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Abstract

This paper presents an information-theoretic approach
to point selection for direct RGB-D odometry. The aim is
to select only the most informative measurements, in or-
der to reduce the optimization problem with a minimal im-
pact in the accuracy. It is usual practice in visual odom-
etry/SLAM to track several hundreds of points, achieving
real-time performance in high-end desktop PCs. Reducing
their computational footprint will facilitate the implemen-
tation of odometry and SLAM in low-end platforms such as
small robots and AR/VR glasses. Our experimental results
show that our novel information-based selection criteria al-
lows us to reduce the number of tracked points an order of
magnitude (down to only 24 of them), achieving an accu-
racy similar to the state of the art (sometimes outperforming
it) while reducing 10× the computational demand.

1. Introduction
In the last years, we have witnessed an impressive

progress in the accuracy and robustness of visual odometry
and Simultaneous Localization and Mapping (SLAM) [17,
19, 18, 9, 20]. This boost in the performance has enabled
the transfer of visual odometry and SLAM to several com-
mercial products related to augmented reality (AR), virtual
reality (VR) and robotics.

In spite of their respective successes, visual odometry
and SLAM are still facing significant challenges. The high
computational demand of the state of the art is among the
most critical ones for a widespread use in real applications.
The embodiment of localization and mapping algorithms
into small robotic/AR/VR platforms will impose constraints
on their computational and memory footprints [8]. Most al-
gorithms currently require a hardware that exceeds the ca-
pabilities of many existing and foreseeable platforms.

Find more information in our project website rmc.dlr.de/rm/
en/staff/alejandro.fontanvillacampa/IDNav

Figure 1: Top: Trajectories and maps estimated by our
RGB-D odometry (ID-RGBDO) in two cases: tracking 500
image points (blue), and tracking only the 24 most infor-
mative points (magenta) with considerable computational
savings. The difference between the two is almost unno-
ticeable. Bottom: Sample frames and tracks for the 500
points case (blue dots) and the 24 most informative ones
(magenta squares).

In this paper we aim to drastically reduce the compu-
tational load of direct RGB-D odometry with a negligible
loss in accuracy. For that, we propose a novel and efficient
information-based criterion to keep only the most informa-
tive point in the local Bundle Adjustment and pose tracking
optimizations. We implemented a RGB-D odometry (that
we denote ID-RGBDO) and evaluated our approach in the
TUM dataset, demonstrating that we can achieve substantial
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reductions in the number of tracked features without notice-
ably degrading the accuracy. We outperform the naive se-
lection approaches used in the literature, that mainly select
points on a grid to maximize coverage.

Observe the two estimated trajectories in Figure 1, one
tracking the 24 most informative points and the second one
500 points –a reasonable number in the state of the art. No-
tice that they have almost the same accuracy, but the one us-
ing 24 points requires roughly 10× less computation. Our
proposed information criteria are able to select the small set
of highly informative points that makes this possible.

2. Related work
Graph reduction is a relevant topic in the SLAM com-

munity, with a considerably large literature [12, 1, 11]. We
focus here on the main approaches using information theory
and in particular those developed for visual SLAM.

Information was first used in EKF-based monocular
SLAM in [7] in order to guide sequential search. Based on
it, [2, 3, 10] introduced a multi-hypothesis formulation able
to address ambiguous cases robustly. An information anal-
ysis of filtering and Bundle Adjustment was used in [23] to
prove the advantages of the latter. Up to our knowledge,
ours is the first work that addresses information in a direct
odometry framework.

Information-based approaches have been also used in
laser-based SLAM. [13] proposes a method to add only
non-redundant and informative links to a pose graph, and
[16] uses mutual information to remove low informative
laser scans from the graph. The approach in [4] is able to
reduce not only poses, but also landmarks, based on infor-
mation theoretic criteria. [26, 28] use the Kullback-Leibler
divergence to sparsify a SLAM graph.

3. Notation and fundamentals
Our direct information-driven odometry minimizes the

photometric reprojection error in a sliding window of
frames. Our formulation, based on direct Bundle Adjust-
ment and Tracking, is related to recent approaches to direct
visual odometry and SLAM, namely [9, 6, 15, 14]. How-
ever, we implemented ID-RGBDO in order to have a higher
degree of control in the evaluation. Notice, in any case, that
our contribution can be applied to any RGB-D odometry
system and should give similar improvements.

This section will cover the necessary background and no-
tation, and the specifics of our RGB-D odometry and contri-
butions will be detailed in Section 4 (camera pose tracking)
and Section 5 (sliding-window Bundle Adjustment).

3.1. Photometric model

Point representation. For a point p, its image coordi-
nates are denoted as p =

[
pu pv

]> ∈ R2 and its inverse

depth in the camera frame as d ∈ R. For its photometric ap-
pearance, we use a set of intensity values spread in a patch
centered in p [9].

Keyframe representation. A keyframe j is defined by
its RGB-D channels, its 6DOF camera pose as a transforma-
tion matrix T ∈ SE(3), two brightness parameters {aj , bj}
and a set of reference points to track. The Lie-algebras
pose-increments x̂se(3) ∈ se(3) , with ·̂se(3) being the map-
ping operator from the vector to the matrix representation
of the tangent space [22], are expressed as a vector x ∈ R6.
During the optimization, we update the transformations at
step (k) using left matrix multiplication and the exponen-
tial map operator exp(·), i.e.,

T(k+1) = exp(x̂se(3)) · T(k). (1)

Residual function. The photometric residual ri of an
image point pi in a frame i is the intensity difference with
the corresponding point in a reference keyframe j, com-
bined with an affine brightness transformation and a robust
norm [9]

ri =
∣∣∣∣∣∣e−aj (Ij(pj)− bj)− e−ai(Ii(pi)− bi)

∣∣∣∣∣∣
γ
. (2)

Although some works use the t-distribution [14, 15], we ob-
served a higher accuracy using the Huber norm (as in [9])
and saturating large values (as in [5]).

The image points pi and pj are related by

pi = Π(RΠ−1(pj , dj) + t), (3)

where Π(P) projects in the image plane the point P in the
camera frame; and Π−1(p, d) back-projects the image point
with coordinates p at inverse depth d. R ∈ SO(3) and
t ∈ R3 are the relative rotation and translation between
keyframe j and frame i.

Optimization. We do Gauss-Newton optimization, that
can be written as

(JTΣ−1
r J)y = −JTΣ−1

r r, (4)

where the rows of the matrix J =
[
Jx Jd Ja,b

]
∈ Rn×m

contains the derivatives of the residual function (equation
(2)) with respect to the Lie-algebra increments Jx, the point
inverse depths Jd and the photometric parameters Ja,b. The
diagonal matrix Σr ∈ Rn×n contains the covariances σ2

r

of the photometric residuals. The residual vector r ∈ Rn
stacks the n individual residuals to minimize. y ∈ Rm
stands for the state correction containing the increments for
poses, inverse depths and photometric parameters.

Residual covariance. Our residual covariance σ2
r in-

cludes the impact from geometry and appearance. We pro-
pose to model it by multiplying a photometric term σ2

Φ with
a geometric one h(δA) that comes from projecting a differ-
ential area surrounding the 3D point:



σ2
r = h(δA) · σ2

Φ. (5)

Figure 2 illustrates how the differential area around a point
changes with the viewpoint. This change δA can be mod-
eled as the determinant of the derivative of the image point
pi in frame i with respect to the coordinates pj of the cor-
responding point in a reference keyframe j:

δA =

∣∣∣∣ ∂pi
∂pj

∣∣∣∣. (6)

With this, we define the geometric weight h(δA) as the
following function, that penalizes the residual covariance
for large perspective distortions

h(δA) = ech(δA−1)2 , (7)

where ch is a constant to ponder the influence of the model.
The photometric term σ2

Φ is computed from a first order
propagation of the inverse depth covariance σ2

d

σ2
Φ ≈

[(
gu
∂pu
∂d

)2

+

(
gv
∂pv
∂d

)2
]
σ2
d, (8)

where the intensity gradients
[
gu gv

]
come from a first-

order Taylor expansion of the intensity in the vicinity of p

I(p + δp) ≈ I(p) +
[
gu gv

] [δpu
δpv

]
. (9)

Using the stereo model for RGB-D cameras based on
structured light patterns, and assuming a focal length f and
a baseline b, the inverse depth error covariance σd is [6]

σd =
1

fb
σpx, (10)

where σpx is the disparity error.

3.2. Information metrics

Information theory provides a mean to quantify and for-
malize all processes related with information. In the context
of SLAM the special case of multivariate Gaussians is com-
prehensively well founded [7, 2]. The information-driven
formulation proposed in this paper is based on the follow-
ing classical information metrics.

Differential entropy of a k-dimensional Gaussian dis-
tribution X ∼ Nk(µX ,ΣX). It can be seen as the expected
information content of a future event, given the set of pos-
sible results and their probability distribution [2]

H(X) =
1

2
log((2πe)k|ΣX |). (11)

Entropy reduction, which is the relative difference be-
tween two Gaussian distributions

∆H(X,Y) = H(X)−H(Y) =
1

2
log
|ΣX |
|ΣY |

, (12)
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Figure 2: Illustration of the projective distortion of a differ-
ential 2D patch δA.

that is, how much more accuracy is obtained by measuring
Y instead of X [23].

Conditional covariance. Assuming x ∈ RN and y ∈
RM are combined in a joint Gaussian Z ∼ N (µZ ,ΣZ),

ΣZ =

[
Σxx Σxy

Σyx Σyy

]
, (13)

the conditional covariance Σx\y of x given y, is the
Schur complement of Σyy in ΣZ :

Σx\y = Σ∗x = Σxx −ΣxyΣ
−1
yy Σyx. (14)

Mutual information between two random variables. It
measures how much knowing one of the variables reduces
the uncertainty about the other [21]:

MI(x, y) =
1

2
log
|Σxx|
|Σ∗x|

. (15)

Throughout the paper the entropy is measured in abso-
lute numbers of bits (i.e., log stands for base-2 logarithm).

4. ID-RGBDO - tracking
We now apply to direct RGB-D pose tracking the ideas

above, presented in this section theoretically and evaluated
experimentally in Section 6.1.

4.1. Informative point selection

Most direct methods are either dense or semi-dense ap-
proaches, aiming to use as many pixels as possible. In order
to achieve real-time performance, they rely on a high-end
computational platform or make use of sub-optimal approx-
imations.

Sparse direct methods, on the contrary, reduce the num-
ber of points by extracting those with a significant photo-
metric gradient (Step 1) and widely spread across the image



(Step 2). These heuristics work reasonably well in a wide
array of scenarios, although several aspects are left unex-
plored: Are we reaching the lowest possible error given our
data? Are we using redundant information and hence wast-
ing computation? Is there enough visual information for the
problem to be well conditioned at all times? Our proposal is
to add an algorithm (Step 3) that selects points in a manner
that, together with the previous two conditions, maximizes
the entropy of the camera pose.

The camera pose entropy depends on the determinant of
its covariance matrix Σx, as shown in equation (11). Each
point p contributes with ∆pΛx to the information matrix
Λx, that can be obtained as the sum of the Jacobian auto-
product for the whole set of points P

Λx = Σ−1
x =

∑
p∈P

∆pΛx =
∑
p∈P

jTx,pσ
−2
r jx,p, (16)

where jx,p is the row of the Jacobian Jx that corresponds to
the photometric residual of point p.

The addition of point p also yields to a variation of the
information matrix determinant ∆p|Λx|, that has the very
satisfying property1 that can be expressed individually per
point, depending on the pth row of the Jacobian jx,p and the
current adjoint information matrix Λadj

x :

∆p|Λx| = |Λx + jTx,pσ
−2
r jx,p| − |Λx|

= |Λx||I + Λ−1
x jTx,pσ

−2
r jx,p| − |Λx|

= |Λx|(1 + σ−2
r jx,pΛ

−1
x jTx,p)− |Λx|

= σ−2
r jx,pΛ

adj
x jTx,p.

(17)

Based on this, our algorithm works as follows. We start
from a pre-filtered set of high-gradient pixels by using a grid
with a region-adaptative gradient threshold (as in [9]). We
prioritize points that belong to Canny edges (as in [6]) but
also keep some points in areas with weaker gradient (Step
2). From here we follow Algorithm 1. We choose for each
degree of freedom (each of the six columns of Jx) the im-
age point p with maximum derivative, and build with them
an initial information matrix. We then iteratively select the
point that maximizes the following function (Step 3)

f(p ∈ P, z,Λx) = ∆p|Λx|+
1

cz(zp − z)2 + 1
. (18)

The first addend in the function takes into account the
increment of information described above. The second one
contributes to spread the points in the image, in order to
compensate for effects that are not modeled in the projec-
tion function. This last expression increases its value when

1For simplicity we applied a consequence of the Sylvester’s determi-
nant theorem |(Im + cr)| = 1 + rc.

Algorithm 1 Informative point selection.

1: function SELECT INF. POINTS (m,P,Jx)
2: . m = number of points to be selected
3: . P = set of available points
4: Q← ∅ . Q = set of selected points
5: Λx← 0 . Init. Information matrix
6: for k ← 1 to DOF do . DOF = 6
7: i← arg max (jx,p[k]))
8: Λx← Λx + ∆pΛx(P[i])
9: Q←Q∪ P[i] . Add selected point

10: P ← P − P[i]
11: end for

. Informative selection
12: z← image border
13: while (P 6= ∅ & dim (Q) < m) do
14: i← arg max (f(P, z,Λx)) . Most inf. point
15: Λx ← Λx + ∆pΛx(P[i])
16: Q←Q∪ P[i]
17: P ← P − P[i]
18: z← z −∆z
19: end while
20: return Q
21: end function

the radial coordinate zp of a point p approaches z. z is ini-
tialized at the image border and its value is reduced by ∆z
for each selected point until reaching the principal point. cz
models the importance of this second term with respect to
the information increment of each point.

4.2. Pose estimation

With our selected set of points, we aim to find the motion
∆x between the closest keyframe and the current frame, that
minimises the photometric residual vector r (see equation
(2)). This optimization is initialized with a constant velocity
model and a multi-scale pyramid image to aid convergence.

The addition of a kinematic model has been extensively
used in odometry and SLAM. [15] showed that adding a
motion prior in direct odometry helps in cases such as lack
of texture, motion blur or dynamic content. The motion
estimation with such a prior can be written as

(JTxΣ−1
r Jx + Σ−1

m )∆x = −JTxΣ−1
r r + Σ−1

m (xt−1 − x(k)
t ),
(19)

where xt−1 and x(k)
t are the camera speeds for the previous

frame and the last iteration of the current frame respectively.
The diagonal covariance matrix Σm ∈ R6×6 models the
strenght of the motion prior. As explained in [15], assigning
high values to this covariance matrix decreases the influence
of the motion prior with respect to the image residuals and
vice versa. Tuning the values of the matrix is left to the



knowledge of the agent motion or the availability of another
type of sensor (such as an IMU).

As in [9], we consider outliers and discard those points
whose photometric error exceeds three times the standard
deviation of the distribution. This reduces the effect that
occlusions and false matches have on the accuracy and ro-
bustness of the odometry.

5. ID-RGBDO - windowed optimization
5.1. Keyframe creation

There are several different strategies to select keyframes
from an image sequence, with the aim of estimating a local
map. Conservative strategies privilege the use of already
existing keyframes before constituting a new one. Only if
there is no previous candidate with enough overlap, the sys-
tem assumes that a new area is being explored and creates a
new keyframe [6]. An alternative approach is to first initial-
ize a large number of keyframes and later, in the local map-
ping step, cull down and marginalize the redundant ones
[9, 17]. We use this latest method, as it makes the track-
ing more robust to rapid motions and allows to maintain a
sliding window optimization with close keyframes.

Keyframe creation is mainly associated with visual
change, related to rotation and/or translation or due to light-
ing changes. This task is commonly addressed by setting
thresholds to the following criteria: 1) a maximum rota-
tion and translation distance, 2) a minimum number of in-
lier points, 3) after a fixed number of tracked frames or, 4)
due to a strong change in brightness parameters.

Similar to [14], we propose the keyframe creation to be
associated with the entropy reduction ∆H of the camera
pose. Differently from [14], we obtain the entropy reduc-
tion independently for each degree of freedom x ∈ x us-
ing the Schur complement on the covariance matrix. We
set the entropy H∗(x0) of the first frame immediately after
the keyframe as the reference. This means that, in essence,
our system creates a new keyframe when a certain entropy
decrement is observed in at least one of the degrees of free-
dom of the camera.

H∗∆(x, x0) = 1− H∗(x)

H∗(x0)
. (20)

It may seem paradoxical, within this information frame-
work, to establish a threshold for the process of keyframe
creation. However, in contrast to other systems that define
multiple and ambiguous thresholds, it is worth noting the
entropy decrement allows us to use a single value that is re-
lated to tracking information. Disaggregating the informa-
tion for each particular degree of freedom adds robustness
and accuracy, as the aggregated information might compen-
sate low information values in some degrees of freedom
with higher ones in some others.

5.2. Keyframe marginalization

Keyframe marginalization is essential to keep the op-
timization size-bounded, enabling real-time operation [9,
18]. The marginalization criteria depend on whether we
optimize a local map or a sliding window of keyframes.
For the first case, the aim should be detecting and remov-
ing redundant keyframes, allowing lifelong operation in the
same environment without unlimited growth of the number
of keyframes unless the visual content of the scene changes
[18]. The second technique, adopted by odometries, main-
tains a sliding window around the last keyframe, sufficiently
spaced for an accurate optimization of the point depths.

Our marginalization belongs to the second group. How-
ever, instead of using a heuristically designed function to
keep the keyframes spatially distributed, we use the mutual
information measurement in order to delete the redundant
ones.

Partial marginalization using the Schur complement.
Instead of simply dropping out keyframes and points from
the optimization, and in order to preserve most of the infor-
mation, we substitute the non-linear terms with a linearized
expression of the photometric error (as in [9, 25, 27]).

The state vector update in equation (4) is first written in
the following form[

Hαα Hαβ

Hβα Hββ

] [
yα
yβ

]
=

[
bα
bβ

]
, (21)

where α and β are the blocks of variables we would like
to keep and marginalize respectively. Applying the Schur
complement we obtain

H∗α = Hαα −HαβH−1
ββHβα (22)

b∗α = bα −HαβH−1
ββbβ , (23)

which represents again a linear system for the state vector
update, but in this case with variables β marginalized out.
We can hence write a quadratic function on y that can be
added to the photometric error during all subsequent opti-
mization and marginalization operations, replacing the cor-
responding non-linear terms:

r(δyα)
∣∣
yα

=
1

2
δyTαH∗αδyα − δyTαb∗α. (24)

Note that partial marginalization fixes the linearization
point of the variables involved, and then this would require
the tangent space to remain the same over all subsequent op-
timization and marginalization steps. To reduce this prob-
lem we perform a relinearization of r(δyα)

∣∣
yα

, as in [25],
every time the state is updated, i.e.,

r(δyα)
∣∣
yα+∆yα

= r(∆yα)
∣∣
yα

+
1

2
δyTαH∗αδyα − δyTα(b∗α −H∗α∆yα).

(25)



Similar to [9], when dropping a keyframe we first
marginalize all points referred to it and then the keyframe
itself.

Redundancy detection using Mutual Information. As
in [21], the redundancy ψ(Kj) of a keyframe with respect
to the others can be expressed by

ψ(Kj) =
∑
i∈K

MI(i, j,Σ(i,j)\K−{i,j}), (26)

where the Mutual Information between every pair of
keyframes (i, j) is computed from their conditional co-
variance matrix Σ(i,j)\K−{i,j} with respect to the rest.
This metric is used to remove, when necessary, the less
informative keyframe within the window.

6. Experimental Results
For our evaluation we use the public TUM RGB-D

benchmark [24]. This dataset contains several indoor se-
quences, captured with an RGB-D camera and annotated
with ground truth camera poses. Specifically, we use all
static sequences except those beyond the range of the sen-
sor (see Table 1 for the sequence list).

This section is divided into four sets of experiments.
The first set evaluates the informative point selection pro-
cedure introduced in section 4.1. The next set analyses
the keyframe creation criterion that we propose in section
5.1. The third set shows an analysis of computational per-
formance. Finally, we compare our system against several
state-of-the-art RGB-D odometry and SLAM systems.

The error metrics chosen for the following figures and ta-
bles are the translational keyframe-to-frame error (K2FE),
used for evaluating our informative point selection, and
the root-mean-square errors of traslational drift in m/s
(RPE) and Absolute Trajectory Error (ATEs) for comparing
against state-of-the-art baselines.

6.1. Informative point selection

We evaluate the performance of our system both quan-
titatively and qualitatively in terms of trajectory estimation
and computational performance.

Figure 3 shows the translational keyframe-to-frame er-
ror (K2FE) using a number of points between 24 and 256
for all sequences we evaluated (more than 20, 000 frames).
The four configurations shown refer to different alternatives
for point selection: completely random (rand), distributed
in a grid and above an intensity gradient threshold (grid),
based on our criterion to maximize the entropy of the pose
(see equation (18)) (inf) and with a mixed approach be-
tween the last two (inf+grid). The figure shows that our
information-based criterion, both combined with the grid

Figure 3: Point Informative Selection. Accumulated
translational keyframe-to-frame error (K2FE) in all se-
quences. Different lines correspond to point selection
modes.

Figure 4: Accuracy vs Entropy. Left: Accumulated K2FE.
Color degradation from black to blue indicates a higher en-
tropy reduction. Right: Accumulated K2FE vs absolute en-
tropy values.

approach and not, leads to the highest accuracy. The dif-
ference between the four alternatives is smaller as the num-
ber of points increases, but the information-based selection
always results in a higher accuracy. The negligible differ-
ence in accuracy between inf and inf+grid is relevant for
real-time performance, as grid-based point pre-selection is
significantly faster than choosing them only based on infor-
mation criteria. This is why in our RGB-D odometry we
adopt this mixed approach.

The relation between entropy reduction and accuracy is
shown in Figure 4. In short, the cost (the number of points
needed) of improving pose accuracy increases with the ab-
solute value of the entropy. A limitation of our current re-
search is that, for different sequences, the specific shape of
the entropy-accuracy curve is slightly different. As shown
in Figure 5, two sequences with similar entropy values have



RPE (m/s) ATE (m)
[14] [18]† [29] Ours [18]† [29] Ours

1 fr1 desk‡ 0.024 0.051 0.031 0.029 0.065 0.044 0.051
2 fr1 floor‡ 0.232 0.038 0.010 0.011 0.061 0.021 0.020
3 fr1 plant‡ 0.025 0.044 0.036 0.024 0.067 0.059 0.039
4 fr1 rpy‡ 0.032 0.037 0.034 0.026 0.066 0.047 0.045
5 fr1 xyz‡ 0.018 0.014 0.019 0.019 0.009 0.043 0.043
6 fr2 desk - 0.030 0.008 0.011 0.213 0.037 0.030
7 fr2 dishes - 0.035 0.012 0.015 0.104 0.033 0.041
8 fr2 rpy - 0.004 0.004 0.003 0.004 0.007 0.007
9 fr2 xyz - 0.005 0.004 0.003 0.008 0.008 0.007
10 fr3 cabinet - 0.071 0.036 0.058 0.312 0.057 0.063
11 fr3 large cabinet - 0.100 0.167 0.049 0.154 0.317 0.096
12 fr3 long office household - 0.019 0.010 0.010 0.276 0.085 0.038
13 fr3 nostr. text. far 0.073 0.121 0.035 0.037 0.147 0.026 0.049
14 fr3 nostr. text. near 0.028 0.050 0.043 0.015 0.111 0.090 0.062
15 fr3 str. notext. far 0.039 0.013 0.027 0.016 0.008 0.031 0.018
16 fr3 str. notext. near 0.021 0.060 - - 0.091 - -
17 fr3 str. text. far 0.039 0.018 0.013 0.012 0.030 0.013 0.010
18 fr3 str. text. near 0.041 0.017 0.010 0.011 0.045 0.025 0.013

Table 1: RMSE of translational drift RPE (m/s) and ATE (m) for state-of-the-art baselines and ID-RGBDO
(Ours). Remarkably, ID-RGBDO (Ours) tracks only 24 points per keyframe. † stands for ORB-SLAM2-based
odometry, where loop closure was deactivated from the original implementation of [18]. ‡ stands for special
initialization for tracking convergence.

Figure 5: Entropy reduction. Left: translational keyframe-
to-frame error (K2FE) vs. entropy reduction. Center: num-
ber of points vs. entropy reduction. Right: K2FE vs. num-
ber of points. The three different colors stand for three dif-
ferent sequences.

different translational errors. These discrepancies may be
due to the need of a better photometric model, as for ex-
ample scenes with strong presence of motion blur give poor
performance. This is not relevant for our current selection
criterion, that uses relative entropy. However, future work
to understand this effect could lead to further improvements.

6.2. Informative Keyframe Creation

Here we demonstrate the adequacy of our entropy-based
criterion for keyframe creation. Figure 6 shows the varia-

Figure 6: Keyframe Creation. Both RPE and ATE trajec-
tory errors are influenced by the keyframe creation strategy.
The figure shows a value for the relative entropy decrement
H∗∆ where both errors are minimal.

tion of the normalized trajectory errors (RPE and ATE), ag-
gregated over all sequences, versus the threshold on the rel-
ative entropy reduction H∗∆ to create a new keyframe. Low
values lead to a high number of keyframes, which might in-
crease the drift. Increasing the threshold on the relative en-
tropy reduction decelerates the keyframe creation, reducing
the overlap and increasing the error and eventually leading
to tracking failure. Notice how this effect is modeled in the
curves of Figure 6, and that they can be used to choose a
reasonable threshold.



Figure 7: Tracking cost. Observe its linear growth with
the number of points, and hence the convenience of using
a small number of them. Observe also the small overhead
introduced by our informative point selection.

Figure 8: Bundle Adjustment cost. Notice the steep
growth with the number of points, that our selection algo-
rithm reduces with a minimal impact in the accuracy.

6.3. Computational Performance

We run all experiments on a laptop with an Intel Core
i7-7500U CPU at 2.70 GHz and 8 GB of RAM. Figure 7
shows the linear dependence of the tracking cost (with and
without informative point selection) with the number of im-
age points. Time is reduced between 5× and 10× from the
usual practice of tracking hundreds of points to our mini-
mal setup of 24 points. Notice also that the overhead intro-
duced by our informative point selection algorithm is small
compared to the total tracking cost, in particular for a low
number of points.

Figure 8 shows the cost of our Direct Bundle Adjustment
depending on the number of points and cameras. For our
minimal configuration of 24 points per keyframe, the cost
is reduced approximately 10× with respect to more usual
setups that optimize hundreds of points.

6.4. Evaluation against SotA baselines

We compare our system against three different baselines.
Firstly, against Canny-VO [29], a recent RGB-D odome-
try based on geometric edge alignment. Secondly, against
an ORB-SLAM2-based odometry, for which the original
ORB-SLAM2 [18] was used with its loop closure deacti-

vated. And, thirdly, against DVO SLAM [14], a dense di-
rect RGB-D SLAM. The results for ORB-SLAM2-based
odometry were taken from [29]. Table 1 shows the tra-
jectory errors for these three baselines and ID-RGBDO.
In our ID-RGBDO we use 24 points per keyframe and 8
keyframes in the sliding-window Bundle Adjustment. In
the case of fr1, as these sequences have high motion blur
due to quick rotations, we use initially a higher amount of
points to aid tracking convergence but then within the Bun-
dle Adjustment we stick to the 24 most informative points
per keyframe and 8 keyframes configuration.

Notice how, for a large part of the fr2 and fr3 camera se-
quences, that are rich in texture and/or structure, our algo-
rithm outperforms the three baselines. Our tracking fails in
sequence 16, as all direct odometries do, while the feature-
based ORB-SLAM2 succeeds. We have detected that this
is due to the fact that the problem is not well conditioned
with a photometric cost function and however it is condi-
tioned enough if features are used. This result tells us how
beneficial a mixed direct-features system managed with in-
formation measurements could be.

7. Conclusions and Future Work

In this paper we have proposed a novel criterion to se-
lect the most informative points to be tracked in a RGB-
D odometry framework. We have shown experimentally
that using a small number of very informative points and
keyframes can have a significant impact in the computa-
tional cost of RGB-D odometry, while keeping an accuracy
similar to the state of the art. Specifically, our experimen-
tal results show that tracking the 24 most informative points
is enough to match the performance of the state of the art
while reducing the computational cost up to a factor 10×.

Up to our knowledge, this is the first time that informa-
tion theory is applied to direct odometry and SLAM meth-
ods. We believe that our results will facilitate the use of
visual odometry and SLAM in small robotic platforms and
AR/VR glasses, that are limited in computation and power.

There are several lines of research that build on and could
improve the results of this work. Firstly, the development
of a probabilistic photometric model could improve the ac-
curacy of the information metrics. And secondly, we also
think that further analysis on the information of the win-
dowed keyframe optimization could offer even better re-
sults. We plan to investigate both topics in the near future.

Acknowledgments This project has received funding
from the Spanish Government (PGC2018-096367-B-I00)
and the Aragón Government (DGA T45 17R/FSE).



References
[1] Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and

Frank Dellaert. Eliminating conditionally independent sets
in factor graphs: A unifying perspective based on smart fac-
tors. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 4290–4297. IEEE, 2014. 2

[2] Margarita Chli and Andrew J Davison. Active matching.
In European conference on computer vision, pages 72–85.
Springer, 2008. 2, 3

[3] Margarita Chli and Andrew J Davison. Active matching
for visual tracking. Robotics and Autonomous Systems,
57(12):1173–1187, 2009. 2

[4] Siddharth Choudhary, Vadim Indelman, Henrik I Chris-
tensen, and Frank Dellaert. Information-based reduced land-
mark SLAM. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 4620–4627, 2015.
2

[5] Alejo Concha and Javier Civera. An evaluation of robust cost
functions for RGB direct mapping. In 2015 European Con-
ference on Mobile Robots (ECMR), pages 1–8. IEEE, 2015.
2

[6] Alejo Concha and Javier Civera. RGBDTAM: A cost-
effective and accurate RGB-D tracking and mapping system.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6756–6763. IEEE, 2017.
2, 3, 4, 5

[7] Andrew J Davison. Active search for real-time vision. In
Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 1, pages 66–73. IEEE, 2005.
2, 3

[8] Andrew J Davison. FutureMapping: The computa-
tional structure of spatial AI systems. arXiv preprint
arXiv:1803.11288, 2018. 1

[9] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct
sparse odometry. IEEE transactions on pattern analysis and
machine intelligence, 40(3):611–625, 2017. 1, 2, 4, 5, 6

[10] Ankur Handa, Margarita Chli, Hauke Strasdat, and Andrew J
Davison. Scalable active matching. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, pages 1546–1553. IEEE, 2010. 2

[11] Jerry Hsiung, Ming Hsiao, Eric Westman, Rafael Valencia,
and Michael Kaess. Information sparsification in visual-
inertial odometry. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1146–
1153. IEEE, 2018. 2

[12] Guoquan Huang, Michael Kaess, and John J Leonard. Con-
sistent sparsification for graph optimization. In 2013 Euro-
pean Conference on Mobile Robots, pages 150–157, 2013.
2

[13] Viorela Ila, Josep M Porta, and Juan Andrade-Cetto.
Information-based compact pose SLAM. IEEE Transactions
on Robotics, 26(1):78–93, 2009. 2

[14] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Dense
visual SLAM for RGB-D cameras. In 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
pages 2100–2106. IEEE, 2013. 2, 5, 7, 8

[15] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Robust
odometry estimation for RGB-D cameras. In 2013 IEEE In-

ternational Conference on Robotics and Automation, pages
3748–3754. IEEE, 2013. 2, 4

[16] Henrik Kretzschmar and Cyrill Stachniss. Information-
theoretic compression of pose graphs for laser-based
slam. The International Journal of Robotics Research,
31(11):1219–1230, 2012. 2

[17] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. ORB-
SLAM: a versatile and accurate monocular SLAM system.
IEEE transactions on robotics, 31(5):1147–1163, 2015. 1, 5

[18] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: an Open-
Source SLAM System for Monocular, Stereo and RGB-D
Cameras. IEEE Transactions on Robotics, 33(5):1255–1262,
2017. 1, 5, 7, 8
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