need a way to refine
the coarse pooled representation.

Our approach to this refinement is depicted in Figure 3.
The main ingredient are ‘upconvolutional’ layers, consist-
ing of unpooling (extending the feature maps, as opposed to
pooling) and a convolution. Such layers have been used pre-
viously [38, 37, 16, 28, 9]. To perform the refinement, we
apply the ‘upconvolution’ to feature maps, and concatenate
it with corresponding feature maps from the ’contractive’
part of the network and an upsampled coarser flow predic-
tion (if available). This way we preserve both the high-level
information passed from coarser feature maps and fine lo-
cal information provided in lower layer feature maps. Each
step increases the resolution twice. We repeat this 4 times,
resulting in a predicted flow for which the resolution is still
4 times smaller than the input.

We discover that further refinement from this resolution
does not significantly improve the results, compared to a

Ground truth FlowNetS FlowNetS+v

Figure 4. The effect of variational refinement. In case of small
motions (first row) the predicted flow is changed dramatically. For
larger motions (second row), big errors are not corrected, but the
flow field is smoothed, resulting in lower EPE.

computationally less expensive bilinear upsampling to full
image resolution. The result of this bilinear upsampling is
the final flow predicted by the network.

In an alternative scheme, instead of bilinear upsampling
we use the variational approach from [6] without the match-
ing term: we start at the 4 times downsampled resolution
and then use the coarse to fine scheme with 20 iterations to
bring the flow field to the full resolution. Finally, we run 5
more iterations at the full image resolution. We additionally
compute image boundaries with the approach from [26] and
respect the detected boundaries by replacing the smooth-
ness coefficient by α = exp(−λb(x, y)κ), where b(x, y)
denotes the thin boundary strength resampled at the respec-
tive scale and between pixels. This upscaling method is
more computationally expensive than simple bilinear up-
sampling, but adds the benefits of variational methods to
obtain smooth and subpixel-accurate flow fields. In the fol-
lowing, we denote the results obtained by this variational
refinement with a ‘+v’ suffix. An example of variational
refinement can be seen in Fig. 4.

4. Training Data

Unlike traditional approaches, neural networks require
data with ground truth not only for optimizing several pa-
rameters, but to learn to perform the task from scratch. In
general, obtaining such ground truth is hard, because true
pixel correspondences for real world scenes cannot easily be
determined. An overview of the available datasets is given
in Table 1.

Frame Frames with Ground truth
pairs ground truth density per frame

Middlebury 72 8 100%
KITTI 194 194 v50%
Sintel 1,041 1,041 100%
Flying Chairs 22,872 22,872 100%

Table 1. Size of already available datasets and the proposed Flying
Chairs dataset.



4.1. Existing Datasets

The Middlebury dataset [2] contains only 8 image pairs
for training, with ground truth flows generated using four
different techniques. Displacements are very small, typi-
cally below 10 pixels.

The KITTI dataset [14] is larger (194 training image
pairs) and includes large displacements, but contains only a
very special motion type. The ground truth is obtained from
real world scenes by simultaneously recording the scenes
with a camera and a 3D laser scanner. This assumes that the
scene is rigid and that the motion stems from a moving ob-
server. Moreover, motion of distant objects, such as the sky,
cannot be captured, resulting in sparse optical flow ground
truth.

The MPI Sintel [7] dataset obtains ground truth from ren-
dered artificial scenes with special attention to realistic im-
age properties. Two versions are provided: the Final ver-
sion contains motion blur and atmospheric effects, such as
fog, while the Clean version does not include these effects.
Sintel is the largest dataset available (1,041 training image
pairs for each version) and provides dense ground truth for
small and large displacement magnitudes.

4.2. Flying Chairs

The Sintel dataset is still too small to train large CNNs.
To provide enough training data, we create a simple syn-
thetic dataset, which we name Flying Chairs, by applying
affine transformations to images collected from Flickr and
a publicly available rendered set of 3D chair models [1].
We retrieve 964 images from Flickr2 with a resolution of
1, 024 × 768 from the categories ‘city’ (321), ‘landscape’
(129) and ‘mountain’ (514). We cut the images into 4 quad-
rants and use the resulting 512× 384 image crops as back-
ground. As foreground objects we add images of multi-
ple chairs from [1] to the background. From the original
dataset we remove very similar chairs, resulting in 809 chair
types and 62 views per chair available. Examples are shown
in Figure 5.

To generate motion, we randomly sample affine transfor-
mation parameters for the background and the chairs. The
chairs’ transformations are relative to the background trans-
formation, which can be interpreted as both the camera and
the objects moving. Using the transformation parameters
we render the second image, the optical flow and occlusion
regions.

All parameters for each image pair (number, types, sizes
and initial positions of the chairs; transformation parame-
ters) are randomly sampled. We adjust the random distri-
butions of these parameters in such a way that the result-
ing displacement histogram is similar to the one from Sintel

2Non-commercial public license. We use the code framework by Hays
and Efros [18]

(details can be found in the supplementary material). Us-
ing this procedure, we generate a dataset with 22,872 im-
age pairs and flow fields (we re-use each background image
multiple times). Note that this size is chosen arbitrarily and
could be larger in principle.

4.3. Data Augmentation

A widely used strategy to improve generalization of neu-
ral networks is data augmentation [24, 10]. Even though
the Flying Chairs dataset is fairly large, we find that us-
ing augmentations is crucial to avoid overfitting. We per-
form augmentation online during network training. The
augmentations we use include geometric transformations:
translation, rotation and scaling, as well as additive Gaus-
sian noise and changes in brightness, contrast, gamma, and
color. To be reasonably quick, all these operations are pro-
cessed on the GPU. Some examples of augmentation are
given in Fig. 5.

As we want to increase not only the variety of images
but also the variety of flow fields, we apply the same strong
geometric transformation to both images of a pair, but ad-
ditionally a smaller relative transformation between the two
images. We adapt the flow field accordingly by applying the
per-image augmentations to the flow field from either side.

Specifically we sample translation from a the range
[−20%, 20%] of the image width for x and y; rotation from
[−17◦, 17◦]; scaling from [0.9, 2.0]. The Gaussian noise
has a sigma uniformly sampled from [0, 0.04]; contrast is
sampled within [−0.8, 0.4]; multiplicative color changes to
the RGB channels per image from [0.5, 2]; gamma values
from [0.7, 1.5] and additive brightness changes using Gaus-
sian with a sigma of 0.2.

5. Experiments
We report the results of our networks on the Sintel,

KITTI and Middlebury datasets, as well as on our synthetic
Flying Chairs dataset. We also experiment with fine-tuning
of the networks on Sintel data and variational refinement of
the predicted flow fields. Additionally, we report runtimes
of our networks, in comparison to other methods.

5.1. Network and Training Details

The exact architectures of the networks we train are
shown in Fig. 2. Overall, we try to keep the architectures of
different networks consistent: they have nine convolutional
layers with stride of 2 (the simplest form of pooling) in six
of them and a ReLU nonlinearity after each layer. We do not
have any fully connected layers, which allows the networks
to take images of arbitrary size as input. Convolutional fil-
ter sizes decrease towards deeper layers of networks: 7× 7
for the first layer, 5 × 5 for the following two layers and
3× 3 starting from the fourth layer. The number of feature
maps increases in the deeper layers, roughly doubling after



Figure 5. Two examples from the Flying Chairs data set. Generated image pair and color coded flow field (first three columns), augmented
image pair and corresponding color coded flow field respectively (last three columns).

each layer with a stride of 2. For the correlation layer in
FlowNetC we chose the parameters k = 0, d = 20, s1 = 1,
s2 = 2. As training loss we use the endpoint error (EPE),
which is the standard error measure for optical flow estima-
tion. It is the Euclidean distance between the predicted flow
vector and the ground truth, averaged over all pixels.

For training CNNs we use a modified version of the
caffe [20] framework. We choose Adam [22] as optimiza-
tion method because for our task it shows faster conver-
gence than standard stochastic gradient descent with mo-
mentum. We fix the parameters of Adam as recommended
in [22]: β1 = 0.9 and β2 = 0.999. Since, in a sense, every
pixel is a training sample, we use fairly small mini-batches
of 8 image pairs. We start with learning rate λ = 1e−4
and then divide it by 2 every 100k iterations after the first
300k. With FlowNetCorr we observe exploding gradients
with λ = 1e−4. To tackle this problem, we start by training
with a very low learning rate λ = 1e−6, slowly increase it
to reach λ = 1e−4 after 10k iterations and then follow the
schedule just described.

To monitor overfitting during training and fine-tuning,
we split the Flying Chairs dataset into 22, 232 training and
640 test samples and split the Sintel training set into 908
training and 133 validation pairs.

We found that upscaling the input images during testing
may improve the performance. Although the optimal scale
depends on the specific dataset, we fixed the scale once for
each network for all tasks. For FlowNetS we do not upscale,
for FlowNetC we chose a factor of 1.25.

Fine-tuning. The used datasets are very different in terms
of object types and motions they include. A standard so-
lution is to fine-tune the networks on the target datasets.
The KITTI dataset is small and only has sparse flow ground
truth. Therefore, we choose to fine-tune on the Sintel train-
ing set. We use images from the Clean and Final versions
of Sintel together and fine-tune using a low learning rate
λ = 1e−6 for several thousand iterations. For best perfor-
mance, after defining the optimal number of iterations using

a validation set, we then fine-tune on the whole training set
for the same number of iterations. In tables we denote fine-
tuned networks with a ‘+ft’ suffix.

5.2. Results

Table 2 shows the endpoint error (EPE) of our networks
and several well-performing methods on public datasets
(Sintel, KITTI, Middlebury), as well as on our Flying
Chairs dataset. Additionally we show runtimes of different
methods on Sintel.

The networks trained just on the non-realistic Flying
Chairs perform very well on real optical flow datasets, beat-
ing for example the well-known LDOF [6] method. Af-
ter fine-tuning on Sintel our networks can outperform the
competing real-time method EPPM [3] on Sintel Final and
KITTI while being twice as fast.

Sintel. From Table 2 one can see that FlowNetC is better
than FlowNetS on Sintel Clean, while on Sintel Final the
situation changes. On this difficult dataset, FlowNetS+ft+v
is even on par with DeepFlow. Since the average end-
point error often favors over-smoothed solutions, it is in-
teresting to see qualitative results of our method. Figure 7
shows examples of the raw optical flow predicted by the two
FlowNets (without fine-tuning), compared to ground truth
and EpicFlow. The figure shows how the nets often pro-
duce visually appealing results, but are still worse in terms
of endpoint error. Taking a closer look reveals that one rea-
son for this may be the noisy non-smooth output of the nets
especially in large smooth background regions. This we can
partially compensate with variational refinement.

KITTI. The KITTI dataset contains strong projective
transformations which are very different from what the net-
works encountered during training on Flying Chairs. Still,
the raw network output is already fairly good, and additional
fine-tuning and variational refinement give a further boost.
Interestingly, fine-tuning on Sintel improves the results on



Method Sintel Clean Sintel Final KITTI Middlebury train Middlebury test Chairs Time (sec)
train test train test train test AEE AAE AEE AAE test CPU GPU

EpicFlow [30] 2.40 4.12 3.70 6.29 3.47 3.8 0.31 3.24 0.39 3.55 2.94 16 -
DeepFlow [35] 3.31 5.38 4.56 7.21 4.58 5.8 0.21 3.04 0.42 4.22 3.53 17 -
EPPM [3] - 6.49 - 8.38 - 9.2 - - 0.33 3.36 - - 0.2
LDOF [6] 4.29 7.56 6.42 9.12 13.73 12.4 0.45 4.97 0.56 4.55 3.47 65 2.5
FlowNetS 4.50 7.42 5.45 8.43 8.26 - 1.09 13.28 - - 2.71 - 0.08
FlowNetS+v 3.66 6.45 4.76 7.67 6.50 - 0.33 3.87 - - 2.86 - 1.05
FlowNetS+ft (3.66) 6.96 (4.44) 7.76 7.52 9.1 0.98 15.20 - - 3.04 - 0.08
FlowNetS+ft+v (2.97) 6.16 (4.07) 7.22 6.07 7.6 0.32 3.84 0.47 4.58 3.03 - 1.05
FlowNetC 4.31 7.28 5.87 8.81 9.35 - 1.15 15.64 - - 2.19 - 0.15
FlowNetC+v 3.57 6.27 5.25 8.01 7.45 - 0.34 3.92 - - 2.61 - 1.12
FlowNetC+ft (3.78) 6.85 (5.28) 8.51 8.79 - 0.93 12.33 - - 2.27 - 0.15
FlowNetC+ft+v (3.20) 6.08 (4.83) 7.88 7.31 - 0.33 3.81 0.50 4.52 2.67 - 1.12

Table 2. Average endpoint errors (in pixels) of our networks compared to several well-performing methods on different datasets. The
numbers in parentheses are the results of the networks on data they were trained on, and hence are not directly comparable to other results.

Images Ground truth EpicFlow FlowNetS FlowNetC

Figure 6. Examples of optical flow prediction on the Flying Chairs
dataset. The images include fine details and small objects with
large displacements which EpicFlow often fails to find. The net-
works are much more successful.

KITTI, probably because the images and motions in Sin-
tel are more natural than in Flying Chairs. The FlowNetS
outperforms FlowNetC on this dataset.

Flying Chairs. Our networks are trained on the Flying
Chairs, and hence are expected to perform best on those.
When training, we leave aside a test set consisting of 640
images. Table 2 shows the results of various methods on this
test set, some example predictions are shown in Fig. 6. One
can see that FlowNetC outperforms FlowNetS and that the
nets outperform all state-of-the-art methods. Another inter-
esting finding is that this is the only dataset where the varia-
tional refinement does not improve performance but makes
things worse. Apparently the networks can do better than
variational refinement already. This indicates that with a
more realistic training set, the networks might also perform
even better on other data.

Timings. In Table 2 we show the per-frame runtimes of
different methods in seconds. Unfortunately, many meth-
ods only provide the runtime on a single CPU, whereas our
FlowNet uses layers only implemented on GPU. While the
error rates of the networks are below the state of the art,
they are the best among real-time methods. For both train-

ing and testing of the networks we use an NVIDIA GTX Ti-
tan GPU. The CPU timings of DeepFlow and EpicFlow are
taken from [30], while the timing of LDOF was computed
on a single 2.66GHz core.

5.3. Analysis

Training data. To check if we benefit from using the
Flying Chairs dataset instead of Sintel, we trained a net-
work just on Sintel, leaving aside a validation set to control
the performance. Thanks to aggressive data augmentation,
even Sintel alone is enough to learn optical flow fairly well.
When testing on Sintel, the network trained exclusively on
Sintel has EPE roughly 1 pixel higher than the net trained
on Flying Chairs and fine-tuned on Sintel.

The Flying Chairs dataset is fairly large, so is data aug-
mentation still necessary? The answer is positive: training
a network without data augmentation on the Flying Chairs
results in an EPE increase of roughly 2 pixels when testing
on Sintel.

Comparing the architectures. The results in Table 2 al-
low to draw conclusions about strengths and weaknesses of
the two architectures we tested.

First, FlowNetS generalizes to Sintel Final better than
FlowNetC. On the other hand, FlowNetC outperforms
FlowNetS on Flying chairs and Sintel Clean. Note that Fly-
ing Chairs do not include motion blur or fog, as in Sintel
Final. These results together suggest that even though the
number of parameters of the two networks is virtually the
same, the FlowNetC slightly more overfits to the training
data. This does not mean the network remembers the train-
ing samples by heart, but it adapts to the kind of data it is
presented during training. Though in our current setup this
can be seen as a weakness, if better training data were avail-
able it could become an advantage.

Second, FlowNetC seems to have more problems with
large displacements. This can be seen from the results



Images Ground truth EpicFlow FlowNetS FlowNetC

Figure 7. Examples of optical flow prediction on the Sintel dataset. In each row left to right: overlaid image pair, ground truth flow and 3
predictions: EpicFlow, FlowNetS and FlowNetC. Endpoint error is shown for every frame. Note that even though the EPE of FlowNets is
usually worse than that of EpicFlow, the networks often better preserve fine details.

on KITTI discussed above, and also from detailed perfor-
mance analysis on Sintel Final (not shown in the tables).
FlowNetS+ft achieves an s40+ error (EPE on pixels with
displacements of at least 40 pixels) of 43.3px, and for
FlowNetC+ft this value is 48px. One explanation is that the
maximum displacement of the correlation does not allow to
predict very large motions. This range can be increased at

the cost of computational efficiency.

6. Conclusion

Building on recent progress in design of convolutional
network architectures, we have shown that it is possible to
train a network to directly predict optical flow from two in-



put images. Intriguingly, the training data need not be re-
alistic. The artificial Flying Chairs dataset including just
affine motions of synthetic rigid objects is sufficient to pre-
dict optical flow in natural scenes with competitive accu-
racy. This proves the generalization capabilities of the pre-
sented networks. On the test set of the Flying Chairs the
CNNs even outperform state-of-the-art methods like Deep-
Flow and EpicFlow. It will be interesting to see how future
networks perform as more realistic training data becomes
available.
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Supplementary Material for ‘FlowNet: Learning Optical Flow with
Convolutional Networks’

1. Flow field color coding

To visualize the flow fields, we use the tool provided with
Sintel [7]. Flow direction is encoded with color and mag-
nitude with color intensity. White corresponds to no mo-
tion. Figure 1 illustrates flow color coding: the flow vector
at each pixel is a vector from the center of the square to
this pixel. Since the magnitudes of flows in different im-
age pairs shown in the main paper are very different, we
independently normalize the maximum color intensity for
each image pair, but in the same way for different methods
applied to one image pair.

2. Details of generating Flying Chairs

We explain in detail the process of generating the Flying
Chairs dataset. As background we use 964 images of reso-
lution 1024× 768 pixels, downloaded from Flickr. As fore-
ground objects we use 809 chair models from the dataset of
Aubry et al. [1], each rendered from 62 views: 31 azimuth
angles and 2 elevation angles. To generate the first image in
an image pair, we take a background image and randomly
position a random set of chairs ontop. The number of the
chairs is sampled uniformly from [16; 24], the types and
viewpoints of the chairs are sampled uniformly and the lo-
cations of the chairs are sampled uniformly from the whole
image. The sizes of the chairs (in pixels) are sampled from
a Gaussian with mean 200 and standard deviation 200, and
then clamped between 50 and 640.

To generate the second image in a pair and the flow field,
we apply random transformations to the chairs and the back-
ground. Each of these transformations is a composition of
zooming, rotation and translation. The parameters to sam-
ple are the zoom coefficient, the rotation angle and the trans-
lation vector. We aim to roughly match the displacement
distribution of Sintel, shown in Fig. 2 (left). Simply sam-
pling the transformation parameters from Gaussians results
in too few small displacements, we hence make the distri-
butions of the transformation parameters to be more peaked
around zero than Gaussians.

The family of distributions from which we sample the
parameters contains mixtures of two distributions: a con-
stant µ with probability 1 − p and a power of a Gaussian

Figure 1. Flow field color coding. The central pixel does not move,
and the displacement of every other pixel is the vector from the
center to this pixel.
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Figure 2. Histogram of displacement distribution in Sintel (left)
and Flying Chairs (right) with linear (top) and logarithmic (bot-
tom) y-axis. The distribution was cut off at the displacement of
150 pixels, the maximum flow in Sintel is actually around 450
pixels.

with probability p. More precisely, let γ ∼ N (µ, σ) be a
univariate Gaussian. We raise its absolute value to a power
k (keeping the sign) and clamp to the interval [a, b]. We
then set the value to µ with probability 1 − p. Overall, the
result is given by:

ξ = β ·max(min(sign (γ) · |γ|k, b), a) + (1− β) · µ,



Parameter k µ σ a b p
Translation BG 4 0 1.3 −40 40 1

Rotation BG 2 0 1.3 −10 10 0.3
Zoom BG 2 1 0.1 0.93 1.07 0.6

Translation CH 3 0 2.3 −120 120 1
Rotation CH 2 0 2.3 −30 30 0.7

Zoom CH 2 1 0.18 0.8 1.2 0.7

Table 1. Parameters of the distribution of the transformation pa-
rameters.

where β is a Bernoulli random variable equaling 1 with
probability p and 0 with probability 1 − p. We denote the
distribution of ξ by G(k, µ, σ, a, b, p). All transformation
parameters are sampled from distributions from this family,
with parameters shown in Table 1.

Given the transformation parameters, it is straightfor-
ward to generate the second image in the pair, as well as
the flow field and the occlusion map. We then cut each
image into 4 quarters, resulting in 4 image pairs of size
512 × 384 pixels each. The displacement histogram of the
Flying Chairs dataset is shown in Fig. 2 (right).

We did not study in detail the effect of the dataset pa-
rameters on the FlowNet results. However, we observed,
that with much simpler strategy of sampling all transforma-
tion parameters from Gaussians the networks still work, but
are less accurate than networks trained on the data described
above.

3. Convolutional Filters
When taking a closer look at the filters of the FlowNets,

one can see that lower layer filters have few structure and
higher layer filters are more structured. Fig. 3 shows how
the first layer filters have not completely converged, how-
ever coarse gradients are visible. In contrast, the filters that
are applied to the output of the correlation layer have very
visible structure, as shown in Fig. 5. Different filters are

Figure 3. First layer filters of FlowNetCorr. The filters are noisy,
but some structure is still visible.

Figure 4. Demo Video: Application of FlowNets to a live video
stream. Watch on YouTube: http://goo.gl/YmMOkR

selective for different flow directions and magnitudes.

4. Video
In the supplementary video we demonstrate the real-time

operation of the FlowNets using a notebook with a GeForce
GTX 980M GPU. Resolution of images captured with a
webcam is 640× 480 pixels. We show example flow fields
produced from real-life videos by both FlowNetSimple and
FlowNetCorr for indoor and outdoor scenes. The video can
be found on http://goo.gl/YmMOkR. A sample frame from
the video can be seen in Fig. 4.

http://goo.gl/YmMOkR
http://goo.gl/YmMOkR


Figure 5. Visualization of filters applied on top of the correlation layer in FlowNetCorr. There are 256 filters and for each of them we
show the weights shaped as a 21× 21 pixels patch, where each pixel corresponds to a displacement vector. The center pixel of each patch
corresponds to zero displacement. The filters favor interesting unique displacement patterns.


