

USI

Deep Functional Maps: Structured Prediction for Dense Shape Correspondence

STRUCTURED CORRESPONDENCE PREDICTION

- Dense correspondence is key to many 3D shape methods
- Functional maps is the champion of dense correspondence recovery
- Input to FM are pointwise descriptors
- **Our contributions**
 - Structured prediction model
 - State of the art results

FUNCTIONAL MAPS 101

 $\Psi_k \mathbf{C} \, \Phi_k^{\mathrm{T}}$ Translates Fourier coefficients from Φ to Ψ $T \approx$

Or Litany, Tal Remez, Emanuele Rodolà, Alex Bronstein, Michael Bronstein

DEEP FUNCTIONAL MAPS

- $\mathbf{C} = \arg\min \|\mathbf{C}\mathbf{A} \mathbf{B}\|_{\mathrm{F}}^2$ Functional map layer:
- Soft correspondence layer: $\, {f P} = |\Psi {f C} \Phi^{ op}| \,$
- FM-Net Loss: $\ell_{\mathrm{F}} = \sum P(x, y) d_{\mathcal{Y}}(y, \pi^*(x)) = \|\mathbf{P} \odot \mathbf{D}_{\mathcal{Y}}\|_{\mathrm{F}}$ $(x,y) \in (\mathcal{X},\mathcal{Y})$

SOFT CORRESPONDENCES ERROR

- P(x, y) is interpreted as the **probability** of point $x \in X$ mapping to point $y \in Y$
- Error: probability-weighted geodesic distance from ground-truth

LEARNING TO FIND CORRESPONDENCE

RESULTS

FAUST

0.04 0.06 Geodesic error

	inter AE	inter WE	intra AE	intra WE
Zuffi et al. [44]	3.13	6.68	1.57	5.58
Chen et al. [13]	8.30	26.80	4.86	26.57
FMNet	4.83	9.56	2.44	26.16

Generalization to SCAPE

Generalization to TOSCA + partiality

